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INTRODUCTION 
  

Multiple airborne electromagnetic (AEM) methods exist that 

can be used to measure an EM response, sensitive to near 

surface resistivity (down to hundreds of meters depending on 

the method) e.g. TEMPEST, SkyTEM, and VTEM. Inverse 

methods can be used to infer information about the 

distribution of subsurface resistivity (and properties related to 

resistivity) from observed EM data. 

 

Many different approaches have been considered to solve this 

inverse problem, that can roughly be regarded as either a 

‘deterministic’ or ‘probabilistic’ method. The goal of 

deterministic methods is to locate one, in some sense optimal, 

resistivity model alone with some uncertainties, that represents 

observed data, see e.g. Constable et al. (1987) or Menke 

(2012). The goal of probabilistic methods is to locate a (large) 

collection models (realizations from a posterior probability 

density) which ideally represents all available information, 

Tarantola (2005). In any case, inversion of AEM data is an 

under-determined inverse problem. Infinitely many models 

will be able to fit the observed data within its noise. This 

means that additional prior information must be assumed to 

solve the inverse problem.  

 

For deterministic inversion methods prior information is 

provided through `regularization', that can for example control 

the degree of simplicity/smoothness of the solution model. 

Most such prior information is implicitly chosen through the 

choice of inversion algorithm. Probabilistic formulated inverse 

problems require/allow a prior model to be chosen explicitly. 

Below we demonstrate the use of such an explicitly chosen 

prior model and discuss how it affects resolution and 

useability as a tool for decision makers.  

 

METHOD AND RESULTS 

 
In a probabilistic formulation of inverse problems, the goal is 

to describe all available information in one probability 

distribution, fpost(m). Typically, at least two types of 

information are available. a) Information from geophysical 

data, such as AEM data is quantified through fdata(m) = L(dobs 

-g(m)), where dobs is the observed data and g is a forward 

mapping operator (solving in this case Maxwell’s equations). 

fdata(m) describes the expected noise on the data and is often 

considered to follow a Gaussian distribution. b) ‘Prior’ 

information is quantified through fprior(m), which describes 

other information about m not described by the data. If these 

two types of information are obtained independently, the 

‘posterior’ probability density that describes the combined 

information is given by  

 

fpost(m) ∝ fprior(m) fdata(m).   (1) 

 

A general approach to extract information about fpost(m) is to 

use sampling methods (e.g. Mosegaard and Sambridge, 2002), 

where the goal is to generate a set of realizations (in this case 

resistivity models) that distributed according to fpost(m). Many 

different sampling methods can be used to sample from 

fpost(m) (e.g. Hansen et al., 2016). In the following we use 

extended Metropolis sampler as described in Hansen et al. 

(2013). 

 

 

Inversion of AEM data from Morill Data 

 

As an example we consider a 2D profile of frequency-domain 

AEM  data collected using a helicopter in Nebraska, as 

described in Minsley et al (2011). Figure 1 shows for 

reference an inverted 2D resistivity profile obtained using 

SUMMARY 
 

Measuring and inversion of airborne electromagnetic 

(AEM) data provides one efficient approach to image the 

subsurface (in this case resistivity) variation. Ideally this 

should provide decision makers the ability to take 

informed decisions. In reality, one optimal model is most 

often found (often smooth and fitting the geophysical 

data) and used to represent the subsurface. Such 

deterministic inversion methods rely on implicit model 

assumptions, representing prior information (a type of 

regularization information), that may be (but most 

probable is not) consistent with the actual available 

information. Further, such methods cannot fully account 

for the full uncertainty. Hence, it may be impossible to 

take informed decisions about the subsurface, solely from 

such one model. Here we present an approach for 

inversion of AEM data in which geological prior 

information is independently and explicitly chosen before 

inversion is carried out. The main benefit of this 

approach is that a number of subsurface models will be 

constructed, that will, by construction, be consistent with 

all information available (both the prior and the data). 

From such a collection of models detailed uncertainty 

analysis is possible, and it can be used as the base of 

decision makers to answer complex questions, without 

being experts in AEM data or geological modelling. We 

present a number of examples of using explicit choices of 

prior information and conclude that the choice of prior 

information cannot be avoided. If one does not choose a 

prior model explicitly, it will be chosen implicitly by the 

choice of inversion algorithm.  
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RES2DINV, which is a linearized least squares type 

deterministic inversion method, that implicitly relies on 

Gaussian prior assumptions.  

 

Three different a priori models on the spatial variability is 

considered, ranging from high to low entropy (i.e. low to high 

information content). In these cases, the subsurface is 

parameterized into a 112x151 size pixel model, where each 

pixel refer to one model parameter, mi, describing log10-

resistivity. Each pixel is of size 1x200m, and the total model is 

then 22.4 km long and 150 meters deep below the surface.  

 

Case A: Maximum entropy prior. Given the chosen 

parameterization the simplest prior model, with least 

information, is the choice of a) no correlation between the 

model parameters, and b) a uniform distribution of the log-

resistivity, here chosen to be fA(m) ∝ U[-1,3], (i.e. between 

0.1 and 1000 ohm-m). Figure 2a shows one realization of this 

type of prior model. 

 

Case B: Minimum entropy prior. Another prior is chosen to 

be a three-layer model, where the resistivity within each layer 

is constant, but known a priori only to be in a certain interval. 

Further, the depth to the boundary is chosen to be described 

by multivariate Gaussian along the x-direction (1x451) with a 

range of 1000 m. The amount of entropy related to such a 

prior model is much lower than for case A, and we refer to this 

prior model as a ‘minimum entropy’ prior, fB(m). Figure 2b 

shows one realization of this type of prior model. 

 

Case C: ‘realistic choice of prior. This third type of prior 

considered is one based on available information from the 

area. It is known that the subsurface is divided into three 

lithologies, with somewhat overlapping 1D marginal 

distributions. Is also known that some correlation should be 

expected between the model parameters, and that this 

correlation should be along the direction of the surface, and 

less vertically. A 2D multivariance Gaussian model, fC(m), is 

chosen to represent this information, using 1D normal score 

transformation to ensure the non-Gaussian 1D marginal 

distribution. Figure 2c shows one realization of this type of 

prior model.   

 

Case C is the best representation of the available information. 

It is basd on a Gaussian model, which is known to be a 

maximum entropy model, beyond the assumed 2-point 

statistics (described by the covariance). In other words, no 

information about higher order statistical relations are 

imposed. This follows good practice of not assuming anything 

a priori that is not explicitly known. Case A represents an 

extreme choice in this relation as the only assumed 

information is that 1D marginal distribution of the log-

resistivity is uniform.  

 

The AEM data has been inverted by sampling the posterior 

distribution using the three defined prior models, fA(m), fB(m), 

and fC(m). One realization of each set of obtained sample, is 

shown in Figure 3a-c. Ideally a bunch of such realizations 

should be inspected. Comparing these realizations of the 

unconditional realizations in Figure 2 highlights the amount of 

information contributed by the AEM data.  

 

It is clear that using the high entropy prior, fA(m), not much 

information is coming from the data except for a few low 

resisistivity regions. Also, in most places the resistivity values 

of neighbouring cells can vary wildly. This is simply due to 

the fact that the a priori assumptions of no spatial correlation, 

and the data themselves does not contain information enough 

to resolve coherent structures in most cases, if  they should 

exist.  

 

Figures 4a-c show the pointwise most probable log-resistivity 

value (i.e. the mode of the 1D marginal posterior probability 

density), and highlights that when the resolution is high, the 

most mode can be an valuable statistic. Note though that the 

model models cannot be used as a representative model of the 

subsurface. It is but a 1D statistical measure that may be 

useful. The actual realizations in Figure 3, represent examples 

of subsurface variability consistent with all the available 

information, and can be used for further uncertainty 

analysis/propagation. For example, Figure 2c and 3c 

demonstrates how the same kind of variability exist in both the 

prior and the posterior realization. The only difference is that 

the location of the coherent regions of resistivity is well 

defined in multiple realizations of posterior probability in the 

top region, but close to unconstrained in the bottom part of the 

model. The variability in the bottom part of the model is not 

sensitive to the AEM data, and hence just represent the prior. 

Using the mode model, however, the small scale variability 

that is chosen to exist a priori, is filtered out, and hence this 

model cannot be used to any uncertainty analysis propagation.   

 

Figures 4a-c show the Kullback-Leibler (KL) distance 

between the posterior and prior distribution at each model 

parameter. It is a measure how different the 1D marginal prior 

and posterior are. It is a measure of how much information is 

gained by adding the data, and hence can be used as a type of 

resolution analysis. A KL-distance of zero indicates that no 

information has been added by using the data, as the 1D 

posterior distribution is the same as the 1D prior distribution. 

Note though that even though the KL distance may be zero, a 

model parameter may be perfectly resolved, as in case B, 

where the prior assumption is that there is a constant low 

resistive layer at the bottom. In this case the resolution stems 

from a combination of very strong prior information at depth, 

that needs only very little information in the top of the model 

to be completely constrained. In this case not much 

information is gained at the bottom of the model, as indicated 

by the KL distance in Figure 4, but the resistivity at depth is 

still well resolved due to the prior.  

 

This off course emphasize the crucial role of the prior. If one 

wish to assume as little as possible, as in fB(m), then one run 

the risk of introducing small scale variability into the solutions 

models (posterior realizations), that is geologically unrealistic. 

This means that any further propagation of uncertainty, such 

as through flow modelling, may provide erroneous results. 

Which again means that any risk assessment may turn out 

erroneous. 

 

On the other hand, of too much information is assumed, as in 

fB(m), then the AEM data can still be fitted ,and one gets a 

apparently well resolved model, where realizations from the 

posterior are very similar. This unrealistically small posterior  

variability is though mostly determined by the use of a strong 

(and in this case probably wrong) prior. Again, any 

subsequent risk assessment may provide erroneous results.  

Thus, posterior analysis using both fA(m) and fB(m) is thus 

hampered by the choice of a wrong/inconsistent prior.  
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In case constructing a prior model actually representing the 

information available, as fC(m), it is possible to solve the 

inverse problem to generate a collection of resistivity models 

that reflect both realistic a priori information, and that is 

consistent with the AEM data. The variability of such a set of 

models, can then be mapped into other domains (such as 

computing the volume of a potential reservoir with 

uncertainty).  

 

Conclusions 

 

Inversion of AEM data leads to a severely underdetermined 

inverse problem, which means that the choice of prior 

information is essential to allow any realistic uncertainty 

analysis. The choice of prior information cannot be avoided. If 

available prior information can be described in a probabilistic 

manner, then using a probabilistic formulation of inverse 

problems, it can be combined with information from AEM 

data, to provide a set of subsurface resistivity models, that can 

be used as a base for decision makers. Informed decisions can 

then be taken consistent with both available geophysical data, 

and available geological information quantified as prior 

information.    
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Figure 1, Linearized least squares inversion along AEM profile 

 

 

 
Figure 2, One realizations from each of the the priors, fA(m), fB(m), and fC(m). 



 

 

 

 
Figure 3, One realizations from the posterior, for case A, B, and C. 

 

 

 
Figure 4, The pointwise most probable resistivity (the mode) of 1D marginal posterior probability density for 

case A, B, and C. 

 

 
Figure 5, The pointwise Kullback-Leibler (KL) distance between the 1D marginal posterior and prior 

distribution. Black indicates large distance, and white indicates small distance. a) KL(fPost,A(m), fA(m)). b) 

KL(fPost,B(m), fB(m)). c) KL(fPost,C(m), fC(m)). 


