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Abstract: Connexins are integral membrane building blocks that form gap junctions, enabling direct
cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the
heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of
a regular beating rhythm. A number of connexin interacting proteins have been described and
are known gap junction regulators either through direct effects (e.g., kinases) or the formation of
larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners
can be categorized as either proteins promoting coupling by stimulating forward trafficking and
channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation.
While some interactions have only been implied through co-localization using immunohistochemistry,
others have been confirmed by biophysical methods that allow detection of a direct interaction.
Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and
the scope of this review is to summarize our current knowledge of their functional and regulatory
roles. The significance of these interactions is further exemplified by demonstrating their importance
at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.

Keywords: gap junction; connexin; protein–protein interaction; intrinsically disordered protein;
post-translational modification; intercalated disc

1. Introduction

The Cx43 carboxyl terminal (Cx43CT) domain plays a role in the trafficking, localization,
and turnover of gap junction channels via numerous post-translational modifications and
protein–protein interactions [1–5]. The Cx43CT is also important for regulating junctional conductance
and voltage sensitivity [6–9]. Structural studies from our laboratory revealed that the Cx43CT as
well as the CT domain from other connexins are predominately unstructured [10–13]. Intrinsically
disordered domains are now well recognized to be loci for regulation of protein function because their
conformation can be readily modulated by the local environment, phosphorylation, and interaction
with proteins and small-molecules. We and others have shown that the Cx43CT binds multiple proteins,
some of which have been shown to modulate channel function (for review see [14]). These data
strongly suggest that protein–protein interactions mediated by any part of the CT are likely to have
regulatory effects. Numerous excellent reviews have summarized the functional significance of these
Cx43-interacting proteins [15–17]; here we provide a different perspective. We separated the proteins
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known to affect Cx43 function into three categories. The first are those proteins that directly interact
with the CT and are associated with trafficking Cx43 to the gap junction plaque and open gap junction
channels. Cx43-protein interactions identified from cell biology studies (e.g., immunoprecipitation
and co-localization) that have been confirmed using different biophysical techniques (e.g., nuclear
magnetic resonance, X-ray crystallography, and surface plasmon resonance) are considered a “direct”
interaction. The second are those proteins that directly interact with the CT and are associated
with channel closure, disassembly, and degradation. The third, which will not be a focus of this
review, are those proteins that can affect all aspects of the Cx43 life cycle, but no evidence exists
they directly interact with the Cx43CT (Table 1; albeit we realize a number of the proteins in Table 1
will eventually be shown to directly interact with Cx43 or may never be identified because binding
requires a connexin embedded within the membrane or in context of a connexon, thus posing extreme
challenges to performing in vitro assays). Additionally, we will not focus on those post-translational
modifications such as ubiquitination, sumoylation, methylation, phosphorylation, and hydroxylation
that form covalent bonds with connexins to modify function (for review see [18]). For the proteins
that directly interact, we provide their location on the Cx43CT domain, residues (de)phosphorylated
where necessary, and their diameter as estimated from their molecular weight (Available online:
http://www.calctool.org/CALC/prof/bio/protein_size). Of note, these values are on the conservative
side because proteins like ZO-1 and 14-3-3 have multiple modular domains and would have a larger
diameter. For the Cx43CT, we combined the knowledge that the intrinsically disordered Cx43CT
domain (length of 3.8 Å per residue; [19]) can contain as high as 35% α-helical structure (length of
1.50 Å per residue) depending on the level of phosphorylation [20]. The rationale for this perspective
is to visually illustrate that only a small number of proteins can bind at any one time. The importance
of Cx43 cellular localization (spatial), Cx43CT phosphorylation state, as well as the cellular condition
(temporal) will help determine which proteins will bind the Cx43CT domain.

Table 1. Proteins suggested to interact with Cx43, but where no evidence currently exist for a direct
protein–protein interaction. Abbreviations: IP, immunoprecipitation; co-Loc, co-localization; PLA,
proximity ligation assay; TEM, transmission electron microscopy; PD, pull-down; IV, in vitro assay;
FW, Far-Western.

Interacting Protein Type of Detection References

Actin co-Loc [21–23]
AGS8 IP, co-Loc [24]

A-kinase anchoring protein 95 IP, co-Loc [25]
Ankyrin G IP [26]

Apoptosis-inducing factor IP, co-Loc, PLA [27]
Atg16L/Atg14/Atg9/Vps34 IP, co-Loc [28]

Bax IP, co-Loc [29]
β-arrestin IP, co-Loc [30]

β-subunit of the electron-transfer protein IP, co-Loc, PLA [27]
Brain-derived integrating factor-1 IP, co-Loc [31]

CASK (LIN2) IP, co-Loc [32]
Caveolin-1,2,3 IP, co-Loc [33–35]

Clathrin IP, co-Loc [36]
Claudin 5 IP, co-Loc [37]

CIP85 IP, co-Loc [38]
Consortin IP, co-Loc [39]
Cyclin E IP, PLA, TEM [40]

Desmocollin-2a PD [41]
Dlg co-Loc [42]

Dynamin IP, co-Loc [43]
EB1 IP [44]

Eps15 IP, co-Loc [45]

http://www.calctool.org/CALC/prof/bio/protein_size
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Table 1. Cont.

Interacting Protein Type of Detection References

ERp29 IP, co-Loc [46]
Hrs co-Loc [47]

HSP70 IP, PD [48]
HSP90 IP, co-Loc [49]

Light chain 3 IP, co-Loc [50,51]
Lin-7 PD [52]

Myosin-VI co-Loc [53]
DMPK IP, co-Loc [54]
NaV1.5 co-Loc [55]

N-cadherin co-Loc [56]
NOV/CCN3 IP, PD [57]

Occludin IP, co-Loc [37]
p120ctn co-Loc [58]
P2X7 IP, co-Loc [59,60]
P62 IP [50]
PKG IV [61]

Plakophilin-2 co-Loc [62]
PP1/PP2A IP, co-Loc [63]

RPTPµ IP [64]
Smurf2 IP, co-Loc [65]

STAMBP (AMSH) IP, co-Loc [66]
TOM20 IP, co-Loc [49]
TRIM21 IP, co-Loc [67]

USP8 IP [68]
Vinculin IP, co-Loc [60]
Wwp1 IP [69]
ZO-2 IP, co-Loc, PD, FW [52,70]

2. Direct Interactions with Cx43 and Their Functional Consequence

2.1. Interactions that Promote Synthesis, Trafficking to the Gap Junction Plaque, and Channel Opening

Intercellular coupling is eventually determined by the number of open channels in gap junction
plaques, which is governed by the synthesis, forward trafficking, and channel open probability.
A number of protein partners affect these processes (Figure 1).

Cx43 is translationally integrated into the endoplasmic reticulum (ER) and oligomerization
occurs only after exit of the ER in the trans-Golgi network [71]. One of the first proteins likely to
directly interact with Cx43 is the Connexin Interacting Protein of 75 kDa (CIP75). CIP75 interacts with
Cx43CT residues K264-Q317 through its ubiquitin-associated (UBA) domain [72,73]. The importance
of CIP75 is to mediate ER associated degradation of Cx43 for quality control and fine-tune the level
of expression through dislocation of Cx43 from the ER and proteasomal degradation [73–76]. Use of
cellular denaturants increased the association of CIP75 with Cx43, suggesting only pools of Cx43
lacking association with CIP75 escape ER dislocation and travel to the Golgi [75]. Upon exiting the
trans-Golgi network, Cx43 containing vesicles are transported via the microtubular network to the
plasma membrane [77].

Microtubular transport of connexons coincides with the recruitment of a number of protein
interactors to the Cx43CT, a number of which have been implicated, however a direct interaction was
not confirmed (Table 1; for review see [4,78,79]). In addition to microtubules, the actin cytoskeleton
aids in connexon delivery to the gap junction plaque (for review see [80]). Curiously, regulation of Cx43
forward trafficking may in part be regulated by internally translated fragments of the Cx43CT [81].
One of these fragments, GJA1-20k, was recently shown to stabilize filamentous actin and suggested
to help target microtubules to cell–cell junctions [82]. Full length Cx43 did not stabilize actin and the
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relation between the ability of GJA1-20k and Cx43 (see below) to target microtubules to the membrane
remains to be established.Int. J. Mol. Sci. 2018, 19, x 4 of 20 

 

 
Figure 1. Protein partners that directly interact with the Cx43CT domain to promote intercellular 
communication. The black line represents Cx43CT domain residues 234–382. Provided for each 
Cx43CT protein partner (circle) is its diameter (in Å) as estimated from their molecular weight, and 
number of amino acids (aa), and the Cx43CT residues affected as a result of the interaction (lines). If 
the protein partner is a kinase or phosphatase, the Cx43CT residues affected are labeled on the 
Cx43CT (circle or triangle). Abbreviations are as follows: β-tubulin (β-tub), T-cell protein tyrosine 
phosphatase (TC-PTP), Connexin interacting protein 75 kDa (CIP75), Ubiquitin-associating domain 
(UBA), Casein kinase 1 (CK1), Protein kinase A (PKA), Zonula Occludens 1 (ZO-1), and Protein kinase 
B (AKT). Kinases have been highlighted (shaded circle). 

In proximity of the plasma membrane, the actin- and protein kinase A (PKA)-binding protein 
Ezrin, binds the Cx43CT and enables PKA to phosphorylate Cx43CT serine residues. In particular, 
phosphorylation of S364 is a likely precursor to binding with the tight junction protein Zonula 
occludens 1 (ZO-1), another actin scaffolding protein [83]. Functional studies demonstrating 
increased gap junction intercellular communication following activation of PKA support this 
hypothesis [84,85]. Work by Pidoux et al. 2014, identified the minimal binding motif of Cx43CT for 
Ezrin as 366RASSR370 using a peptide screening approach [86]. Furthermore, PKA and ZO-1 interact 
with the Cx43CT over the same region as Ezrin (S364-I382), however phosphorylation by PKA (S365, 
S369) did not appear to alter binding of Ezrin to Cx43, nor binding of ZO-1 [86,87]. Work from 
Thévenin et al. 2017, and others have highlighted phosphorylation of S373 as a critical modulator of 
ZO-1 binding, a site phosphorylated by both PKA and protein kinase B (AKT) [83,87–89]. Association 
with ZO-1 is a critical mediator of gap junction plaque size; when bound to ZO-1 Cx43 is retained in 
the perinexal region “poised” for docking with apposing connexons, and upon release Cx43 is 
incorporated into the gap junction plaque proper [88–91]. Whether Ezrin and ZO-1 simultaneously 
bind the Cx43CT remains to be determined, but based on their size and location of binding on the 
Cx43CT, it seems unlikely. 

Capture and incorporation of Cx43 containing vesicles at the plasma membrane (gap junction 
periphery) has been attributed to 14-3-3 [92–94]. Like Ezrin, 14-3-3 interacts with the Cx43CT in the 
same region as ZO-1, hovering over S373 [94]. Unlike the reduced binding of ZO-1, phosphorylation 
of S373 by PKA enhances 14-3-3 binding and likely serves as a switch of perinexal Cx43 to junctional 
Cx43 through tethering to integrins (specifically integrin α5; [88,89,94]). Taken together these studies 
highlight the intricacy of spatial-temporal and post-translational regulation of Cx43 trafficking to the 

Figure 1. Protein partners that directly interact with the Cx43CT domain to promote intercellular
communication. The black line represents Cx43CT domain residues 234–382. Provided for each Cx43CT
protein partner (circle) is its diameter (in Å) as estimated from their molecular weight, and number of
amino acids (aa), and the Cx43CT residues affected as a result of the interaction (lines). If the protein
partner is a kinase or phosphatase, the Cx43CT residues affected are labeled on the Cx43CT (circle or
triangle). Abbreviations are as follows: β-tubulin (β-tub), T-cell protein tyrosine phosphatase (TC-PTP),
Connexin interacting protein 75 kDa (CIP75), Ubiquitin-associating domain (UBA), Casein kinase 1
(CK1), Protein kinase A (PKA), Zonula Occludens 1 (ZO-1), and Protein kinase B (AKT). Kinases have
been highlighted (shaded circle).

In proximity of the plasma membrane, the actin- and protein kinase A (PKA)-binding protein
Ezrin, binds the Cx43CT and enables PKA to phosphorylate Cx43CT serine residues. In particular,
phosphorylation of S364 is a likely precursor to binding with the tight junction protein Zonula
occludens 1 (ZO-1), another actin scaffolding protein [83]. Functional studies demonstrating increased
gap junction intercellular communication following activation of PKA support this hypothesis [84,85].
Work by Pidoux et al. 2014, identified the minimal binding motif of Cx43CT for Ezrin as 366RASSR370

using a peptide screening approach [86]. Furthermore, PKA and ZO-1 interact with the Cx43CT
over the same region as Ezrin (S364-I382), however phosphorylation by PKA (S365, S369) did not
appear to alter binding of Ezrin to Cx43, nor binding of ZO-1 [86,87]. Work from Thévenin et al. 2017,
and others have highlighted phosphorylation of S373 as a critical modulator of ZO-1 binding, a site
phosphorylated by both PKA and protein kinase B (AKT) [83,87–89]. Association with ZO-1 is a critical
mediator of gap junction plaque size; when bound to ZO-1 Cx43 is retained in the perinexal region
“poised” for docking with apposing connexons, and upon release Cx43 is incorporated into the gap
junction plaque proper [88–91]. Whether Ezrin and ZO-1 simultaneously bind the Cx43CT remains to
be determined, but based on their size and location of binding on the Cx43CT, it seems unlikely.

Capture and incorporation of Cx43 containing vesicles at the plasma membrane (gap junction
periphery) has been attributed to 14-3-3 [92–94]. Like Ezrin, 14-3-3 interacts with the Cx43CT in the
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same region as ZO-1, hovering over S373 [94]. Unlike the reduced binding of ZO-1, phosphorylation
of S373 by PKA enhances 14-3-3 binding and likely serves as a switch of perinexal Cx43 to junctional
Cx43 through tethering to integrins (specifically integrin α5; [88,89,94]). Taken together these studies
highlight the intricacy of spatial-temporal and post-translational regulation of Cx43 trafficking to
the gap junction plaque and suggest that association of Ezrin (and PKA) with the Cx43CT precedes
association with ZO-1. This is further advanced by phosphorylation of S373 promoting the exchange
of ZO-1 for 14-3-3 and incorporation into the gap junction plaque [88,89,94]. Of note AKT and
14-3-3 proteins are also involved in gap junction disassembly, a topic covered in the next section.
Once incorporated into the plaque a number of interactions serve to stabilize and maintain Cx43 and
control channel maturation (opening; for review see [95]).

Fully open channels require phosphorylation by casein kinase 1 (CK1) on residues S325, S328,
S330 [96]. Interestingly, Cx43 knock-in mice in which Cx43CT residues S325, S328, and S330 were
replaced with glutamic acids (phospho-mimicking) were immune to acute and chronic pathological
gap junction remodeling and ventricular arrhythmias after transverse aortic constriction [97].
In addition to channel opening, stability of the gap junction plaque regulates gap junction intercellular
communication. Direct protein interaction with microtubules via β-tubulin and association with
the actin cytoskeleton through the scaffolding protein Developmentally Regulated Brain Protein 1
(Drebrin) are two key interactions, which stabilize gap junctions (for review see [98,99]). β-tubulin
binds the Cx43CT over Y247, a known site of phosphorylation by Src kinase, and Drebrin binds over
Y265 and Y313, two other substrates for Src phosphorylation [100–106]. Importantly, the interaction of
β-tubulin with the Cx43CT likely occurs subsequent to plasma membrane incorporation as a direct
interaction prior to plasma membrane incorporation would prevent Cx43 trafficking to the membrane
(no motor proteins). This hypothesis is supported by data from Francis et al. 2011, indicating that
Cx43 regulates microtubule dynamics at plasma membrane [107]. NMR and cell based work from
our laboratory identified a phosphatase T-cell Protein Tyrosine Phosphatase (TC-PTP) which directly
interacts with the Cx43CT and dephosphorylates the Y247 and Y265 reversing the down-regulating
effects of Src kinase (described further in the next section; [108]).

Finally, β-catenin is another protein identified to interact with Cx43. In response to Wnt signaling,
β-catenin can interact with the Cx43 gene to increase transcription as well as modulate gap junction
stability at the plaque [109–112]. Works from several laboratories have shown indirect evidence of
this interaction at the plaque by reciprocal co-immunoprecipitation as well as co-localization [109,113].
β-catenin was added in this section because we recently identified a direct interaction with the Cx43CT
domain over three areas (residues G261-T275, S282-N295, and N302-R319) using a combination of
surface plasmon resonance (SPR) and NMR experiments [114].

2.2. Interactions that Promote Channel Closure, Gap Junction Disassembly, Internalization and Degradation

Similarly, to facilitating coupling, down regulation of Cx43-mediated intercellular communication
requires a number of direct protein interactions and phosphorylation events (Figure 2). Indeed,
phosphorylation of Cx43 by Src is a key initiator of gap junction closure, internalization, and
turnover [103,104,115–119]. Src-induced phosphorylation of Cx43 has been correlated with channel
closure [101]. Current research suggests a “particle–receptor” mechanism for Src-mediated channel
closure similar to that proposed for pH gating of Cx43 channels [7,104,120]. The impact of Src
phosphorylation on channel activity is decreased electrical coupling by reducing open probability and
changes in selectivity [121]. Work from our laboratory and others support an additional mechanism of
Src to decrease gap junctional intercellular communication: the altering of Cx43 protein partners to
enhance degradation. A commonality between the proteins that link Cx43 to the cytoskeleton is that
Src can inhibit their interaction. For example, Cx43CT residues Y247 and Y265 phosphorylated by Src
inhibit the binding of β-tubulin and Drebrin, respectively [122].
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Calmodulin (CaM), Src homology 3 domain (SH3), Tyrosine kinase 2 (Tyk2), Mitogen-activated 
protein kinase (MAPK), Neural precursor cell expressed developmentally down-regulated protein 4 
(Nedd4), Cyclin-dependent kinase 1 (CDK1), Tumor susceptibility gene 101 protein (Tsg101), 
Ubiquitin E2 variant domain (UEV), Protein kinase B (AKT), Protein kinase C (PKC), matrix 
metalloproteinase-7 (MMP7), and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Kinases 
have been highlighted (shaded circle). 

In the case of β-tubulin, at the gap junction plaque, this may be a mechanism in the disassembly 
process; at the trans-Golgi network, in cardiomyocytes this may re-route trafficking from the 
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leading to increased proteasomal and/or lysosomal degradation. For Drebrin, depletion in cells 
results in impaired cell–cell coupling, internalization of gap junctions, and targeting of Cx43 for 
degradation [123]. While phosphorylation of the Cx43CT by Src does not inhibit ZO-1 binding, we 
found that active c-Src can compete with Cx43 to directly bind ZO-1 [124]. Studies from the Gourdie 
and Lampe laboratories would suggest blocking these protein partners would transition Cx43 from 
the non-junctional plasma membrane into the gap junction plaque, and then through the degradation 
pathway(s) [91]. Finally, Src activation also indirectly leads to serine phosphorylation by AKT (S373), 
PKC (S368), and MAPK (S255, S279, and S282) that contributes to reduced Cx43 at the plasma 
membrane. AKT may act in a similar manner as Src in that phosphorylation of S373 inhibits the Cx43 
interaction with ZO-1 [88]. In addition, phosphorylation of S373 enables the binding of 14-3-3 leading 
to gap junction ubiquitination, internalization, and degradation during acute cardiac ischemia [94]. 
Altogether, the data point to Src playing a significant role in inhibiting Cx43-mediated cell-to-cell 
communication by channel closure and enhanced degradation. 

In addition to Src, another tyrosine kinase identified to directly interact with and phosphorylate 
the Cx43CT was the Janus kinase family member non-receptor tyrosine-protein kinase 2 (Tyk2; [125]). 
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phosphorylates Cx43CT residues Y247 and Y265 and results in concomitant loss of coupling and 
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Figure 2. Protein partners that directly interact with the Cx43 CT and CL domains to impede
intercellular communication. The black lines represents Cx43CT domain residues 234–382 and
Cx43CL domain residues 100–158. Provided for each Cx43 CT and CL protein partner (circle) is
its diameter (in Å) as estimated from their molecular weight, and number of amino acids (aa),
and the Cx43CT residues affected as a result of the interaction (lines). If the protein partner is a
kinase, the Cx43CT residues affected are labeled on the Cx43CT (circle). Abbreviations are as follows:
Calmodulin (CaM), Src homology 3 domain (SH3), Tyrosine kinase 2 (Tyk2), Mitogen-activated protein
kinase (MAPK), Neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4),
Cyclin-dependent kinase 1 (CDK1), Tumor susceptibility gene 101 protein (Tsg101), Ubiquitin E2
variant domain (UEV), Protein kinase B (AKT), Protein kinase C (PKC), matrix metalloproteinase-7
(MMP7), and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Kinases have been highlighted
(shaded circle).

In the case of β-tubulin, at the gap junction plaque, this may be a mechanism in the disassembly
process; at the trans-Golgi network, in cardiomyocytes this may re-route trafficking from the
intercalated disc to lateral membranes; or inhibit trafficking to the plasma membrane altogether,
leading to increased proteasomal and/or lysosomal degradation. For Drebrin, depletion in cells
results in impaired cell–cell coupling, internalization of gap junctions, and targeting of Cx43 for
degradation [123]. While phosphorylation of the Cx43CT by Src does not inhibit ZO-1 binding,
we found that active c-Src can compete with Cx43 to directly bind ZO-1 [124]. Studies from the
Gourdie and Lampe laboratories would suggest blocking these protein partners would transition
Cx43 from the non-junctional plasma membrane into the gap junction plaque, and then through the
degradation pathway(s) [91]. Finally, Src activation also indirectly leads to serine phosphorylation by
AKT (S373), PKC (S368), and MAPK (S255, S279, and S282) that contributes to reduced Cx43 at the
plasma membrane. AKT may act in a similar manner as Src in that phosphorylation of S373 inhibits
the Cx43 interaction with ZO-1 [88]. In addition, phosphorylation of S373 enables the binding of
14-3-3 leading to gap junction ubiquitination, internalization, and degradation during acute cardiac
ischemia [94]. Altogether, the data point to Src playing a significant role in inhibiting Cx43-mediated
cell-to-cell communication by channel closure and enhanced degradation.

In addition to Src, another tyrosine kinase identified to directly interact with and phosphorylate
the Cx43CT was the Janus kinase family member non-receptor tyrosine-protein kinase 2 (Tyk2; [125]).
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Interestingly, Tyk2 can functionally substitute for Src as work from our laboratory identified that
it phosphorylates Cx43CT residues Y247 and Y265 and results in concomitant loss of coupling and
disassembly of gap junction plaques [125]. While phosphorylation of these sites by either Tyk2
or Src would result in disruption of the direct binding of β-tubulin and Drebrin, one difference
is that Tyk2 unlikely disrupts the Cx43/ZO-1 interaction as Tyk2 does not contain a SH3 domain
(for review see [126]). Whether Tyk2 binds to Cx43 via its SH2 domain or FERM domain remains to
be determined [127–129]. It is becoming clear that overlap in the phosphorylated residues of Cx43 by
a number of kinases provides the cell with a highly dynamic ability to alter gap junction function in
response to various initial stimuli. In addition, like Src, activation of Tyk2 coincides with increased
phosphorylation of S279/282 by MAPK and S368 by PKC [125]. MAPK also phosphorylates Cx43
residues S255 and S262, all of which alter the secondary structure of the Cx43CT to increase α-helical
content, a mechanism which can promote or inhibit interactions with other protein partners [20].

One protein partner that undergoes recruitment following MAPK activation, is the E3 ubiquitin
ligase Neural precursor cell expressed developmentally down-regulated 4 (Nedd4; [130]). Specifically,
work by Leykauf et al. 2006, demonstrated that phosphorylation of S279/282 increased the affinity
(KD pS279/282 585 µM vs non-pS279/282 1064 µM) of Nedd4 for Cx43 [131]. Our laboratory confirmed
this approximate 2-fold increase in the binding affinity for Nedd4 via NMR [132]. Furthermore, we
determined that Nedd4 binds to the Cx43CT primarily through its WW2 domain via the PPXY motif
(P283-Y286; [132]). Importantly, other proteins also interact with the Cx43CT in proximity to the PPXY
motif, these are tumor susceptibility gene 101 (Tsg101) and the AP2 adaptor protein complex (AP2)
both of which are involved in the endocytosis and retrograde trafficking of Cx43 [133,134]. In addition
to MAPK, Src phosphorylation also primes Cx43 for phosphorylation by PKC at S368 [102]. A point
worth noting is that phosphorylation of Cx43 S368 requires dephosphorylation of S365, as work from
Solan et al. 2007, demonstrated that phosphorylation of these sites is mutually exclusive [135].

Phosphorylation of Cx43 by PKC occurs via indirect mechanisms following phosphorylation
by Src [102]. Cx43 residue S368 is well established as a site for PKC phosphorylation and this
site is correlated with a decrease in unitary conductance of approximately 50% (~100 pS down to
~50 pS; [136]). This decrease works together with phosphorylation by MAPK on S262 to close the
channel completely. Since MAPK and PKC interact with and phosphorylate Cx43 over different
regions it is likely, they can both interact simultaneously. Indeed, time course experiments following
the changes in levels of site-specific phosphorylations (MAPK and PKC sites) following treatment of
porcine aorta endothelial cells with vascular endothelial growth factor (VEGF) revealed a concomitant
increase in phosphorylation on S255, S262, S279/282, and S368 [137]. However, the same study
demonstrated that inhibition of PKC by GF109203X also resulted in a decrease in phosphorylation
of S255, S279/282, and S368. The authors suggest it is likely the PKC phosphorylation may precede
MAPK phosphorylation at least in VEGF activated cells to create a binding site for AP2 [137].
Similar phosphorylation patterns occur in a number of other cell types with different initiating
stimuli suggesting this as a likely critical kinase program for the closure and internalization of
Cx43 gap junctions [138–140]. Furthermore, in the same study the authors demonstrated that the
phosphomimetic Cx43CT S365D mutation resulted in a significant change in structure of CT residues
(T275-A276, G285-Y286, L356-S368, and R370-D379) as indicated by significant changes in chemical
shift as observed in a heteronuclear single quantum coherence experiment [135]. Taken together these
two lines of data suggest that phosphorylation of Cx43 by PKA on S365, induces a shift in structure
which precludes binding of and phosphorylation by PKC. Finally, activation of PKC can halt the
assembly of new gap junctions and its phosphorylation on S368 has been implicated in affecting gating
and/or disassembly [141,142].

AP2 is one protein member of a family of five adaptor protein complexes (AP1-5) that are
involved in both clathrin and non-clathrin (AP4/5) mediated trafficking events (for review see [143]).
AP2 associates specifically with its cargo proteins via either two tyrosine based sorting motifs (YXXΦ or
NPXY) or dileucine based sorting motifs ([D/E]XXXL[L/I]) (for review see [144]). The Cx43CT domain
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contains three tyrosine based sorting motifs (S1-Y230VFF, S2-Y265AYF, and S3-Y286KLV; [134,145]).
Only S2 and S3 interacted with AP2 to initiate clathrin-mediated internalization [134]. S1 was not
involved due to its membrane juxtaposition. Furthermore, the study by Thomas et al. 2003, illustrated
that the Cx43 AP2 S3 overlaps with the proline rich PPXY motif which Nedd4 recognizes [145].
This suggests that it is unlikely both Nedd4 and AP2 bind Cx43 at the same time, indicating potential
diverging roles for ubiquitin and clathrin mediated internalization. The significance of Cx43 containing
two tyrosine based sorting signal is unclear, however, work by Johnson et al. 2013, using yeast
two-hybrid analysis indicated that the Cx43CT with a Y286A mutation (abolishing S3) did not
function as bait for the µ2 subunit of the AP2 complex [140]. Although they suggest a requirement
for post-translational modification [140], most likely, coordination of the tyrosine ring is important
for binding AP2 as tyrosine phosphorylation within the Yxxφ-type-binding motif of other proteins
inhibits the interaction with AP2 (e.g., [146]).

Two additional proteins that directly interact with Cx43 are calmodulin (CaM) and
CaM-dependent kinase 2 (CaMKII). Ca2+/CaM activates CaMKII leading to autophosphorylation
and subsequent phosphorylation of target proteins, including Cx43 [147–149]. In vitro work using
mass spectroscopy identified extensive phosphorylation of the Cx43CT by CaMKII (15 Cx43CT
residues; [147]). Whether all of these sites identified occur in vivo remains to be determined as
this high degree of phosphorylation could be a result of non-specific binding under in vitro conditions
as the only identified CaMKII consensus is R-X-X-S/T (only four in the Cx43CT domain; for review
see [150]). However, of the sites identified by Huang et al. 2011, phosphorylation of S306 has
been shown to increase rather than decrease coupling [148]. NMR experiments showed that CaM
directly binds the Cx43 cytoplasmic loop residues K136-S158 [151]. This occurs in a Ca2+ dependent
manner and leads to gap junction channel closure, perhaps via occlusion of the pore (for review
see [152]). We recently identified that CaM also binds Cx43CT residues K264-T290 [153]. It is
tempting to speculate that this may be the mechanism by which Cx43 channels close, but remain at
the plasma membrane, unlike the effects of Src phosphorylation. Along with regular turnover, gap
junctions disassemble during cell division as they serve as a source of cell–cell adhesion (for review
see [154]). During mitosis Cx43 phosphorylation patterns change with phosphorylation detected
on S255 and S262 [155]. These changes in phosphorylation correlate with reduced intercellular
communication as well as increased concentration of Cx43 in intracellular structures [156–158].
Interestingly, a pool of this internalized Cx43 can be recycled to nucleate the formation of new gap
junction channels [155]. Similar to phosphorylation of S255 and S262 by MAPK, cyclin-dependent
kinase 1 (CDK1) phosphorylates these same residues to closes the gap junction channel [156,157].

In addition to the phosphorylation-mediated changes in protein partner associations described
above, new studies have begun to illustrate Cx43 as a potential target for proteolytic cleavage in
various pathologies [159–162]. Lindsey et al. 2006, using in vivo, in vitro, and in silico methods
demonstrated that Cx43 is a substrate for matrix metalloproteinase-7 (MMP-7; [159]). The Cx43CT
domain contains two putative MMP-7 cleavage sites (G350-R362 and R374-I382); however, biochemical
analysis using epitope-mapped antibodies (antibody 1: 252-270, antibody 2: 363-382) suggested
cleavage was occurring only at the R374-I382 site [159]. A direct MMP-7 interaction with Cx43 was
shown by SPR, in proximity to S373, suggesting potential regulation by PKA/AKT [83,88,89,159].

3. The Intercalated Disc as a Hub of Cx43 Mediated Protein–Protein Interactions

Cx43 is expressed in a large variety of cells [5], where it may interact with the proteins discussed
above as well as yet unidentified binding partners. The expression and localization of the interacting
partners vary between cell types, which possibly underlie the bewildering number of contradictory
findings on the role and regulation of Cx43. In the following, we will give examples from the current
knowledge about interactions and regulation of Cx43 at the intercalated disc (ID) of cardiomyocytes.
The ID is a region of particular interest since it contains large amounts of Cx43 in close contact with
several known interaction partners [163]. Although we only have evidence of direct interaction with
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a few of the nearby proteins, the list of possible partners is growing. Using a proteomics approach,
Girao and coworkers showed that 236 proteins precipitated with Cx43 isolated from rat hearts [164].
Even if a lot of these are not direct or may occur outside the ID, the number of potential partners
is overwhelming.

3.1. Nedd4 Regulates the Cx43 Content of Cardiac Gap Junctions

The ubiquitin ligase Nedd4 interacts directly with Cx43 [132] and both proteins co-localize in
cardiomyocytes [165,166]. Studies indicate that multiple pathways may induce Cx43 ubiquitination in
cardiomyocytes, such as activation of G-protein coupled receptors [166] and cardiac ischemia [165],
and that the underlying mechanism may differ between experimental models. In the case of
G-protein-coupled receptor activation, ubiquitination was achieved via a depletion of PIP2 without
a measurable change in Cx43-Nedd4 co-IP [166,167], whereas cardiac ischemia increased both
co-localization at the ID and increased co-IP [165]. Rather than closing the channel per se, ubiquitination
most likely targets Cx43 to internalization [131] that may involve binding to the adaptor protein
Eps15 [45] followed by endocytosis and lysosomal degradation [168].

3.2. Cx43 Regulates the Forward Trafficking of the Cardiac Sodium Channel NaV1.5

In contrast to the binding of Nedd4 that primarily regulates the Cx43-dependent coupling,
other binding partners may be important for the regulation of nearby partners. This has proven
particularly crucial at the ID, as evidenced by the fact that mutations in a number of ID components
lead to wide spread dysregulation of ID function [169]. Although the exact nature of cross regulation
remains obscure for many ID interactions, the interdependence of Cx43 and the cardiac sodium channel
NaV1.5 has recently been unraveled in some detail.

Knock out of Cx43 in the heart leads to severe arrhythmias [170,171], originally believed to rely
solely on the lack of intercellular coupling. However, several lines of evidence suggested a co-regulation
of Cx43 and NaV1.5 [26,172]; and van Rijen and coworkers demonstrated that Cx43 knock out indeed
reduces sodium channel expression in mice in vivo [173], a result that was reproduced in the cardiac
HL-1 cell line, where Cx43 knock down reduces sodium current [173]. Intriguingly, the deletion of
the last five amino acids of the Cx43CT (D378stop), which interact with the scaffolding protein ZO-1,
also induced a highly arrhythmogenic phenotype in mice, despite an apparently normal intercellular
coupling [174]. As for the complete loss of Cx43 described above, sodium current as well as NaV1.5
expression were reduced in cardiomyocytes from D378stop mice [174], showing that an intact CT is
needed for full NaV1.5 expression at the membrane. The lack of NaV1.5 at the ID suggested that forward
trafficking of NaV1.5 might be compromised. Using super resolution microscopy Agullo-Pascual et al.
demonstrated that the plus end microtubule marker EB1 was partially dislocated from the ID in mice
expressing Cx43-D378stop, which correlated with the presence of NaV1.5 clusters that came very close
to the ID membrane without reaching it properly [175]. This led to the hypothesis that Cx43 acts as an
anchoring point for microtubules and thereby regulates the forward trafficking of other proteins to the
ID. Such an anchoring function was already demonstrated by Lo and coworkers, who showed that
KO of Cx43 reduces fibroblast motility and destabilizes the microtubular network [107]. Deletion of
the tubulin binding domain between amino acids 234 and 243 in the Cx43-CT recapitulated the effect
of removing Cx43 altogether [107], demonstrating the important functional role of the Cx43-tubulin
interaction. The role of the Cx43-tubulin interaction was also demonstrated in the cardiac HL1 cell
line. As mentioned above, knock down of Cx43 in HL1 cells reduces the sodium current by ~50% and
re-transfection with Cx43 restores the sodium current [173]. In contrast, transfection of the same HL1
cells with Cx43 with the tubulin binding domain truncated, failed to restore sodium current [175],
supporting a role for Cx43 as a microtubule anchoring point and thereby for guiding in sodium
channels. Using the HL1 cells, it was also demonstrated that Cx43-D378stop channels were unable
to restore the sodium current [175], indicating that both the tubulin- and ZO-1-binding domains are
needed for proper transportation of sodium channels to the membrane.
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3.3. Cx43, the Area Composita and the Connexome

There is overwhelming evidence indicating that the functions of Cx43 extend beyond that of
forming gap junction channels. Studies from various laboratories indicate that in fact, Cx43 is not
only localized at the gap junction or in the perinexus [176], but also as part of a molecular/structural
conglomerate named the “area composita” [177]. This term was coined to describe the fact that in
the heart cells, in addition to well-defined desmosomes, there are structures with features of both,
desmosomes and adherens junctions. Work of Agullo-Pascual et al. 2014 showed that Cx43 can be
localized to these structures [178]. Furthermore, loss of Cx43 can decrease intercellular adhesion
strength [179]. Finally, changes in desmosomal molecules can affect the integrity of gap junctions [180].
All of these complex interactions have brought us to the conclusion that in the heart, desmosomes,
gap junctions, and sodium channel complexes are not separated and apart from each other. Instead,
they form a protein interacting network where molecules classically defined as belonging to one of
these groups, interact with others and together bring about excitability, adhesion, and intercellular
coupling in the heart. This protein interacting network (dubbed “the connexome” [178,181,182])
provides for a coordinated response between the different elements that are necessary for an integrated
functional syncytium.

4. Conclusions

It has been over 30 years since the description by Beyer, Paul, and Goodenough of Cx43 as the
major gap junction protein in the heart [183]. Since this description, there has been abundant research
demonstrating that Cx43 is far from a lonely and aloof piece of the intercalated disc, geared for only
one function. Rather, Cx43 is part of a complex interacting protein network, not only as a recipient of
interactors that modify gap junctions, but also as a component of complexes that exert other functions.
As such, the view of Cx43 as a single-function molecule (to make gap junctions) is now changed to
that of a multi-tasking protein, webbed into other networks to synchronize cell coupling. The extent to
which those functions are involved in disease remains a matter of controversy. Whether gap junctions,
or Cx43, participate in arrhythmia syndromes, or in limiting the size of infarcts, or as good (or bad?)
pharmacological targets, remains incompletely defined. These last 30 years have brought us a long
way in understanding Cx43 as part of a molecular ecosystem. Hopefully, the next 30 years will help us
improve our ability to forecast the storms that may result from Cx43 deficiency.
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Abbreviations

AA amino acids
AGS8 Activator of G protein signaling 8
AKT protein kinase B
AMSH associated molecule with the SH3 domain of STAM
AP2 adaptor protein 2
Atg Autophagy-related protein
β-tub β-tubulin
CaM Calmodulin
CaMKII Ca2+/calmodulin-dependent protein kinase II
CASK Ca2+/calmodulin-activated serine kinase
CCN3 CYR61/CTGF/NOV
CDK1 Cyclin-dependent kinase 1
CIP75 connexin interacting protein 75 kDa
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CIP85 Cx43-interacting protein of 85-kDa
CK1 Casein kinase 1
co-Loc co-localization
CT carboxyl terminal
Cx43 connexin 43
Cx43CT Cx43 carboxyl terminal
Dlg Discs-large
DMPK dystrophia myotonica protein kinase
Drebrin Developmentally Regulated Brain Protein 1
EB1 End binding 1
Eps15 Epidermal growth factor receptor substrate 15
ER endoplasmic reticulum
ERp29 Endoplasmic reticulum protein 29
FERM domain Domain found in 4.1 protein (F), Ezrin, Radixin and Moesin
FW Far-Western
Hrs hepatocyte growth factor-regulated tyrosine kinase substrate
HSP70 heat shock protein 70
HSP90 heat shock protein 90
ID intercalated disc
IP immunoprecipitation
IV in vitro assay
Lin-7 linage-7
MAPK Mitogen-activated protein kinase
MMP7 matrix metalloproteinase-7
Nedd4 Neural precursor cell expressed developmentally down-regulated protein 4
NMR nuclear magnetic resonance
NOV nephroblastoma overexpressed
p120ctn p120-catenin
PD pull-down
PIP2 Phosphatidylinositol-bisphosphate
PKA protein kinase A
PKC protein kinase C
PKG protein kinase G
PLA proximity ligation assay
PP protein phosphatase
RPTPµ receptor-like protein tyrosine phosphatase µ

SH3 Src homology 3 domain
Smurf2 Smad ubiquitination regulatory factor-2
SPR surface plasmon resonance
STAMBP Signal transducing adapter molecule 1 binding protein
TC-PTP T-cell protein tyrosine phosphatase
TEM transmission electron microscopy
TOM20 mitochondrial outer membrane receptor 20
TRIM21 Tripartite motif-containing protein 21
Tsg101 Tumor susceptibility gene 101 protein
Tyk2 Tyrosine kinase 2
UBA Ubiquitin-associating domain
UEV Ubiquitin E2 variant domain
USP8 Ubiquitin specific protease 8
VEGF Vascular endothelial growth factor
ZO-1 Zonula occludens-1
ZO-2 Zonula occludens-2
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