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Abstract

Helical liquids have been experimentally realized in both nanowires and ultracold atomic chains as the
result of strong spin—orbit interactions. In both cases the inner degrees of freedom can be considered
as an additional space dimension, providing an interpretation of these systems as chiral synthetic
ladders, with artificial magnetic fluxes determined by the spin—orbit terms. In this work, we
characterize the helical state which appears at filling 7 = 1/2: this state is generated by a gap arising in
the spin sector of the corresponding Luttinger liquid and it can be interpreted as the one-dimensional
(1D) limit of a fractional quantum Hall state of bosonic pairs of fermions. We study its main features,
focusing on entanglement properties and correlation functions. The techniques developed here
provide a key example for the study of similar quasi-1D systems beyond the semiclassical
approximation commonly adopted in the description of the Laughlin-like states.

1. Introduction

The scientific paradigm of topological phases of matter lays its foundation on the experimental engineering of
solid state devices ranging from topological insulators and superconductors [1] to fractional quantum Hall
(FQH) setups [2]. In the last years, however, the striding evolution of this field is progressively investing a
variegated plethora of other platforms and, among them, ultracold atoms trapped in optical lattices [3] offered
an unprecedented scenario for the direct implementations of toy-models, such as the Hofstadter [4—6] or
Haldane [7] models, which play a key role in our understanding of the topological phenomena in condensed
matter physics.

One of the most appealing developments in this field is based on the idea of synthetic dimensions [8]: the
inner degrees of freedom of the trapped atoms can represent an additional physical dimension and, in this
scenario, the introduction of a laser-induced spin—orbit coupling is translated into large magnetic fluxes in the
synthetic lattice [9]. This idea has been exploited to create synthetic ladders of fermions [10, 11] and bosons [12]
which, due to the artificial magnetic fluxes, display features consistent with the presence of gapless helical modes
which are interpreted as the one-dimensional (1D) limit of the chiral edge modes of a two-dimensional integer
quantum Hall state. These gapless ladders can thus be considered an additional tool to investigate the quantum
Hall regime, complementing the well-known thin-torus limit of gapped 2D states [13].

The possibility of introducing and tuning interactions in such ultracold atom systems opens the way to the
study of the 1D counterpart of the most common fractional quantum Hall states. Based on the theory developed
for the engineering of FQH states in nanowire arrays [ 14, 15], it was showed that some of the gapless modes of
these synthetic ladders can indeed be gapped when the ratio between the artificial magnetic flux per plaquette
and the Fermi momentum of the system approaches simple resonant values [16-22]. These resonant values
correspond to the filling fractions v of the most common quantum Hall states: a semiclassical analysis based on
bosonization [14, 15, 23] reveals, for example, that Laughlin-like states appear at the expected values v = 1,2
and v = 1/3 for bosons and fermions respectively [20]. On the ladder geometry, the main observable to witness
the appearance of such states is the chiral current [24]: as a function of either the magnetic flux or the Fermi
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momentum, the chiral current displays two typical cusps which are spaced out by a linear regime crossing zero
exactly at the resonance. These cusps testify the commensurate—incommensurate transitions which determine
the rise of the Laughlin-like 1D states [20].

Besides these well-understood cases, the study of the topological adiabatic pumping in synthetic fermionic
cylinders [19] suggests that other resonant states appear at different filling fractions. The main example emerges
atv = 1/2. Such state is qualitatively different from the Laughlin-like states: despite presenting some similarities
in its observables (as in the case of the chiral current, see figures 1 and 2), it cannot be trivially explained in terms
of a semiclassical approximation and its characterization is, so far, unknown.

In this paper we examine in detail this resonant state at filling = 1/2 in a fermionic ladder. The analysis of
its observables on one side, and the renormalization group (RG) study of its field theoretical description on the
other, suggest that this state is the 1D limit of a strongly-paired state: in this regime fermions bind pairwise into
effective bosons which arrange themselves in a bosonic Laughlin state at filling 2/ = 1/8, since there are half as
many particles each carrying twice the charge [25]. This state is often referred to as the K = 8 state [26] and
corresponds to a strong-paired phase in spinless p-wave superconductors [27].

2. The model

Our analysis is based on the tight-binding description of a two-component fermionic chain, characterized by a
spin—orbit coupling with amplitude ¢, which can be interpreted as a magnetic flux in the synthetic-dimension
picture. The single-particle Hamiltonian reads:

Hyp =5 —t(a, ei’F a1 + He) + Qa) oy ap, (1)

r

where a, a' are two-component fermionic spinors and 2 is the rung tunneling, typically induced through
optical tools [10, 11]. We consider N fermions in a chain of length L, such that, in the limit {2 — 0, the Fermi
momentum isset to kg = mp, ,, with average density py = N/L.

We model the repulsion among the atoms with a combination of onsite and nearest-neighbor terms:

Hyy =Y Un,(n, — 1)/2 + Vn,n,04, (@)

where n, = a:Ta,,T + aI | @r,| is the local density, and this interaction is invariant under spin-rotations, as
expected in the experiments with ”>Yb atoms, where the two spin species represent different hyperfine states
[28]. We observe, however, that the SU(2) spin symmetry is broken by the ) term in equation (1). We will exploit
extensive DMRG calculations [29, 30] based on the MPS ansatz [31, 32] to tackle the strongly interacting regime,
i.e., Uand V comparable with the bandwidth of the system.

We focus on the regime Q2 ({(|2¢ tan(¢/2)sin(¢/2)|, such that for low densities p, there are four gapless
modes with momenta roughly 4-¢/2 + kg [14]*. This allows us to describe the system through a bosonized
approach [33, 34] in terms of two pairs of dual bosonic fields ¢,, 8, with a = C, S for charge and spin,
respectively. The local density can be approximated by 1, ~ p, + /2 0;0c /m and the chiral current by
Jo o< Oxpg. The most relevant contributions of the Hamiltonian read:

pc—1
LR R,L
H= HO + gfdx Z Z [OPC’PS + Opc,ps]’ (3)
pc>0 pg=—pct1

where H, is the Luttinger liquid Hamiltonian for the four gapless modes, the constraints on p, pg are due to the
fermionic nature of the constituents, and the operators O appear from the mixing term in equation (1) (g < €Q):

OII;’RP oc e il0—2pcke)x++2 (o5—pcfe—psfl 1 H ., (4)
s

with (’)I[;’Cl?ps = OE}’LC)*PS (see appendix A). The scaling dimension of such operatorsis D, = (Kg T4 ps2 Ks +

pé K¢) / 2,1in terms of the Luttinger parameters K s. However, they are characterized by a fast oscillating
behavior in x and are thus irrelevant, unless the special resonances ¢ = £2p kg are met. Such resonances can be
related to the quantum Hall states at filling v = 2kg /¢ = 1/p, which indeed measures the ratio between the
number of particles N and flux quanta Ny = L¢ /27 in the ladder [14, 15, 20, 24]. Without loss of generality, we
deal henceforth with ¢ > 0and Ollgfps operators only.

When pg = 0 (hence p. is 0odd), as in most of the existing literature, the mechanism at the resonance is well
understood. (9]1;;‘1?0 might become relevant, and thus pin the combination of fields g — p- 6 to its semiclassical
minima. This oplens a gap between two of the four gapless modes through a commensurate—incommensurate
phase transition. The main effect of this gap can be seen by observing a typical double-cusp pattern of the chiral

An analogous situation is obtained through particle-hole transformation in the large density case.
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Figure 1. (a) Model Hamiltonian, arrows sketch hopping terms and colored boxes impicture interactions. (b) Dispersion relation of
the non-interacting Hamiltonian. For generic densities py, there are four linearly dispersing gapless modes, which correspond to the
bosonized fields. The transverse hopping €2 opens a (non-interacting) gap for two of them around the integer resonance v = 1.

(c) Chiral current with typical cusp signature and linear regime inside the v = 1 gap. (d)—(f) Sketches of the current flowing in the
synthetic dimension inside the non-interacting gap. For lower densities, around v = 1/2, the interaction terms O%: R of

equation (A.8) can gap out the two internal modes by making the term h cos(2+/2 fs) in equation (5) relevant, as discussed in the text.
This is reflected in a resonant feature in the chiral current, as shown in detail in figure 2.

current j for small Variations of ¢ (or kg) around the resonance [20, 24] (see figure 1). No interaction is needed to
trigger the relevance of O} at the integer filling v = 1, which indeed corresponds to a gap openingatk = 0in
the single-particle spectrurn due to the {2 term only. Instead, next-nearest-neighbor repulsions are needed to
reduce the scaling dimension of O} below 2, thus originating a Laughlin-like » = 1/3 state [20, 24].

The system is instead more complicated when pg = 0 (and p.. is even): here we focusonthe v = 1/2
resonance, illustrated by the chiral current plot in figure 2. Similarly to the Laughlin-like states, the chiral current
jcdisplays a sign inversion across v = 1/2. This is compatible with the appearance of a helical Luttinger state,
with counterpropagating gapless modes. The linear behavior of j. as a function of ¢ — 4k cannot be easily
proved, but we qualitatively derive it in appendix D, see equation (D.14). For v = 1/2, indeed, two operators
(92 R} with the same scaling dimension loose their fast oscillating behavior. They can be written as el®2+1, with
b, 4 = V2 (— g + 20c £ 0s), making it apparent that ®, 1, do not commute with each other; this hinders the
previous semiclassical approximation. Therefore, we performed the analysis of the RG flow at second order in
the coupling g (see appendix B). Such calculation follows the RG techniques developed for the study of pair-
hopping terms in electronic ladders [34—-36]. The main result is the emergence of a new term proportional to
ei(®241=%2-) 4 H.c. = cos(2+/2 fs), which acts in the spin sector only and corresponds to a double
backscattering of a pair of spin up and spin down particles (see figure 1 for a pictorial illustration).

3. RG analysis

The resulting effective Hamiltonian is:

H=1 % fdx vaKa(Dy0,)> + —(6 0,
2r Sse
+ [ dxg(O5% + 0271)+fdx hcos(27265), )

where we neglected weak terms in the kinetic part which mix spin and charge sectors. The resulting RG equations
in the flow parameter [ are (B.36):

918 = g2 — Dy), (©)
Oih = h(2 — 2Ks) + 4y g*(D, — Ky), (7)
OIKs ox g2D, (1 — K¢) — K3, (8)
where D, = (K Y4 Ky / 2 ZKC and yis a positive non-universal constant. Suitable initial conditions are:

gl=0)x Qh(l=0) = =t = cos 2kgand Ks(I = 0) > 1, dueto repulsive interactions. In usual spin
ladders, where the O are rapidly oscillating and the ¢” correction to equation (B.37) is totally negligible,  is

3
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Figure 2. (a) The chiral current j. is illustrated in the vicinity of v = 1/2 for system sizes L/N = 72/32 (square), 110/50 (triangle) and
156/72 (disk) at 2/t = 0.02and U = V = 4¢. The adopted MPS bond dimension is 400. The bottom row shows the chiral current
for different valuesof Vat U = 4at L/N = 156/72.(b) V=1,(c) V= 2,(d) V = 3,(e) V = 4, (f) V = 5. We decided to focus on

U = V = 4 where the sign inversion is the most evident. For discussions of the finite-size scaling at v = 1/2 and related errors see
appendices Fand G.

marginal or irrelevant and is therefore often neglected from the analysis [33, 34]. At resonance, however, the
presence of the non-oscillating higher harmonics O’} | generates such a correction, which is positive in the
most realistic ranges of the Luttinger parameters (e.g., for weak repulsive interactions, K¢ < land Kg 2, 1).
This may change the sign of the initial derivative 0;h from negative to positive, making the term  relevant. Its
RG limit depends on the competition between the scaling dimension of the O operators in equation (B.36) and
the coefficient of the g* term in equation (B.37).

For onsite interaction only, 1/2 < K¢ < 1and equation (B.36) predicts a suppression of g too rapid to
obtain arelevant h. If we instead introduce repulsive interaction W to next-nearest-neighbor sites, K¢ easily
reaches such low values that the coefficient of ¢ in equation (B.37) does not get large enough to enhance h either.
Both results are confirmed by our numerical investigations, where the chiral current signature of the v = 1/2
resonance indeed disappears for V < Uandfor W ~ V.If V < Uand W = 0, instead, the RG function (B.37)
becomes positive, making /i relevant. In this case Ky decreases in the renormalization flow (B.40); if Kg reaches
values smaller than 1, h grows faster than g. This determines the opening of a gap in the spin sector of the model
(see section appendix B) originating the resonant stateaty = 1/2.

As known from the study of the perturbations of the Moore and Read state [ 15], the h coupling can drive the
system in a FQH state corresponding to a strongly-paired regime where pairs of fermions merge in bosonic
charge 2 objects, which then arrange in a Laughlin 2/ = 1/8 state. This state is known as the K = 8 state [25, 26],
described often in the context of fully polarized v = 1/2 states. Similarly to the Laughlin-like resonances, also at
v = 1/2 theladder system mimics the physics of the gapless edge modes in its two-dimensional K = 8
counterpart. On the qualitative level, its pairing mechanism can be understood by rewriting the spin sector of the
model as a function of two massive Majorana modes, whereas the charge sector remains gapless and gives rise to
helical modes. The massive Majorana modes imply that the many-body wavefunction acquires a prefactor
proportional to Pf(sign(x; — x;) e~ "™lxi=xl) where my, is the amplitude of the gap determined by k. Such
prefactor decays exponentially unless the atoms are arranged in close pairs (see section appendix E). In the
following we describe the main properties and correlations which define the appearance of this strongly-paired
state atthe v = 1/2 resonance.

4. The entanglement properties

To highlight the appearance of energy gaps, we bipartition the system into segments of lengths #and L — ¢, and
examine the entanglement spectrum and the associated von Neumann entropy S,, which are readily accessible
in MPS simulations [31]. The entanglement spectrum presents evident discontinuities when driving the system
inside and outside the resonances: its gaps change positions around Ny = N/2 (thusv = 1)andfor N, = N

4
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Figure 3. (a) For L/N = 110/50 (red), 156/72 (green) at {2/t = 0.02and U/t = V/t = 4, we find astable v = 1/2 cusp in the central
charges surrounded by a flat region. The other cusp at intermediate fillings is instead a finite-size effect, possibly merging into the

v = 1resonance for L — 0. (b) The Fourier spectrum s, of the oscillations S OBC — 5, — § Sl reveals two peaks at 2kg and 4kg;
we show the values v = 18/23 (gray triangle), 1/2 (gray square) and 1 (black disk). (c) The 2kg oscillation vanishes for v = 1and s
strongly suppressed at v = 1/2 for the systems of figure 2, consistently with the appearance of gaps. For figures of the entanglement
entropy, see figure G2.

(v = 1/2) and different degeneracy patterns appear in these resonances (see figure F2). Our system is gapless for
any value of ¢, but the number of helical pairs of gapless modes changes from ¢ = 2to ¢ = 1 inside the resonant
states. This leaves a signature in the entanglement entropy, according, as a first approximation, to the Calabrese
and Cardy formula [37], S SFT — ¢/61n[L/7 sin(7£/L)] + So.Forv = 1,the discontinuity of the central
charge cfrom 2 to 1 can be clearly seen close to v = 1[20] (figure 3(a)). In the case of the v = 1/2 resonance,
instead, we observe only a small downward cusp: we attribute this to the gap m;, assuming a small value, which in
turn determines a correlation length of the gapped sector comparable to the system sizes we were able to
investigate (up to L ~ 150). An optimization of 1, goes beyond the scopes of the present work, but we observe
that additional investigations are possible based on algorithms directly tackling the thermodynamic

limit [38, 39]. We identify a further indication of a gap opening for ¢p = 4kg by looking at the corrections
induced by open boundary conditions on top of S &', For spinless fermions it is known [40] that the entropy S,
exhibits algebraically decaying oscillations with a frequency 2kg. In our model, we observe an additional peak in
the frequency spectrum at 4kg (figure 3(b)), which is suggestive of pairing correlations between the two species
[41]. Noticeably, the oscillations with 2kg disappear at v = 1 and are strongly suppressedatv = 1/2

(figure 3(c)), thus reinforcing our interpretation of the latter (further detail of our numerical procedures are
presented in appendix G and figure G2).

5. The correlations

In order to verify that the two helical modes gapping outat v = 1/2 are indeed the ones in the spin sector, as in
our RG analysis, we examine and compare the following correlation functions:

CS(r) = <aTT,r0 alyfoaT»70+7airo+r>C’ (9)

CP(r) = <a{m alT,ro al)foJrfaT,f(ﬁ’)C > (10)

where we considered connected two-point correlations averaged over the initial site 7.

C; must decay exponentially within the 1/2 resonance, and algebraically outside it: its decay is much slower
atv = 1, dueto the ordering along o, (equation (E.4)); conversely, C, must decay exponentially at the integer
resonance, and algebraically everywhere else, with no distinctive feature at v = 1/2 (equation (E.6)). Due to
finite-size limitations, we resort to power-law fits |C/,| o r~* for these correlations: In figure 4(a), we observe
that A\, decreases with the system size away from v = 1/2, i.e., it converges to a true power law in the
thermodynamic limit, while it slightly increases with L when v = 1/2, hinting at a tiny gap opening. In
figure 4(b), instead, we clearly see A, strongly enhanced inside the v = 1 resonance, whereas it remains almost
flat and featureless outside it. The ensemble of signatures is therefore consistent with our RG framework and
wavefunction Ansatz.
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1/v 1 3/2 2 1/ 1 3/2 2

Figure 4. Exponents of the algebraic decay A, (a) and A, (b) of C;and C,, for the setups of figure 2. (a) Around v = 1, \;decreasesasa
function of L. Atv = 1/2, instead, it displays an increasing cusp, hinting at an exponential decay. (b) At = 1, ), is strongly
enhanced, whereas no feature emerges at other fillings: the tiny cusp at v = 1/2 is an order of magnitude smaller than the onein ),
consistently with a weaker algebraic decay (see equation (E.4)).

6. Conclusions

The study of fermionic FQH state with even denominators has always been more challenging than the odd
denominator cases. Here we analyzed the resonant state at v = 1/2 inaspin 1/2 fermionic chain. WithaRG
analysis and extensive MPS calculations, we brought compelling evidence that this state is related to the 1D limit
ofthe K = 8 FQH state [25, 26] and it is generated by a gap in the spin sector of the model. The RG technique we
adopted constitutes a first step towards the analysis of these effective ladders beyond the semiclassical
approximation and can be extended to the bosonic case at filling v = 1.

Our results are relevant for both ultracold atom ladders in a synthetic dimension [9—12] and nanowires with
strong spin—orbit coupling [23, 42, 43]. In the first case the required interactions may be achieved by exploiting
dipolar atoms, like Dy, or orbital Feshbach resonances, in the second case electron—electron interactions play a
relevant role in the experimental results [43] and our tight-binding model can describe their interplay with the
Zeeman splitting €.
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Appendix A. Conventions for the bosonization of the single-particle Hamiltonian

We begin by fixing the notation for the bosonization of the single-particle Hamiltonian, starting from the case
) = 0 where the Fermi momenta read O’Z% + kg, with kg = 7N /(2L). We introduce dual bosonic massless
field ¢ and 0 such that:

[0 (x"), @, ()] = im0 O(x" — ), (A.D

where o refers to the eigenvalues of o, and © is the Heaviside step function.

Based on these bosonic fields, we can now define fermionic operators which correspond to the harmonics
entering in the definition of the fermionic creation and annihilation operators of fermions in the presence of
nonlinearities of the spectrum. Such operators are:

J;Tr exp [1((0% - ka)x) — i (%) + i%(x)], (A2)

PP (x) =
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1 ([ ¢ ) .
RP) () = ex 1((0— + pk )x) + ipf,(x) + 1o (x) |, A3
with p a positive odd integer. Based on these vertex operators, the fermionic operators reads:
as(x) = ko| . VPP + S PP )|, (A.4)
p odd p odd

where k, are anticommuting Klein factors.
From these definitions, p, = 0,0, /7 describes the local density of spin o particles close to the Fermi surface
and the spin flip operator becomes:

Qa{f(x)ai(x) + H.c. = KK PEP, \II%C’P”\I/Y/’I”) + H.c. (A.5)
¢,c’=L,R
In particular we obtain the following terms:
LL _ q@Lp)ig@Lp)
OP‘P/ = \IIT \IIJ. + H.c.
— Kykpexpli(—¢x + (p — pkex — ¢y + ¢ + pty — p'0)] + H.c. (A.6)
RR _ \;R,p) T, (R,p)
OP,P/ = \I/T \Ijl + H.c.
— Kk expli(—¢x — (p — pkpx — o+ o — poy + POl + Hee (A.7)
LR _ \;@Lp) T Rp)
OP)P/ = \IIT \Ijl —+ H.c.
— kykpexpli(—¢x + (p + pkex — ¢y + ¢ + pby + p'0)] + H.c. (A.8)
RL — qp®Rp)TgL.p)
Oy = VPP 4 Hee
— Kk expli(—¢x — (p + pkex — ¢ + ¢, — pty — p'0)] + H.c. (A9)
Let us define the charge C and spin S fields as:

oy F e 0, F 6,

— AT e = , (A.10)
¥s/c NG s/C 7
This formulation is useful to evaluate the scaling dimensions of the previous objects. In particular we can
introduce the usual Luttinger parameters K¢ and K such that the free part of the Hamiltonian reads:
H= = 3 [denk @) + @00 (A1)
21 s K,
and we define:
:F /
Ps/c = i 2P > (A.12)

suchthatpc > 0and pg = —p. + 1, ..., po — 1. The previous O operators can be rewritten in terms of the
coefficients psand pc as shown in the main text for OR. We obtain:

LR _ m»RL  _ m»LL _ ~RR
O = O 5 =02 0. = Op (A.13)

All the terms with a fast oscillating part in x must be considered as irrelevant in the RG sense. This explains
the behavior of the non-interacting system which can be deduced for p = p’ = 1. In this case the spin flip terms
(A.6)and (A.7) will disappear due to the fast oscillating term in ¢x if ¢ = 0. The terms (A.8) and (A.9) loose their
fast oscillating behavior at the resonances ¢ = 4-2kg respectively. This explains the fact that the Zeeman term
gaps two of the four gapless modes when the chemical potential is tuned at ;1 = 2 cos(¢/2). In this way the
system remains with two gapless helical modes and, interpreting the spin as a synthetic dimension, we can
consider the resonance ¢ = =2k as a one-dimensional limit of the integer quantum Hall state at filling v = 1.
In particular we define the filling as:

1 = z_kF _ N (A.14)

Pc ¢ oL

which corresponds to the ratio between number of particles and magnetic fluxes as in the usual quantum Hall
setups. We also observe that there exist a special pointat ¢ = 7 where, for the non-interacting casep = p’ = 1
both (A.8) and (A.9) become relevantat N = L. This point has been extensively studied in [16].

Let us mention that, for ¢ = 2kg, notonly OIl;;R:L p=0l0oses its fast oscillating dependence, but, in general,

all the operators (’)II;’CL> 2p—1and O?g; 2,p,——1- Due to the coefficients of the bosonic fields, though, these

7
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additional operators are less relevant because of the higher scaling dimension. This is a common feature: ata

given resonance with filling v, the resonant operators O;;I}Ps or OII%PS will be more relevant than the resonant

RR
7o

operators OLL and O
P PoP{=Pc Pop{=pc

oPs=Pc
operators O reads:

, because, in general pC/ > ps/ = pc > |psland the scaling dimension of the

1] 1
LR RL _ 2 )
OPC’pS’ OPC’FS - Dg - E|:K5 + P Ks + PCKC], (A.15)
1] 1
L,L R,R / 12 12
D ] D = —| — K K . A16
OPC’PS Oprgps - 4 2 [KS + pC s+ pS C:| ( )

Appendix B. The RG equations at the v = 1/2 resonance

Our scope is to characterize the ground state of the system in proximity of the ¢ = =4k resonances. First we
observe that the nature of these resonances do not depend on the sign of ¢. The Hamiltonian is indeed invariant
by the simultaneous transformation ¢ — — ¢ and T« |. Therefore we simply discuss the case with ¢ = 2kg.

As observed in the main text, at this resonance there are two competing operators which are generated by the
Zeeman term and loose their fast oscillating dependence:

OpR s pmi1 = KR explil—e; + ¢ + 6 + 36)] + Hee. (B.1)
OLR o= ki expli(—; + ¢ + 36, + 6)] + He. (B2)

When the time-reversal symmetry is preserved by the interaction, these operators share the same amplitude and
scaling dimension. As in the general case, also other terms will loose their fast oscillating behavior at this
resonance, the most relevantbeing O3}, and OFX,. OF®  and OF} |, however, are the most relevant and we
will neglect the others in our analysis.

The main property of this resonance, characterized by an even denominator, is that the operators (B.1) and
(B.2) do not commute with each other and they share the same scaling dimension and amplitude. Therefore it is
not a priori clear what is the mechanism that is able to open a gap in a pair or gapless modes and a more refined
RG analysis is needed.

Let us consider the following interaction as a perturbation of the free bosonic Hamiltonian:

H; = gfdx((’)]j:il + (9%:}51) = —2gik1K fdx sin(yp; — ¢ + 267 + 26))sin(6; — 0)). (B.3)

Here the combination of fields inside the sines in the last term do not commute as well and, also in this
formulation, it is hard to understand what is the mechanism determining a gap. The sine contributions take into
account on one side the Campbell-Baker—Hausdorff formula and, on the other, the signs determined by the
Klein factors.

A similar situation has already been analyzed in works related to the interactions in fermionic ladder systems.
In particular Hyappears as a higher harmonic term of the tunneling interactions considered in [35] and [36],
whose renormalization analysis bring to the appearance of pair-tunneling terms in the Hamiltonian.

In the following we will examine the interaction H; under the light of the Wilsonian renormalization method
and we will determine the most relevant operators generated in the scaling flow of (B.3). We will follow the
renormalization techniques described in [34].

To this purpose let us introduce the following notation for the interaction:

H; = gK1 K| fd.x > pelrtar 4 pelv®a, (B.4)

pv==x1

where the fields @, , are defined in the main text and the signs of the vertex operators in (B.4) account for the
Klein factors.

The action (in Euclidean space) of the system can be written as:

5= ZL / dzx[Z &g + Kavu@xso,,)z] g [dx 3D pet g veitin, (B.5)
™ a

Va pr==x1

where the first term constitutes the free bosonic action Sy and the second will be a perturbation S;.

The idea behind the Wilsonian RG is to consider a cutoff in momentum A and a small scale parameter [ such
that we can rescale the cutoff to a smaller value A’ = Ae~/ correspondingto A’/A =~ 1 — dI. Following the
standard approach we can split the field  and its dual # into a ‘slow’ and a ‘fast’ component. The first includes all
the momenta smaller than A/, the second the momenta included in the shell A’ < k < A:
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G (%, 1) = 0, (%, 1) + 0, (X, 1), Oa(x, 1) = Os4(x, 1) + Opalx, 1) (B.6)

Analogously also the operators ® will be decomposed in &5 + ®¢. To understand the renormalization flow, we
must derive an effective action for the slow modes only, by averaging over the fast modes. One obtains:

Ser (A') = So(ipg) — In{eSitst 0y

~ So(ps) + (Si(ps + @) — %( (SE(ps + o)t — (Si(ws + @) + ... (B.7)
A B A

In this expression, the average values are taken integrating over the fast modes. In the following we will evaluate
the values of A and B to obtain S.g. It is useful to consider the following relations:

A . a? b}
<elzj a; s (x;)+i>"; biOs(xp) >f = exp %@%)f - %(Gg)f

- Z aja () ps(x))e — D brby (O (e) Os(xp) e |, (B.8)

i<i k<K
where the scaling of the correlation functions is given by:

d*k 1 Adk 1 1, A

f = T —— = —In—, B.9
(ot fA’<k<A ke v 2k kX (B.9)
/ 2 A dk 1 ik C(T’) A
Jt ) = = ek B.10
(s D @s(x, 1)) j;\ NN T (B.10)

where the logarithm captures the scaling behavior, and C(r) is a short-range function of

r= \/ (t — t)2 + (x — x)? (tobe more precise, in this case a sharp cutoff, Cis not really short-ranged, but it
can be made short-ranged with better cutoffs [44]). Analogously we have:

K A ot C(r)K A
O3y = S, (i 00, 1))~ SRS B1D
2 A A
Let us now calculate the first-order term A:
A= gR1 K| Z fd2x<'uei,u¢'z,71>f + <l/ei"q>2v+1>f
r==x1
= gK1K| Z fde’ueilL(Dz,fLs<ei/1<1>z,71,f>f + Veil/<1>2,+1‘5<eit/<1>2)+1,f>f
pr==x1
—(2Kc+ 25451
— gK’TK/l(%) ( 2 ZKs) Z dexMeiu(sz,l)s + l/ei”(DZ,H,s’ (BIZ)

pv==x1

where we used the previous expressions for the correlations of the vertex operators and one has to separately
consider the two spin species. The scaling dimension D, appears in the scaling of the cutoff factor. We complete
the renormalization with a final rescaling of the space coordinates, d>x = d?x’(1 + 2dl); we obtain:

A= (1 + 2dl — DdD)Si (), (B.13)

which provides the renormalization at first order of the interaction. As expected from the scaling argument we
obtain:

d
d—gl = g[2 — D,l. (B.14)

Itis now easy to write also the operator 4%
A2 = —g2(1 + 4d] — 2ngl) Z fdleldzxz/(uleiﬂl‘I’z,—l,s(X{) + VleiVl(I’Z,+l,s(x1,)).
P fppV1,v2=+1
(‘uzei#zq)z,fl,s(xz/) + Vzeiw‘bz,ﬂ,s(xz/)), (B.15)

here the Klein factors have been squared away, leaving a minus sign due to anticommutation. To complete the
second-order description of S ¢ we now calculate the term 5 in (B.7):

B = 7g2 Z fdledzxz<(’u1ei”1¢2,—1(x1) + Vlei”lq)2,+l(xl))
fps gy V1, V=1

X(uzei#szz, 1(x2) + I/Zeillzq’z,u(xz)»f (B.16)

9
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B=-g¢* Z f A d%x [

fp oy V=21

— lulqueiﬂlq>2,—1,s(xl)+iﬂz‘pz,—l,s(xz) <ei#1q>2,—1,f(X1)+i#2‘1>2,—1,f(x2)>f+ (B.17)
— Vel sV Ba i 6(0) (@it oG Hiva D ) ) - (B.18)
— gy vy Pars ) Fva®a 5(5) (it Pa, () Fiva®a )Y (B.19)
— vy 1 P2t G P 15(02) (@11 D )iy Bor002) ) ] (B.20)

Here the signs are determined by the commutation relations of the x operators and by the Campbell-Baker—
Hausdorff formula. We now apply (B.8) and the definition of the correlation functions of the bosonic fields to
evaluate the scaling of the average values appearing in (B.17)—(B.20). We obtain:

) ) A —2D, A —Cx—x2) f1y 452Dy

<em14’2,71,f(x1)+m2<1>z,71,f(xz)>f — (W) (W) , (B.21)
) ) A —2D, A —Cla—x2)v11,2D,

<elV1(1’2,+1,f(x1)+1V2‘I)z,+1,f(xz)>f — (W) (W) , (B.22)

A )—2Dg( A )_C(XI_XZ)H17/2(4KC_KS+I}S)

(PGt aia)e = (ﬁ I , (B.23)
A 2D A —C(xl—xzwluz(z;xc_xﬁ%)

<eim<I>z,+1,f(x1)+iu2<1>2,,1,f(xz)>f _ (_) (_) S . 5.24)
A A

In these equations C(x; — x,) is a non-universal function appearing from the two-point correlation functions
which depends on the kind of cutoff but can be considered short-ranged (see [34, 44] for a more detailed
discussion). Rewriting these scaling terms as a function of d/and considering also the scaling of the real space
coordinates, we can approximate /5 as:

B~ —g?(1 +4dl — 2Dd) Y fdzx{dzxg

fopHypVpVa=2%1

X[(l — 1111,2Dg C(x] — x3)dD) 1y pry e s gitaans(edy (B.25)
(1 — 1/11/22DgC(x1’ — le)dl) 2 Vzei1/1¢2,+1,s(xl/)ein‘D2,+1,s(X2/)_|_ (B.26)
(1 - Mlvz(4KC — Ks + KL)C (%) — xz’>dl)u1uze%@z)lvs<x1’>ei”2@z’+l»s<xz’>+ (B.27)
S
1 . N ’
(1 - 1/1,u2(4KC — Kg + ?)C(x{ - le)dl) 1/1uZe‘”lq’zv“vs(xl)e”‘zq)zv1~S(x2)]. (B.28)
S

We observe that, in this expression, the terms independent on the two-point correlation functions (thus not
proportional to the function C) coincide, as expected, with A% in (B.15) and they erase in S
We can now write the second-order interaction terms of Seg:

1
Steff (@g) = A — E(B - A

2d]
= (1 + 2dI — dIDy)S;(py) — gT S f &x! dxCx! — x)
p,l,,u,z,ul,t/z:il
xlzDgeil"1@z,1,s(x1/)ei/12‘1’2,1,s(x2’) + 2Dgeil/@z,ﬂ,s(x{)eiyz‘l’z,+1,s(xz’)_|_ (B.29)

+ (4KC _ KS + L)eilll‘bz,l,s(xl/)eillzq>2,+|,s(xz/)
Ks

+ 4KC _ KS + L eiVl <I>2Y+1,s(x1/)eiuz¢z,,|,s(x2/) . (B30)
Ks
Let us consider first the terms in line (B.29). It is helpful to distinguish the following cases: (i) ; = p, and
v = vy (i)) iy = — ppandv; = — v,

In case (i) the resulting operators are vertex operators proportional to exp[+£i(®,_p, () + Dy, (x7))]. In
this expression it is convenient to exploit the fact that the function Cis short ranged, such that we can distinguish

10
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a center of mass coordinate and a relative coordinate. In particular, to evaluate the terms of the kind (i), we may
approximate C = ¢§(x; — x;) where cis a non-universal constant (following [33, 34, 44], in the case of sharp
cutoff, it can be expressed in term of integrals of the Bessel function). A more refined discussion can be found in
[44, 45]. These terms thus generate interactions of the kind exp[+i(2®,_ (x))] which are characterized by a
large scaling dimension, 4D,, thus they are irrelevant and we neglect them.
In case (ii) instead, we obtain vertex operators of the difference of the fields ®; they are of the form:
— > explis(Pyp (x)) — Pp_p (x))] & —2c08(d, Py 5 (x)) & =2 + a?(8:Pp_p)7% (B.31)
s==%1

where we exploited Cbeing short range and we introduced an effective non-universal range o determined by C
[34,44]. We observe that, similarly to the sine-Gordon model, the terms (B.31) contribute to the renormalization
of the free action Sy, thus of K and v such that:

So — So + f /g0 Dy dI[(0,®5, 1) + (D Py .1)]. (B.32)

This additional kinetic term is not diagonal in ¢ and 6, and, in principle, this spoils the possibility of separating
the spin and charge degrees of freedom. This separation, however, is violated only by the term in 0, ¢4 0,0c. To
derive the flow of the Luttinger parameters, we will neglect this violation and we will consider only the usual
termsin (0,0)% and (O, p)>.

Let us consider now, instead, the terms in line (B.30). Also in this case it is convenient to distinguish the cases
(i), with p; = v, and p, = vy, and (ii), with u; = — v, and i, = — ;. Concerning case (i), when we consider
the short range constraint imposed by C, these terms generate operators like exp[£i(P,,_; + @, ;)] whose
scaling dimension is 2 (KLS + 4KC). As before, we neglect these terms because they are always irrelevant.

In case (ii), instead, by approximating C = 6 (x/ — x;), we obtain terms of the kind:

1 .
_27(4KC — K + —) > expli(Ps, -1 — P41)]
S/ s=+1

= —47(4KC — Ks + KL) cos(26; — 26)); (B.33)
S

here the additional minus sign comes from the Campbell-Baker—Haussdorf formula. Therefore the  interaction
term, with scaling dimension 2Kg emerges, and it is relevant for any K < 1. This term coincides with a four
body operator given by the product of backscattering terms of the two spin species, as sketched in figure 1 of the
main text. The final expression for S.becomes:

S = S0 + [ Pxg2a?DydI[(0,®2 1) + (0,P211)]

+ gtk (1 + 2dl — D,dl) f dzx’l > pelrtar 4 z/ei”‘l’z#']
r==+1

+ 27g2(4KC — Ks + Ki)dlfdzx’ cos(26; — 20)). (B.34)
S

Therefore, following the approach in [34, 35], to study the relevant terms of the renormalization at second order,
we must consider the following interaction part for the Lagrangian:

L= f dx g(OR (x) + OFR () + f dx h cos(26; — 20)), (B.35)
where gand h are coupling constants flowing with the renormalization scale / such that they fulfill the RG equations:
dg KS 1
— =g|2-2Kc— — — —|, B.36
a ¢ [ R 2K5] (B.36)
dh Ks 1
— = h(2 — 2Ks) + 49g?|2Kc — —= + —|, B.37
1 ( s) + 47 ( ¢~ ZKS) (B.37)

where the boundary conditions are givenby g(I = 0) = Q/Qn)and h(I = 0) = 2%2 + % cos 2k (see section
appendix C).

Besides these equations, it is possible to derive RG equations for the parameters K and v from
equation (B.32). Since we are mostly interested in the scaling of K5 we consider its behavior as a function of ¢’.
From equation (B.32) we get:

K 1
Kivh = Ksvs + 87rg2a2(21<c + 75 + Z—)dl, (B.38)
S

11



10P Publishing

New J. Phys. 20 (2018) 053007 A Haller etal

!/
R Y ) IEL.COTILI (B.39)
KS Ks 2 2KS
these equations imply:
4 2.2 2,2
dKs _ Amgra 2Kc + Ks + 1 (1— K2 — Arh’a K3, (B.40)
di Vs 2 2KS Vs

where the second term is derived from the RG analysis of the h term, following, for example, [33]. We observe
that, if there exists a fixed point with finite values for gand A, then the fixed value of K5 in this fixed point would
be Ks < 1.To qualitatively understand the behavior of the renormalization flow, we thus substitute the flowing
K with its fixed point value Ks < 1. Hence, neglecting the flow of K, the solution of (B.36) and (B.37) is:

g Ks 1
g () x Qe[2 e zks]l, (B.41)
h(l) = (h(0) + B)e@- 2Kl _ 5e(4*k'*s*41<0*f<5)’, (B.42)
with:
4vg2(0)(2kc — & 4 L
5= ( c ZKS). (B.43)

4Ke — Ks+ 7= — 2

S

If Kc > 1 — Ks/4 — 1/(4Ks), then g flows to zero because its exponent is negative, and our assumption on
K; fails: we may expect that Ks remains larger then one, driving also & to zero.

IfKc < 1 — Ks/4 — 1/(4Ks), the operators O become relevant. For K < 1we must distinguish the
following cases:

+ For K¢ > % — é + %, h grows faster than ¢ and it is responsible for the opening of a gap which may be
S
estimated by considering h(I) & 1 (in the energy scale of the bandwidth). This is the case corresponding to the
K = 8resonance state analyzed in the main text.

+ For K¢ < % — 4;2 + %, h o g? asymptotically: in this case g reaches values of order 1 faster than h. This
S
corresponds to a regime where the operators O, 4, dominate and the system may flow to a different fixed

point.

Appendix C. Approximate evaluation of the boundary conditions for the RG flow

The second-order RG equations we found, equations (B.36), (B.37) and (B.40), are supposed to qualitatively
describe the behavior of the scaling of g, i and K for small values of 2 and the interactions. Here we provide an
approximate evaluation of their ‘bare’ initial conditionsat/ = 0.

The value of g(I = 0) is related to the non-universal coefficients v, which may be introduced in the sum of
the terms (A.4) which defines the fermionic operators on the chain. In particular, g(0) = Qa,— 1,3/ (27),
and, for the sake of simplicity we impose g(0) = Q/(2) for the resonant case.

The initial conditions of h and K instead, are strictly related to the repulsive interactions in the system. We
consider the following Hubbard and nearest-neighbor interactions:

Hoy = Y2 S, = 1)+ Vi, (o)

r

where n, = a{ L+ aﬂ .4, is the total occupation of the site r of the chain. We can translate this interaction by
considering the first harmonic only in the definition of the fermionic field. We obtain:

a;,raa,r — axeff + L(ieizkpf+2i9g _ ie—izkpr—zie{,)‘ (CZ)
2
Therefore:
. 0501 0x0 U U
Ua{r“%raf,r“i,r — U% + ﬁcos[Z(ﬁT -] — FCOS[Z(GT + 0) + 4kgr]
= U 0.007 — 0097 + L cos2v705 — L cos(270c + ke, (€3)
2 2T 2

where the umklapp term oscillating with 4kpr can be neglected for kg = /2, butit can radically change the
physics at half filling. The nearest-neighbor interaction reads instead:

12
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Ve—izkp
2

Vg — 22 (0,000 + S (200D | Hee |+..
s

~ %(1 — c052kp) (O40c)* — %COSZkF(a’CGS)Z
- T
2V

71_2

+

sin 2kp O,0c + %COsszCOSZﬁQS 4. (C.4)
T

where the dots label terms oscillating as 4kgr and the term linear in 0,0 can be neglected because it provides an
overall energy which depends on the total number of particles only. From the sum of equations (C.3) and (C.4)
we deduce:

h(l=0) = v + lcos 2k, (C.5)
27 2
TVE
Ks(I=0) = > 1, C.6
s( ) \/m/p— U — 2V cos2kgp €6
TVE

Kc(I=0) = \/ (C.7)

<1
mve + U + 4V (1 — cos 2kg)

with vg = 2sinkgand kz < 7/4 for ¢ < mattheresonance. These results, though, hold only for U, V< 7 v,
thus they provide only a qualitative idea of the behavior towards the strongly interacting regime.

Appendix D. The strongly-paired phase

The interaction term h cos(20; — 20,) has the effect of gapping the spin sector of the chain. Therefore, to analyze
its effect it is convenient to separate the gapped spin sector from the gapless charge sector of the Hamiltonian
(and we follow the approach in [15]). The two sectors are mixed by the original g term of the Hamiltonian.

To study the spin sector, it is convenient to apply a canonical transformation and redefine:

Yy — P
gOIS = % = %, /S: \/793 = HT — 91, KS, = 2K5. (D.l)

In this way the free term of the Hamiltonian of the spin sector remains of the same form,
1 v
Ho = = [dx vsKiOuel)? + (0042, (D2)
2 Ky

and the interaction term (B.33) becomes:
hcos(20; — 20)) = hcos(265). (D.3)
We can refermionize this sector of the Hamiltonian by defining the Dirac fermions:
YR = el(pst09), (D.4)

such that the Hamiltonian of the spin sector, including the interaction h, becomes:
Hs =[x ivs(MDat = xRN0 + imXRit = xH i, (D5)

with my, proportional to h.

Therefore the spin sector of the system is described by a free and massive Dirac fermion; following the
approach in [15] we can split the fields x*/" into pairs of Majorana operators: y®/L = (fyF/ L i’yzR/ Ly/2 such
that the Hamiltonian can be expressed as:

.V .m
Hs = f d 3 [Tswﬁanﬁ = 7305 + 17'171}’%]- (D.6)
j=1,2

These Majorana fields are gapped and their correlation function decays exponentially with the distance like a
Bessel function. We can consider an approximation of the kind:

(Y)Y (y)) = sign(x — y)e "7l (D.7)

So far we discussed the gapped spin sector of the model, concerning the gapless charge sector we may
redefine a pair of dual fields as:

o = J4Kcpe 0c= (D.8)

13



10P Publishing

New J. Phys. 20 (2018) 053007 A Haller etal

such that the two-point correlation function reads:
(e () = —2nlx — y|. (D.9)

Based on these assumptions, we can assume that the original electron operators of the model at the
resonance are of the form

P(x) = 7(x)elvc, (D.10)

where 7yis a suitable linear combination of the gapped Majorana modes describing the spin sector. By applying
the usual analogy between CFT correlation functions and wavefunctions of the system we may suppose that:

U = (Y)Y () ... Y(xn)) o Pf[sign(x; — xi)e mlxi—x] H (xj — xp)% (D.11)
i<k

which constitutes a fermionic state at filling 1 /2. We can rewrite this expression to account more explicitly for
the stronglocalization of the pairs given by the mass gap m1;,. We consider the permutations P of the particles and
we can approximate the previous expression by:

N/2
oy (=DP]] [signCep) — xpj—1y)e™lwrer=rei-nl]
P j=1

N/2 (xp(zj) + Xpoji-1  Xpek + xP(Zkl))s
x 11 — ,

5 5 (D.12)

j<k

where (—1)"is the parity of the permutation Pand we considered only the dependence on the center of mass of
each bosonic pair in the Laughlin—Jastrow factor. This reflects the strong exponential localization of the pairs.
This wavefunction describes indeed a 1D limit for a Laughlin state at filling 1 /8 of bosonic molecules composed
by pairs of fermions [25], and it is often called the K = 8 state [26].

The main observable which detects the appearance of this strongly correlated state is the chiral current.
Numerically, we studied it as a function of the magnetic flux ¢ close to the v = 1/2 resonance. To give a
qualitative description of its behavior we must consider a situation in which we have a small displacement of the
flux 8¢ = 4kg — ¢ around ¢ = 4kg. In this case it is possible to correct the evaluation of the effective action in
appendix A by considering @, +; — ®, 1+, + d¢x. This correction becomes particularly important in the
kinetic term in equations (B.31) and (B.32). In particular equation (B.32) results:

So + f Px'g202D,dI[(0, Py, _1 + 66)* + (DePy i1 + 66)*]

=Sy + 4 f Px'g?a’DydI[(20,0c — B + 60)2 + (D,05)%). (D.13)

This contribution to the kinetic energy qualitatively justifies a behavior of the expectation value of the chiral
current proportional to:

(J) o< (Oxps) o< Dy(4ke — ¢). (D.14)

Appendix E. Correlation functions

Here we write the bosonization description of the correlations functions adopted in the text. Let us start from the
single-site operators and we approximate them using only the first harmonic (p = p’ = 1):

a{,al,r o e VZ(ps=0s)—igr | o—in2(pst0s)—ier
+ e—iﬁ(pS—QC)—kpr—Hkar + e—iﬁ(¢5+ﬂc)—i¢‘>r—i2kpr) (E.1)

aTT af x efi«/z(gﬁcfec)JrﬁkFT + e*iﬁ(¢c+0c)42kpf

ST

+ e V209 4 e=i2(pctbs) (E.2)

where we neglected the Klein factors as well. We approximate the two-point correlation functions by considering
only the terms which depend on the relative distance r, — r;:
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Cs(rz _ 71) o <ei'~ 5(995(72)*495(71)» ei(f’(Tz*Tl) Z <ei'~ 5(l105(71)+l/95(r2))>
prv==x1

+ (el 2k (2= g2 Bc)=0c(r2)) - @i(0+2ke) (=) @=iv/2 (Bc(n) —0c(r2) )

- <aTT,rl al,r1> <aT>72af,rz>‘ (E3)

In the integer resonance g and ¢ are pinned to their semiclassical minima and their contribution is erased by
the single-site averages, whereas for v = 1/2 the s correlation function is exponentially decaying because of the
gap opened by the h term. We get:

eiQ(Tzfﬁ)lrz _ r1|*KS for v=1
e*mhlfrﬁ!f(rz —n) for v=1/2

el¢(n—n) [l — 7~1|*Ks* 1/Ks

+ cos2kp(r, — m)]|r — n[ X7 VE] for v = 1,1/2

Cs(r, — 1) ; (E4)

with fan algebraically decaying function. Here we considered the most relevant contributions and we neglected
higher harmonic terms Concerning the pair correlation functions we obtain:

Cp(r — 1) ox <ei«/§(¢c(72)*¢c(ﬁ))> <ei2kp(rrrl)ei«/f(b‘c(rz)f%(rl)) + H.c.)

+ Z <eiﬁ(#95(ﬁ)+l/95(fz))> . (E.5)
prv==x1

In the integer case the correlations of ¢ decay exponentially because of the gap opened by (), therefore we get:

e~maln—nlg (r, — 1) for v=1
Cp(r, — 1) o 9|, — n| K= VKe 4 cos[2ke(r, — W[ — [ K1/ Ke for v=1,1/2 (E.6)
Iry — nl1/Ke 4 cos[2ke(ry — n)]|r, — n| Ke"V/Ke  for v =1/2

where gis an algebraically decaying function.

Appendix F. Further numerical evidence of the v = 1/2 phase

In the main text, we use the chiral current j. as a quantity to confirm the existence of a gap atv = 1/2. We observe
that, in the data we present in figure 2, the downward peak of the current seems to scale to zero with the size of the
system. We claim, however, that this is not a signal of the disappearance of the double-cusp pattern of the chiral
current in the thermodynamic limit; it is instead a discretization effect due to the limited number of available points
within the resonance in our numerical simulations, which depends on the system size, combined with the flux
quantization. Most of the observables of the system, including the chiral current, display indeed an oscillating
behavior as a function of the flux ¢ with period 27/L. This makes it impossible to compare results of fractional fluxes
with results of integer ones, thus limiting the number of points numerically available inside each resonance.

In particular, to compare systems with different ¢, we choose to consider always an integer number of fluxes
in the full system. This determines that ¢ can be varied only by steps of 27/L, and, for the system sizes available in
our numerical simulations, we can obtain only two points in proximity of the double-cusp pattern. Therefore
depending on how far or close these points are from the true position of the cusps, the numerical data exhibita
larger or smaller discontinuity in j.. For this reason, any attempt of a finite-size extrapolation for the present data
would not be rigorous: for different system sizes, the current is measured at different positions in the 1 /v axis.
Instead, the sign inversion in proximity of the resonance (but sufficiently far from the cusps) show a much more
stable behavior, supporting our argumentation.

To confirm further our claim on the thermodynamic limit of j., we would then need to perform additional
runs with longer chains until we reach one additional point inside the resonant regime of the chiral current,
which is beyond our present computational capabilities. The observables we analyzed in the main text,
including central charge, oscillations in the entanglement entropy and pair correlation functions, confirmed
however our analytic predictions and can be considered an indirect proof that the scaling of the system to
larger sizes L is not detrimental for the measurement of the chiral current. Here, we present additional data
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Figure F1. (a) Eigenvalues of the one-body density matrix of the L/N = 156/72 simulationat Q/t = 0.02and U/t = V/t = 4at

v = 1(black square), v = 18/23 (gray triangle), v = 1/2 (gray disk). (b) Gap A, for L/N = 72/32 (blue square) 110/50 (red triangle)
and 156/72 (green disk), parameters of (a). The A gap increases significantly in the integer resonance and at v = 1/2 for all system
sizes. The A, gap, instead, decreases in the integer resonance and at v = 1/2. (¢, d) The effects of A; /, manifestin II(A, ;) which are
means of all eigenvalues in the two yellow colored boxes of (a). The bond dimension used is 400.
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Figure F2. Central-site entanglement spectrum of L/N = 156/72at 2/t = 0.02, U/t = V/t = 4 and bond dimension 400. Values
larger than 6 are not displayed. In case of v = 1/2, we see a sudden change of the entanglement spectrum, similarly to the two
transitions of the » = 1resonanceatv = 6/5and v = 6/7. The peculiar state at v = 18,/23 is subject of a finite-size effect, visible in
all observables shown and merging to the integer QH phase at the TL (moving kinks in figures F1(b)—(d)).

related to the 1/2 resonance; we show properties of the one-body density matrix (OBDM) and the spectrum of
Schmidt-values which clearly indicate a phase transition at v = 1/2 but are not directly linked to our analytic

results.

The off-diagonal elements of the OBDM g, ,» = (a,’ a,,) are closely related to the chiral current

(F.1)
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=— % Im(<z azei"”z/za:ar+l> ] (F.2)

and ¢ manifests two gaps in its eigenvalue spectrum at generic v (see figure F1(a)). We find alarge gap A; and a
small gap A,, both sensitive to the integer and the one-half phases. The gap A; (A,) is the difference between the
Nth 2Nth)and N + 1th @N + 1th) eigenvalues. A; atv = 1/2 shows a finite-size scaling which is non-
decreasing and stable, supporting our claim for j. (see figure F1(b)).

Appendix G. Error estimates and general remarks about the simulation

We use a maximum bond dimension of M = 600 for all three different system sizes. As we discuss in the
following, this bond dimension is sufficient to capture the physical picture for the present system lengths. The
distance of the two resonant phases as a function of ¢ = N 2% is proportional to the particle filling N, leading to

v(N) = ;\]T\{; At the same time, the minimum accessible filling is restricted to v, = N/L < 1/2 since the
energy is symmetric with respectto ¢ — 2w — ¢. We decided to simulate densities close to 1,/2 to maximally
separate v = 1 from v = 1/2 and at the same time keep track of a few points before the mirroring point
Ny = L/2 (¢ = m). Since the accuracy of the approximation depends on the length of the system, we restrict the
following investigation to the computationally most expensive setup of L = 156 sites.

We use the chiral current as signature of partial gaps which has been elaborated in detail by many authors as
cited in the main text. Only the upper triangular part of g, ,» has been used to calculate j. from equation (F.2).

To estimate the approximation error, it is most common to extrapolate the bond dimension M which
restricts the number of states being kept in the MPS. It is equivalently possible to extrapolate the truncation
error, which quantifies the weight probability of the wavefunction being truncated during the optimization
process. For completeness, we plot the truncated probabilities of all bond dimensions in figure G1(d). As
shown in figure G1(a) we observe a saturated scaling of the chiral current as a function of M inside the linear
v = 1region, whereasin case of v = 1/2 the peaks increase with the bond dimension. We show a

paradigmatic extrapolationatv = 1/2andv = 36/73 in figure G1(b) and zoom into the fractional
resonancein (c).
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Figure G1. L/N = 156/72:in (a), we show the finite bond dimension scaling in the full range of v. To obtain an estimate for the
extrapolation M — o0 in (c), we show in (b) two results of alinear fit j, /t (M~!) = aM~! 4 batv = 1/2(greenline)and v = 36/73
(red line). Panel (c) shows the resulting extrapolation in the vicinity of » = 1/2. To notice the error bars of the extrapolation, we use a
gray colored area. In figure (d) we show the truncated probabilities for different bond dimension. All runs for U = V = 4in the main
article have a discarded weight Ap < 1077.
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Figure G2. Entanglement entropy versus chord distance ¢ for L/N = 156,72 for different filling factors v. (a)—(c) We calculated the
scaling of the entanglement entropy by fitting the full data set. (d)—(f) To obtain the open boundary corrections we subtracted the
central charge scaling. (g)—(i) The frequency spectrum of (d)—(f) reveals two dominant contributions at 2 and 4kg. The contribution at
2kg is strongly suppressed at the resonance, consistent with the emergence of a gap in the spin sector.

The entanglement entropy has been analyzed according to the thermodynamic Calabrese—Cardy scaling as
cited in the main text. When we eliminate this scaling from the data, we obtain corrections caused by the
boundary conditions. The frequency spectrum of these oscillations yields two dominant contributions at 2k
and 4kg (see figure G2 for three examples).
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