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When integrating out unknown new physics sectors, what is the minimal character of the Standard Model 
Effective Field Theory (SMEFT) that can result? In this paper we focus on a particular aspect of this 
question: “How can one obtain only one dimension six operator in the SMEFT from a consistent tree level 
matching onto an unknown new physics sector?” We show why this requires conditions on the ultraviolet 
field content that do not indicate a stand alone ultraviolet complete scenario. Further, we demonstrate 
how a dynamical origin of the ultraviolet scales assumed to exist in order to generate the masses of 
the heavy states integrated out generically induces more operators. Therefore, our analysis indicates that 
the infrared limit captured from a new sector in consistent matchings induces multiple operators in the 
SMEFT quite generically. Global data analyses in the SMEFT can and should accommodate this fact.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Despite the null results on beyond the Standard Model (SM) 
resonance searches from Run I and II at LHC, the arguments in 
favor of physics beyond the SM are very strong. It is reasonable 
to expect that the low energy effects of a new physics sector, 
which has a mass gap in its typical mass scale(s)1 compared to 
the electroweak scale v � 246 GeV, could be resolved in the future. 
This is particularly the case if � � 4 π v , which is consistent with 
expectations of ultraviolet (UV) physics motivated by naturalness 
concerns for the Higgs mass. Broad classes of new physics sce-
narios consistent with this minimal decoupling assumption can be 
constrained efficiently using effective field theory methods to anal-
yse scattering data limited to energies 

√
s ∼ v � �. This formalism 

has come to be known as the Standard Model Effective Field The-
ory (SMEFT) recently [1–10] where the SM is supplemented with 
a series of higher dimensional operators2

LSMEFT = LSM +L5 +L6 +L7 +L8 + · · · (1)

In this approach, the null results of lower energy tests for physics 
beyond the SM can be consistent with beyond-the-SM UV physics 
in the ∼ TeV mass scale range. However, a large set of experi-
mental measurements that test the symmetry breaking patterns of 

* Corresponding author.
E-mail address: michael.trott@cern.ch (M. Trott).

1 Schematically denoted as � and assumed to be in the ∼ TeV range.
2 The complete sum of all non-redundant operators at each mass dimension order 

d defines Ld here.
http://dx.doi.org/10.1016/j.physletb.2017.04.053
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
the SM must be accommodated. This can be accomplished in a 
manner that avoids fine tuning. In this work, we use a symmetry 
assumption that new physics in the TeV mass range leads to a L6
correction to the SM that (approximately) respects the global sym-
metry group G = U(1)B ⊗U(1)L ⊗SU(3)5, and in addition a discrete 
CP symmetry.3 Some of these symmetries cannot be exact, as the 
SM defines a minimal symmetry breaking in the SMEFT. However, 
the G and CP symmetry breaking pattern of the SM can allow the 
effect of the UV physics sectors in the ∼ TeV scales of experimental 
interest because of two reasons: it follows a Minimal Flavor Violat-
ing (MFV) pattern for flavor changing measurements [12–14]; and 
it is proportional to the Jarlskog invariant [15,16] in the case of SM 
CP violation.

In this paper, we consider matching patterns of operators that 
result from integrating out new physics sectors. We study the ef-
fect of simultaneously integrating out not only the heavy fields, but 
also a UV sector that generates the required heavy mass scale(s) 
� > v . We initially focus on the question of when, if ever, only 
one operator can be obtained in such a tree level matching in our 
chosen basis for L6 [2]. We examine this question in the SMEFT 
in terms of the matching effects of spin-{1,1/2,0} fields that can 
couple to the SM through (d ≤ 4) mass dimension interactions. 
Higher spin composite fields (and spin towers) are possible and 
even required in the presence of UV confining strong interactions. 
Similarly, when a UV sector with a strong interaction is present, 

3 This hypothesis is not the only way to accommodate TeV field content, see for 
example the discussion in Ref. [11].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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there is no particular reason in general for tree level matchings, as 
opposed to non-perturbative matchings, to be the largest contribu-
tion to the Wilson coefficients. Such extra matching contributions 
are difficult to characterize (other than by using the full SMEFT 
formalism) and only reinforce our main point on the non-minimal 
character of the SMEFT, so we do not focus on these contributions.

The number of operators induced in matching is operator ba-
sis dependent. However, the conditions uncovered on the UV field 
content to reduce the operator profile (i.e. the number of inde-
pendent SU(3) × SU(2) × U(1) operators) are still meaningful. The 
conditions can be framed in terms of symmetries and several sim-
ple observations on new physics spectra and dynamics that can 
generate a scale �, as we show. Practically speaking, most global 
analyses are being constructed using the well defined Warsaw ba-
sis [2], so we focus on this basis when examining the one operator 
question. We use the notation Q i to denote an operator defined 
in the Warsaw basis in this work, and refer the reader to Ref. [2]
for the explicit operator definitions. Note also that we refer to one 
operator with the understanding that, consistent with our assump-
tions of G symmetry, flavor indices are not used to distinguish 
operators.

The structure of this paper is as follows. Following a brief 
comment on the dimension-5 operator and Fermi theory in Sec-
tion 2, we provide in Section 3.1 a comprehensive discussion on 
the SMEFT matching at tree level onto L6 when a massive spin-1
state present in a UV physics sector is integrated out. We focus 
this discussion on the “one operator induced at tree level” ques-
tion consistent with the assumed (approximate) G symmetry. We 
demonstrate why such a simple UV sector cannot be a complete 
scenario if a mechanism to generate the heavy state’s mass is 
demanded. We then discuss the spin-1/2 case, drawing a similar 
conclusions in Section 3.2. In Section 3.3 we examine the case of 
integrating out a scalar field focused on the “one operator” ques-
tion. We show how the scalar case is more subtle, but still argues 
for more operators when UV complete scenarios are demanded. 
Section 4 contains our conclusions.

2. Two exceptional EFT cases

When considering the one operator question, we note that a 
few historical accidents in EFTs can be misleading. First of all, L5
and Ld with d ≥ 6 are distinct when considering this question. Due 
to the charges of the SM field content, only one operator (with 
flavor indices) can be constructed in L5. The operator that results 
[17,18],

L5 = ci j

2

(
Lc

L,i H̃�
)(

H̃† LL, j

)
+ h.c. (2)

is the well known example where one operator at a particular 
mass dimension does result when integrating out UV physics.4 The 
interplay of global U(1)L number violation and the constraints of 
the SM field’s representations leading to one operator in L5 is an 
exception that is not repeated at higher orders in the SMEFT oper-
ator expansion [6–10].

Historically, Fermi theory has frequently been used as a pro-
totypical EFT to build intuition. This can be unfortunate, as Fermi 
theory is atypical and has a number of non-trivial accidental fea-
tures that are not generic. In Fermi theory, the four-fermion oper-
ator

Q �� = (
LL γ μLL

) (
LL γμLL

)
, (3)

4 Here and below our notation with a c superscript indicates a charge conjugate 
representation of a SM field.
Table 1
Vector representations [21,22] consistent with our assumptions. The first three rows 
are the same field sub-classified. Superscripts on the field label indicate the repre-
sentation under color. The Gell-Mann matrix T A (for both color and flavor 8’s) is 
present but suppressed in the coupling to some fermion bi-linears. σI is the Pauli 
matrix. The table largely follows from the SU(3) group relations 3 ⊗ 3̄ = 1 ⊕ 8 and 
3 ⊗ 3 = 6 ⊕ 3̄.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1,8)
I 1,8 1 0 (1,1,1) (1,1) d̄R γ μ dR

V(1,8)
II 1,8 1 0 (1,1,1) (1,1) ūR γ μ uR

V(1,8)
III 1,8 1 0 (1,1,1) (1,1) Q̄ L γ μ Q L

V(1,8)
IV 1,8 3 0 (1,1,1) (1,1) Q̄ Lσ

I γ μ Q L

V(1,8)
V 1,8 1 0 (1,8,1) (1,1) d̄R γ μ dR

V(1,8)
VI 1,8 1 0 (8,1,1) (1,1) ūR γ μ uR

V(1,8)
VII 1,8 1 −1 (3̄,3,1) (1,1) d̄R γ μ uR

V(1,8)
VIII 1,8 1 0 (1,1,8) (1,1) Q̄ L γ μ Q L

V(1,8)
IX 1,8 3 0 (1,1,8) (1,1) Q̄ Lσ

I γ μ Q L

V(3̄,6)
X 3̄,6 2 −1/6 (1,3,3) (1,1) d̄R γ μ Q c

L

V(3̄,6)
XI 3̄,6 2 5/6 (3,1,3) (1,1) ūR γ μ Q c

L

is generated when the W boson is integrated out. This effective 
operator is used in the process μ− → e− + ν̄e + νμ to infer the 
Fermi constant, G F . The UV sector in the case of Fermi theory is 
the SM which does induce a series of other operators at tree level, 
in addition to the operator Q �� . These four-fermion operators are 
due to the Higgs field and the Z boson. However, the highly sup-
pressed Yukawa couplings of the SM Higgs to light fermions leads 
to an exceptional situation numerically in terms of the operator 
profiles. The small Yukawa couplings are not formally the conse-
quence of a fine tuning, as they are protected by the full chiral 
symmetry of the SM. More discussion on the accidents in Fermi 
theory, and how it is commonly misunderstood, can be found in 
Ref. [19].

Arguably, there is some theoretical evidence based on the struc-
ture and particle content of the SM in the direction of embedding 
this model into SU(5) or SU(10), see for example the arguments 
in Ref. [20]. This could be interpreted as a hint to an underlying 
theory, similar to the chiral structure of the SM being a low en-
ergy hint of its UV structure. However, the problems of TeV scale 
grand unified theories are very well known. In this work we make 
a more phenomenologically motivated choice and assume approx-
imate G symmetry (and CP symmetry).

3. G symmetric tree level matchings

3.1. Spin 1 states

Spin-1 fields that couple to the SM quark bi-linears in the 
manner assumed are given by Table 1 [21–23]. The requirement 
of linear couplings of mass dimension less than four, together 
with Lorentz symmetry and invariance under the full SM gauge 
group constrains the possible quantum numbers of UV field con-
tent. Fields with other representations that give SMEFT matchings 
respecting G are possible, if these conditions are relaxed. Our no-
tation is that Q c , Lc are the right handed conjugate doublet fields 
of the SM fermions. The global flavor symmetry in the quark and 
lepton sectors are defined as

GQ = SU(3)uR × SU(3)dR × SU(3)QL , (4)

GL = SU(3)LL × SU(3)eR . (5)

It is also possible to have a vector field couple to lepton bi-linears, 
to quark-lepton bi-linears or have an interaction with the SM Higgs 
field. We list the corresponding fields in Table 2 and Table 3. 
Cases VXII, VXIII have fields that carry a global lepton number and 
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Table 2
Different vector representations that couple to fermion bi-linears respecting G, 
without the insertion of a Yukawa matrix.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I 1 1 0 (1,1,1) (1,1) ēR γ μ eR

V(1)
I 1 1 0 (1,1,1) (1,1) L̄L γ μ LL

V(1)
IV 1 3 0 (1,1,1) (1,1) L̄Lσ

I γ μ LL

VXII 1 2 3/2 (1,1,1) (3̄,3̄) L̄c
L γ μ eR

VXIII 1 1 0 (1,1,1) (1,8) ēR γ μ eR

VXIV 3̄ 2 −1/6 (3̄,1,1) (3̄,1) L̄c
L γ μ uR

VXV 3̄ 2 5/6 (1,3̄,1) (3̄,1) L̄c
L γ μ dR

VXVI 3̄ 1 −2/3 (1,3̄,1) (1,3) ēR γ μ dR

VXVII 3̄ 1 −5/3 (3̄,1,1) (1,3) ēR γ μ uR

VXVIII 3 2 −5/6 (1,1,3) (1,3) ēR γ μ Q c
L

VXIX 3̄ 1 −2/3 (1,1,3̄) (3,1) L̄L γ μ Q L

VXX 3̄ 3 −2/3 (1,1,3̄) (3,1) L̄Lσ
I γ μ Q L

VXXI 1 1 0 (1,1,1) (8,1) L̄Lγ
μ L̄L

VXXII 1 3 0 (1,1,1) (8,1) L̄Lσ
I γ μ L̄L

Table 3
Vector representations coupling to currents constructed from Higgs fields.

Case SU(3)C SU(2)L U(1)Y GQ GL Couples to

V(1)
I ,V(1)

II ,V(1)
III 1 1 0 (1,1,1) (1,1) H† iDμ H

V(1)
IV 1 3 0 (1,1,1) (1,1) H†σ I iDμ H

V(1)
XXIII 1 1 −1 (1,1,1) (1,1) H T iDμ H

V(1)
XXIV 1 3 −1 (1,1,1) (1,1) H T iσI Dμ H

VXIV −VXX carry both lepton and baryon numbers. Although coun-
terintuitive, UV fields that carry flavor quantum numbers do not 
necessarily lead to lower energy signatures of flavor violation – 
outside of the MFV pattern. Similarly, fields carrying lepton num-
ber do not necessarily lead to lower energy signatures of lepton 
flavor violation at tree level.5 Fields that carry both lepton and 
baryon number are potentially more problematic in inducing pro-
ton decay, but such phenomenological constraints are not the focus 
of this paper.

3.1.1. Dimension-6 operator matching
Solving the classical equations of motion (EOM) for the heavy 

vector fields and substituting the classical solution into the La-
grangian results in a direct tree level matching in terms of a prod-
uct of currents. We define the currents as

Ja = { Jμψ, JμH } = {ψ̄ γμ ⊗ ψ, (DμH)† ⊗ 
}, (6)

and the tree level matching is given by

�L6 ⊃ − 1

M2
V

( Jμa )† Jμb . (7)

Here 
 represents H or H̃ = i σ2 H� and ⊗ indicates a group prod-
uct characterized by the SU(2)L representation of vector fields.6 For 
a vector field of the form considered in Tables 1, 2 and 3, the cur-
rent product falls into one of three types:

• four-fermion: ( Jμψ)† Jψ,μ ,

• scalar derivative: ( JμH )† J H,μ ,
• mixed scalar-fermion: ( Jμψ)† J H,μ, ( JμH )† Jψ,μ .

5 This was previously noted in Ref. [23] in the lepton number case for flavor sin-
glet fields.

6 This notation is consistent with Ref. [23]. Note also that a further current of the 
form Dμ Fμν with F = {B, W , G} is redundant [23].
Table 4
Examples of the sets of L6 operators in the SMEFT obtained by integrating out 
various massive vectors.

Case Q i generated at tree level

V(1)
IV Q ll, Q (3)

qq,lq, Q (3)

Hq,Hl, Q H , Q HD, Q H�, Q eH , Q uH , Q dH

V(8)
IV Q (1)

qq , Q (3)
qq

V(8)
IX Q (1)

qq , Q (3)
qq

VXX Q (1)

lq , Q (3)

lq

V(1)
XXIII Q H , Q HD, Q H�, Q eH , Q uH , Q dH

V(1)
XXIV Q H , Q HD, Q H�, Q eH , Q uH , Q dH

Table 5
Operators induced at tree level when the massive vector case is integrated out. The 
cases are grouped in the table into the chiral ( Jμψ)† Jψ,μ operator classes induced. 
The top section refers to LLLL operators. The middle section of the table refers to 
LLRR operators. The bottom section of the table refers to RRRR operators induced at 
tree level.

Case Op U(1)Y G Q , G L Spurion

V(1)
VIII Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

V(1)
IX Q (1)

qq 0 T A Y †
u Yu, T A Y †

d Yd

VXIX Q (1)

lq −2/3 /

V(3̄,6)
X Q (1)

qd −1/6 /

V(3̄,6)
XI Q (1)

qu 5/6 /
VXVIII Q qe −5/6 /
VXII Q le 3/2 /
VXIV Q lu −1/6 /
VXV Q ld 5/6 /

V(1)
V Q dd 0 T A Y †

d Yd

V(1)
VI Q uu 0 T A Y †

u Yu

V(1)
VII Q (1)

ud −1 Y †
d Yu

VXIII Q ee 0 T A Y †
e Ye

VXVI Q ed −2/3 /
VXVII Q eu −5/3 /

We have systematically examined the profile in terms of opera-
tors obtained in tree level matchings to the Warsaw basis from the 
fields listed in Tables 1, 2 and 3, finding the following rule:

Flavor singlet vector fields that do not break GQ × GL induce more 
than one operator at tree level when matching onto the SMEFT Warsaw 
basis.

This result is easy to demonstrate. Fields that are SU(3)C and 
SU(2)L singlets couple to (quark and lepton) fermion fields and 
also the scalar currents, inducing a large number of operators at 
tree level. A vector field can be made to couple to the left-handed 
doublets by assigning the field to a 3 of SU(2)L. The scalar and 
leptonic couplings can be removed by assigning the field to a 8 of 
SU(3)C. In this case the operator profile is reduced to at least two 
( Jμψ)† Jψ,μ operators via the relation [2]

(Q̄ p
L σ I T A γ μ Q r

L)(Q̄ s
Lσ

I T A γ μ Q t
L) =

−1

4
Q (3)

qq
ptsr

+ 3

4
Q (1)

qq
ptsr

− 1

6
Q (3)

qq
prst

, (8)

here p, r, s, t are flavor indices. We show some examples of the 
multiple operators induced when integrating out vector fields at 
tree level in Table 4. Introducing GQ × GL symmetry, vector fields 
can be reduced in their infrared (IR) SMEFT operator profile to one 
operator in the Warsaw basis in the limit of vanishing Yukawa ma-
trices; see Table 5. Note that with the exception of case V(1)

VII which 
has a bi-linear flavor breaking spurion in Y †

d and Yu , the presence 
of a U(1)Y charge is also associated with the lack of Higgs scalar 
currents induced. This has an important consequence when the 
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self interactions of the vector are studied for unitarity violation, 
as will be discussed shortly.

A spurion analysis allows the corrections due to the nonzero 
Yukawa matrices of the SM (that break the flavor symmetry in a 
phenomenologically safe MFV pattern) to be systematically stud-
ied. We define the SM Yukawa matrices Yu, Yd, Ye as

LY = −(Yu)
p
r ūR,p Q r

L H̃† − (Yd)
p
r d̄R,p Q r

L H†

− (Ye)
p
r ēR,p Lr

L H† + h.c. (9)

GQ × GL symmetry is restored if we endow the Yukawa matrices 
with the transformation properties under {GQ, GL}
Yu ∼ (3,1, 3̄,1,1), Yd ∼ (1,3, 3̄,1,1),

Ye ∼ (1,1,1, 3̄,3). (10)

Introducing GQ × GL symmetry breaking when the Yu, Yd, Ye ma-
trices take on their SM values gives more operators at tree level 
for fields with flavor quantum numbers. On general grounds, the 
( JμH )† J H,μ current products are induced proportional to two spu-
rions breaking the flavor symmetry, and the ( Jμψ)† J H,μ, ( JμH )† Jψ,μ

current products are induced proportional to one flavor breaking 
spurion insertion. Here we refer to the spurions listed in Table 5
that are bi-linear in Yukawa matrices. As a specific example con-
sider V(1)

VIII that is a 8 under SU(3)QL . The Lagrangian7 is given by 
LSM +LV(1)

VIII
where

LV(1)
VIII

= −1

2

(
DμVν DμVν − DμVν DνVμ

) − M2
V

2
VνVν

+
(
λVVμ,A T A Y †

u Yu (DμH)† H + h.c.
)

, (11)

+ gVVμ,A(Q̄ L T Aγ μ Q L) + · · · .

Note that the largest spurion that restores the flavor symmetry for 
the second line is T A Y †

u Yu and some indices are suppressed in 
Eqn. (11). The additional spurion breaking proportional to Y †

d Yd is 
neglected in what follows. Integrating by parts and the EOM for 
the vector field are used to manipulate the derivative to appear as 
shown on the second line in Eqn. (11). Integrating out the field 
V(1)

VIII using the classical EOM gives

�L6 ⊃ g2
V

4 M2
V

[
Q (1)

qq
rssr

− 1

3
Q (1)

qq
rrss

]

+ 1

4 M2
V

[
((ImλV )2 − (ReλV )2)Q H� + 4(ImλV )2 Q H D

+ 2i(ReλV )(ImλV )(Y †
b Q bH − Yb Q †

bH )

− 2i(ReλV )(ImλV )(Y †
u Q uH − Yu Q †

uH )
]

×
[

Tr[(Y †
u Yu)(Y †

u Yu)] − (diag(Y †
u Yu))2

3

]
(12)

− gV Im[λV ]
2M2

V
Q (1)

Hq
pr

[
(Y †

u Yu)
p
r − diag(Y †

u Yu)

3
δpr

]

+ i
gVRe[λV ]

2M2
V

[
((Y †

u Yu)Y †
a)

m
i Q aH

im
− (Ya(Y †

u Yu))i
m Q †

aH
mi

]

− i
gVRe[λV ]

6M2
V

Tr[Y †
u Yu]

[
(Y †

a)
m
i Q aH

im
− (Ya)

i
m Q †

aH
mi

]
,

7 Recall the flavor adjoint 8 representation is real.
where the dummy labels a and b are summed over {u, d} and 
{e, d}, respectively. A similar pattern of matchings onto the class 
3 (D2 H4), 5 (H3ψ̄ψ ) and 7 (H2 Dψ̄ψ ) operators of the Warsaw 
basis is present for almost all color singlet fields with flavor quan-
tum numbers listed in Tables 2 and 3. The exceptional case is 
the field VXII whose non-trivial SU(2)L representation and U(1)Y
charge forbids a scalar current from being induced at tree level in 
this manner.

The pattern of tree level matchings is strongly dictated by 
the charges and representations of the UV fields under SU(3)C ×
SU(2)L × U(1)Y, GQ and GL. We emphasize, data fits to subsets of 
operators in the SMEFT formalism can be justified by appealing 
to UV field content with U(1)Y charges and non-trivial represen-
tations under SM groups when only retaining tree level matching 
contributions. See Table 5 for details on cases that generate only 
one operator at a time.

This conclusion is subject to the following qualifications. First, 
the single operators obtained in tree level matchings to the vectors 
in Tables 2, 3 are limited to ( Jμψ)† Jψ,μ operator forms. Such opera-
tors at LHC contribute to continuum parton production in a fashion 
dictated by the power counting of the theory. Conversely, the pre-
cise measurements made on a scattering through a SM resonance 
(with mass M and width �) parametrically has a �/M suppression, 
compared to the leading resonant behavior, when considering the 
interference with ( Jμψ)† Jψ,μ operators.

Second, as yt � 1, a flavor symmetry spurion breaking propor-
tional to only powers of Yu can induce operators of class 3, 5 and 
7 without significant numerical suppression. This makes it difficult 
to justify “one at a time” data fits to ( Jμψ)† Jψ,μ SMEFT operators 
with up quark field content (consistent with our assumptions). On 
the other hand, one at a time data fits to ( Jμψ)† Jψ,μ operators that 
only have leptonic or down quark field content can be potentially 
justified. In these cases the induced scalar currents proportional 
to MFV like flavor breaking spurious are numerically suppressed 
compared to pure up quark spurions by at least yb/yt ∼ 10−2.

Finally, we also note that we never obtain only one operator 
in such a tree level matching that involves the Higgs field, in the 
cases of massive vector UV field content considered.

3.1.2. Arguments against orphaned vectors
The vector fields listed in Tables 1, 2 and 3 inducing a single L6

SMEFT operator at tree level, carry at least one non-trivial repre-
sentation under the SM gauge symmetry and flavor symmetries.8

Non-trivial representations and U(1)Y charges reduce the interac-
tions for SM particles with the new sector, which consequently 
minimizes the IR SMEFT operator profile. However, such fields in 
general do not indicate a stand alone UV complete scenario (where 
the vector could be an “orphan”) for the following reasons.

(1) Landau poles and triviality. The β function of the cou-
pling of the vector fields to the fermion bi-linears (denoted gV in 
Eqn. (11)) is determined by renormalizing the fermion fields and 
vector field two point functions, and subsequently extracting the β
function for gV . We relate the bare (0) and renormalized (r) fields 
and couplings as

V (0)
μ = √

Z V V (r)
μ , g(0)

V = Z gV g(r)
V με, (13)

ψ
(0)
i = √

Zψi ψ
(r)
i , (14)

where Zx = 1 + δZx for x = {V , gV , ψ̄, ψ}. We use a renormaliza-
tion scheme employing MS subtraction and d = 4 − 2ε dimensions 

8 In all cases but one, multiple non-trivial representations are present. The one 
exceptional case is VXIII which is only an 8 under SU(3)eR .
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Fig. 1. Diagrams relevant for the renormalization of gV .

Table 6
One loop renormalization results. Here 〈O 〉 indicates the matrix element of the 
vector-fermion bilinear interaction term and δZ3 corresponds to the divergence 
present in this three point interaction at one loop from the vector-fermion coupling. 
The notation is such that F(N) ≡ C (N)

F − 1
2 N with C (N)

F = N2−1
2N . We have labeled 

several of the numerical factors in the table with the group space (SU(3)C , SU(3)F l , 
SU(2)L) that generates them, with the subscript F l indicating a SU(3) flavor group.

Case
16π2ε δZ3

g2
V 〈O〉

−16π2ε δZ
ψ̄

g2
V

−16π2ε δZψ

g2
V

−16π2ε δZ V

g2
V

βy

V(1)
VIII F(3Fl) C (3Fl)

F C (3Fl)
F

4
3

(
1
2

)
Fl

· 3C +
V(1)

IX F(2)F(3Fl) C (2)
F C (3Fl)

F C (2)
F C (3Fl)

F
2·3C

3

(
1
2

)
Fl

(
1
2

)
L

+
VXIX 1 3Fl · 3C 3Fl

2
3 · 2 +

V(3̄)
X,XI −1C 3Fl(−2)C · 2 3Fl(−2)C

2
3 · (−1)C −

V(6)
X,XI 1 3Fl · 1C · 2 3Fl · 1C

2
3 · 1C +

VXVIII 1 3Fl · 3C · 2 3Fl
2
3 +

VXII 1 3Fl 3Fl · 2 2
3 +

VXIV 1 3Fl · 3C 3Fl · 2 2
3 +

VXV 1 3Fl · 3C 3Fl · 2 2
3 +

V(1)
V F(3Fl) C (3Fl)

F C (3Fl)
F

2
3

(
1
2

)
Fl

· 3C +
V(1)

VI F(3Fl) C (3Fl)
F C (3Fl)

F
2
3

(
1
2

)
Fl

· 3C +
V(1)

VII 1 3Fl 3Fl
2
3 · 3C +

VXIII F(3Fl) C (3Fl)
F C (3Fl)

F
2
3

(
1
2

)
Fl

+
VXVI 1 3Fl · 3C 3Fl

2
3 +

VXVII 1 3Fl · 3C 3Fl
2
3 +

using standard methods. The relevant diagrams are shown in Fig. 1. 
The β-function for the running of the coupling gV is given by

βgV = 2 gV ε

(
− δZ3

〈O〉 − 1

2
δZψ̄

− 1

2
δZψ − 1

2
δZ V

)
, (15)

where the renormalization factors δZ ’s for the various vector field 
cases are presented in Table 6. The general expectation is that gV
will have a positive β function – indicating Landau poles [24], 
quantum triviality [25] and a UV incompletion. This is indeed the 
case for all vector fields inducing one ( Jμψ)† Jψ,μ operator, with the 
exception of color 3̄ vectors coupling to quark bi-linears; i.e. cases 
V 3̄

X,XI. In this exceptional case, the SU(3)C vector-fermion coupling 
mimics the effect of a non-abelian interaction.

An oversimplified UV scenario afflicted with an internal incon-
sistency indicated by the presence of Landau poles cannot for-
mally generate a consistent IR limit. This indicates that further new 
physics must be present below the Landau pole scale �L approxi-
mated by

�L ∼ MV exp
[

gV/βgV
]
. (16)

However, numerically corrections suppressed by �L are smaller 
than one loop matching effects.

(2) Unitarity and vector self-interactions. A more intractable 
problem is generated by O(1) self interactions of orphan vector 
fields. The four point vector self interaction is not forbidden by any 
Fig. 2. 2 → 2 vector scattering diagrams.

symmetry. Conversely the three point interaction can be forbidden 
by the presence of a U(1)Y charge in the composite field. Consider 
the 2 → 2 longitudinal vector scattering displayed in Fig. 2 that is 
dictated by such a four-point and three-point interactions at tree 
level. The relevant Lagrangian involving a general vector field with 
self-interactions is

�LV = λ

4
V†

μVμV†
νVν + g′ ∂μVμV†

νVν + . . . (17)

The amplitudes at leading order with the high-energy approxima-
tion for the vector polarization εμ

L � pμ/MV through a s-, t- and 
u-channel vector exchange and a four-point contact interaction, re-
spectively, read

ML
3,s = (g′)2 Fs

st − su

4 M4
V

, (18)

ML
3,t = (g′)2 Ft

st − ut

4 M4
V

, (19)

ML
3,u = (g′)2 Fu

us − ut

4 M4
V

, (20)

ML
4 = λ

(
Fs

t2 − u2

4 M4
V

+ Ft
s2 − u2

4 M4
V

+ Fu
s2 − t2

4 M4
V

)
. (21)

Here abstract group structure constants Fs,t,u for three channels 
have been introduced. For example, in the model V(1)

IX : Fs =
f AB E f C D E f i jn f kln where A, B, C, D, E refer to the flavor index and 
i, j,k, l,n denote the iso-spin index.

If λ = (g′)2 is accomplished by a global symmetry then the 
amplitudes ML

3 will cancel with three terms in ML
4 with an 

identical F factor respectively, through the Mandelstam relation 
s + t + u = 4 M2

V . As a result, the leading scaling in ∼ (p2)2/M4
V

disappears. The full amplitudes then grow as ∼ p2/M2
V . However, 

if the three-point interaction is forbidden – for example due to 
the field carrying a U(1)Y charge – then the amplitude cannot 
be so moderated in its growth at high energies, and scales as 
∼ (p2)2/M4

V . In this manner, the presence of a U(1)Y charge for-
bidding the scalar current simultaneously turns off the three-point 
interaction that is required to moderate the high energy scattering 
behavior of an orphaned vector field.

Standard partial wave unitarity arguments [26–28] give that the 
unitarity violation scale associated with the vector field without a 
three point interaction is

� � 0.2 MV (Ft + Fu)−1/4λ−1/4, (22)

where Ft , an Fu are determined by a particular scattering cross 
section. A quick onset of unitarity violation follows from a siz-
able four-point interaction that is expected to emerge from a 
strongly interacting composite sector on general grounds. Even in-
troducing a loop suppression to the vector self interaction, that is 
λ ∼ (16π)−1, is of little help – one still finds � ∼ MV due to the 
presence of a fourth root in Eqn. (22). Hence, the UV strong sector 
should be simultaneously considered to define a consistent match-
ing onto the SMEFT. This would increase the low energy operator 
profile of such a scenario in the SMEFT beyond one operator gener-
ically due to non-perturbative matchings, and a “one at a time” 
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analysis invoking a tree level matching would be logically incoher-
ent.

(3) Siblings of massive vectors with non-trivial representa-
tions. A massive vector field with non-trivial representations under 
subgroups of G is also generically accompanied by more “sibling” 
fields. If the massive vector gains a mass by a UV Higgs mecha-
nism, the corresponding sibling field includes at least a scalar (S) 
obtaining a vacuum expectation value (vev). Define this expecta-
tion value as 〈S† S〉 = v ′ 2/2. We require dim(V) + 1 ≤ dim(S) so 
that all of the components of the vector become massive in the 
presence of a scalar field obtaining a vev, through eaten Goldstone 
components of S .9

One can use the global symmetry rotations on S to rotate the 
new vev to a (uneaten) component of S , denoted s. The interac-
tion of s with H† H cannot be forbidden by an explicit G breaking 
without violating our assumptions. This would introduce highly 
constrained low energy effects into the SMEFT through the vev v ′
leading to the vector mass matrix. A vacuum misalignment [32]
is assumed to make the vector mass matrix symmetric under G
in this work. This results in the Higgs portal coupling not being 
suppressed by a GQ × GL breaking spurion. Concretely consider the 
Lagrangian

LS H = (DμS)† (DμS) − λ′

4
(S† S − v ′ 2

2
)2 + λS H S† S H† H .

(23)

Here the covariant derivative is Dμ = ∂μ + igVVaha with ha
an abstract group generator that defines the non-trivial repre-
sentations that the V multiplet carries. S is expanded as S =(· · · , v ′ + s + · · · )/

√
2 + h′

a ρa where ρa corresponds to the gold-
stone components of the S multiplet that are eaten to generate the 
vector mass, and the · · · fill out the full dimension of S . The vev 
v ′ must be arranged to break the dim(V) h′

a generators. Simulta-
neously v ′ must not break the G subgroup, so ga〈S〉 = 0, where 
the generators of G are denoted ga .10 Integrating out s after UV 
symmetry breaking gives

�L6 = −2λ2
S H

λ′m2
s

Q H� − 4 g2
V

λ′ (Vμ Vμ)2 + · · · (24)

in addition to the operators induced by integrating out the vec-
tor field. Here the scalar mass is m2

s = λ′ v ′ 2/2. In addition, L4
terms are induced that require a finite redefinition of λ and v in 
the SM to rearrange LSM back into standard from. Here we have 
neglected many higher order effects including subdominant mass 
splitting terms. Note the sizable vector four point interaction, that 
is enhanced in the λ′ → 0 limit, indicating unitarity violation when 
the UV Higgs is integrated out of the spectrum. In this limit it is of 
interest to not neglect mass splitting effects proportional to λS H .

In order to avoid assuming a UV Higgs mechanism, we can 
consider a composite massive vector generated by a hypothetical 
UV strong sector, with spin-1/2 constituents � , so that the vector 
fields are Vμ ∼ 〈�̄γ μ �〉 condensates. This composite field carries 
at least one non-trivial representation under one of the groups 
GQ, GL, SU(3)C or SU(2)L to reduce the SMEFT operator profile to 
one operator. Denote this non-trivial representation as N, and the 
corresponding group as G′ . The � are charged under G′ or a larger 
group H with H ⊃ G′ .

9 An additional non-goldstone incomplete scalar multiplet is famously required 
when introducing a vev in this manner [29–31].
10 In general one expects the symmetry breaking pattern to be such that there 

will be uneaten goldstone bosons, or additional massive vectors in the spectrum. 
Here we are considering an exceptional minimal spectrum when examining the one 
operator question.
We can consider G′ or the proper subgroup case where G′ ⊂ H
without loss of generality with the following arguments. The �
belongs to SU(3), and N ∈ {3, 3̄,6,8}, or SU(2) with N = {2, 3} for 
the vector fields of interest. The non-trivial representations in N
can be generated from tensor products of the � irreducible repre-
sentations. In the case where the � belongs to SU(3) we denote 
the irreducible representations as P, R, which need not have the 
same dimension. When N is generated by P ⊗ P̄ the singlet repre-
sentation is also generated in the tensor product. A color singlet 
sibling under SU(3)C is expected with a mass proximate to a color 
octet vector, which induces a number of operators in L6 when in-
tegrated out. Similarly, a flavor singlet sibling under a flavor group 
is also expected for flavor octets. Interestingly, the flavor 8 vector 
fields we considered all have zero U(1)Y charges, so their flavor 
singlet siblings with the same U(1)Y charge are not forbidden by 
the flavor symmetry to have the coupling with the corresponding 
quark bi-linear and also with the J H,μ of vanishing U(1)Y charge, 
inducing more than one operator in L6 when integrated out. When 
N ∈ P ⊗ P multiple representations result, for example in the case 
of P = 3, the 3̄ and 6 fields are simultaneously present. Such fields 
(VX,XI) can induce the same operator when integrated out. On the 
other hand, these fields necessarily carry U(1)Y, and thus have a cut off 
scale proximate to the massive vectors mass scale for the cases consis-
tent with our assumptions.11 Next we consider the cases when the 
non-trivial representation is generated by bi-linears of � carry-
ing representations of unequal dimension N ∈ P ⊗ R. By inspection 
of the tensor products of SU(3) with triality 0 and 1 [37] it is 
possible to generate each N ∈ {3, ̄3, 6, 8} for SU(3) in such a man-
ner. However, for each P and R one can also form a condensate 
〈�̄γμ�〉 with zero U(1)Y charge from the product P ⊗ P̄, R ⊗ R̄. 
Two more pure singlet spin one bound states proximate in mass 
to MV are expected in the spectrum, unless forbidden by another 
symmetry.12 Restricting the discussion for non-trivial SU(2) repre-
sentations to the vector cases that do not carry U(1)Y and induce 
one operator at tree level, we are left with the field V1

IX. Further, 
V1

IX has a large flavor breaking spurion proportional to the top 
Yukawa generating more operators at tree level when integrated 
out, see Table 5.

For all of these reasons, orphaned vector fields with non-trivial 
representations of the SM symmetry groups demand siblings and 
a “good UV home”.

3.2. Spin 1/2 states

If heavy spin-1/2 states are integrated out, the mass13 of the 
massive fermion(s) (denoted M with M � v) must be introduced 
in some manner. As discussed in the previous section, a chiral 
fermion with a UV Higgs mechanism induces more operators at 
tree level when integrating out the UV scalar field. In this section, 
we confine the discussion to general vector like fermions. The gen-
eral Lagrangian associated with a pair of heavy vector-like quark 
(VLQ) denoted by QL, QR that are flavor singlets includes

LQ = L0
Q +Lint

Q , (25)

where

L0
Q = Q̄L i /DQL + Q̄R i /DQR − M

(
Q̄LQR + Q̄RQL

)
(26)

11 This is a generic expectation if the � are charged under U(1)Y.
12 For example, some of the expected spectra degeneracy can be lifted in analogy 

to the η′ [33].
13 Here we are referring to the dominant component of the mass of the fermion 

from the new sector. In addition, there will be mass contributions and splitting 
proportional to ∼ v . As such effects do not act to reduce the IR SMEFT operator 
profile, we neglect these contributions.
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Table 7
Tree level L6 operators induced in the SMEFT with massive quarks integrated out.

Case SU(2)L U(1)Y JQL Q uH Q dH Q (1)
Hq Q (3)

Hq

Q(1)
I 1 − 1

3 Q̄ L H
√ √ √

Q(3)
I 3 − 1

3 σ I Q̄ L H
√ √ √ √

Q(1)
II 1 2

3 Q̄ L H∗ √ √ √

Q(3)
II 3 2

3 σ I Q̄ L H∗ √ √ √ √

Case SU(2)L U(1)Y JQR Q uH Q dH Q Hu Q Hd Q Hud

QIII 2 1
6 ūR H T √ √ √ √ √

QIV 2 1
6 d̄R H† √ √ √ √ √

QV 2 7
6 ūR H† √ √

QVI 2 − 5
6 d̄R H T √ √

Table 8
Tree level L6 operators induced in the SMEFT with massive quarks integrated out 
in some sample cases with flavor quantum numbers, see Refs. [34–36] for more 
discussion on the phenomenology of these fields.

Case SU(2)L U(1)Y GQ JQR Q uH Q dH Q Hu Q Hd

QVII 2 1
6 (3,1,1) ūR H T √ √

QVIII 2 1
6 (1,3,1) d̄R H† √ √

for the SU(2)L singlet and doublets and

L0
Q = Tr

[
Q̄L i /DQL + Q̄R i /DQR

] − MTr
[
Q̄LQR + Q̄RQL

]
(27)

for the 3 of SU(2)L. The interaction term Lint
Q for the VLQs to the 

SM fermions through the Higgs doublet is defined as

Lint
Q = JQL QR + JQR QL + h.c. (28)

The requirement that the action be stationary under variations of 
the heavy VLQ fields Q̄L, Q̄R results in two coupled EOMs:

i /DQL − MQR + ( JQR γ 0)† = 0, (29)

i /DQR − MQL + ( JQL γ 0)† = 0. (30)

Mathematically, the coupled Eqns. (29) and (30) can be solved it-
eratively. Taking the limit of large M , one can expand the classical 
solutions schematically as

QR = ( JQR γ 0)†

M
+ i /D

M2
( JQL γ 0)† + · · · , (31)

QL = ( JQL γ 0)†

M
+ i /D

M2
( JQR γ 0)† + · · · . (32)

When substituted back into Eqn. (25) the effect of the leading term 
in these solutions vanishes due to chirality.

We generically find that multiple operators are induced at tree 
level when integrating out a vector like fermion. The cases where 
the vector like quark do not carry flavor quantum numbers are 
shown in Table 7. In the cases that the VLQs carry flavor quantum 
numbers, previously discussed in Refs. [34–36], multiple operators 
are again obtained. We show some sample cases of this type in 
Table 8. Multiple operators at tree level are also obtained in the 
case of integrating out vector like leptons, see Table 9.

3.3. Spin 0 states

Unlike the cases of massive vectors and spin-1/2 fields, a mas-
sive scalar can couple into the SM through a number of interac-
tions and naively generate many operators in the IR SMEFT match-
ing limit. However, the examples (SA , SB and SC in Table 10) 
discussed in Refs. [8,38] show that only one operator Q H , can be 
Table 9
Tree level L6 operators induced in the SMEFT with massive leptons integrated out.

Case SU(2)L U(1)Y JLL Q (1)

Hl Q (3)

Hl Q eH Q (1)
He

L(1)
I 1 −1 L̄L H

√ √ √
L(3)

I 3 −1 σ I L̄L H
√ √ √

Case SU(2)L U(1)Y JLR Q (1)

Hl Q (3)

Hl Q eH Q (1)
He

LIII 2 − 1
2 ēR H† √ √

LIV 2 − 3
2 ēR H T √ √

Table 10
L6 operators obtained at tree level when flavor and color singlet scalars are inte-
grated out. �S indicates a dimensionfull coupling.

Case SU(2)L U(1)Y Couplings Q H Q H�

SA 2 1/2 V (H,SA)
√

SB 4 3/2 (H3)† SB + h.c.
√

SC 4 1/2 H†SC H† H + h.c.
√

S1
I 1 0 (�SSI + (SI)

†SI)H† H
√ √

S3
I 3 0 �SSIσ H† H , (SI)

†SI H† H
√ √

S1
II 1 −1 �S SII H T H , (SII)

†SII H† H
√ √

S3
II 3 −1 �SSIIσ H T H , (SII)

†SII H† H
√ √

obtained if an explicit scale is introduced without a dynamical ori-
gin to give the scalar a mass. For instance, SA couples through 
linear and bilinear interactions in the full multi-scalar potential, 
denoted V (H, SA) in Table 10. To reduce the operator profile of 
SA to one operator, it is assumed that SA has a discrete or addi-
tional U(1) symmetry. Such a symmetry forbids a large number of 
four-fermion operators at tree level, and also a number of linear S
interactions in the scalar potential that otherwise generate Q H� . 
Similarly, SB,C also have minimal one operator profiles containing 
only Q H . However, this again follows from the UV scale being in-
troduced without a dynamical origin. In all these cases, a hierarchy 
problem in the UV sector is also introduced.

Table 10 also lists the cases of flavor singlet scalar fields that 
couple to through the S2 H† H interaction and in addition have 
an independent SH† H interaction via a dimensionfull coupling. In 
these cases, the operators Q H and Q H� are simultaneously pro-
duced in tree level matchings.

As in the case of massive vectors and fermions, scalars can carry 
non-trivial representations under GQ or GL to isolate the coupling 
to a single fermion bi-linear. These states have been studied pre-
viously in Refs. [39–43]. To avoid an explicit breaking of GQ or GL
in this coupling, all of these states carry at least two non-trivial 
representations under the flavor (GQ or GL) or gauge (SU(3)C or 
SU(2)L) groups. For instance, consider integrating out “di-quark” 
states of this form discussed in Ref. [41] at tree level. A scalar cur-
rent operator of the form ψ̄1Lψ2R ψ̄2Rψ1L is directly obtained. This 
operator can be projected into the Warsaw basis via Fierz transfor-
mation,

(ψ̄1Lψ4R)(ψ̄3Rψ2L) = −1

2
(ψ̄1Lγμψ2L)(ψ̄3Rγ μψ4R). (33)

As the “di-quark” scalars are in non-trivial representations under 
SU(2)L and/or SU(3)C groups, the index associated with these sym-
metries are not contracted between the fermions in each vector 
current, cf. the right hand side of Eqn. (33). When reducing to the 
Warsaw basis one uses the SU(3) and SU(2) relations

T A
ij T A

kl = 1

2
δilδ jk − 1

6
δi jδkl, (34)

σ I
jk σ I

mn = 2δ jn δmk − δ jk δmn. (35)

Concretely, performing this mapping for the “di-quark” scalars that 
couple to ūR Q L and d̄R Q L induce the operators Q (1,8)

qu and Q (1,8)
qd
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Table 11
The cases where a single L6 operator is generated at tree level for different scalar 
representations that are not singlets under the flavor group, without the insertion 
of spurion Yukawa fields, from Ref. [41].

Case SU(3)C SU(2)L U(1)Y GQ Couples to Op

SIII 3 1 −4/3 (3,1,1) uR uR Q uu

SIV 6̄ 1 −4/3 (6̄,1,1) uR uR Q uu

SV 3 1 2/3 (1,3,1) dR dR Q dd

SVI 6̄ 1 2/3 (1,6̄,1) dR dR Q dd

Case SU(3)C SU(2)L U(1)Y GL Couples to Op

SVII 1 1 2 (1,6̄) eR eR Q ee

respectively. Similarly, the “di-quark” scalars coupling to Q L Q L

generate Q (1,3)
qq . On the other hand, exceptional cases that can gen-

erate only one operator do exist in “di-quark” scalars that couple 
to right handed SU(2)L bi-linears of the same fermion field i.e. to 
pairs of uR , dR and eR . These scalars can induce the single oper-
ator Q uu , Q ee , Q dd that are defined in the Warsaw basis, see the 
examples in Table 11.

In spite of only Q H being induced at tree level in cases SA,B,C

and only one of the operators Q uu , Q dd and Q ee obtained at tree 
level in the cases SIII–SVII, the arguments based on the mass scale 
generation from a UV Higgs mechanism with an associated extra 
scalar degree of freedom still hold. The heavy scalar (S) can be 
embedded in a larger scalar multiplet S ′ that develops a vev, or 
not so embedded, when a UV Higgs mechanism is invoked to in-
troduce a new scale � � v . Due to the fact that any field obtaining 
a vev with its self conjugate forms a singlet under G this leads to 
Q H� (as shown in Eqn. (24)) in either case, in addition to any 
matchings of S integrated out at tree level.

Alternatively, if a strong sector is present and the “di-quark” 
scalar is composite, then the arguments in favor of “sibling” fields 
imply an extended spectrum that generically contains singlet com-
posite states. Additionally, in the presence of a confining strong 
sector, both spin-0 and spin-1 composite states are expected to be 
embedded in a spin tower [45]. Finally, some form of dimensional 
transmutation can be used to generate a scale. This can take place 
in the context of weaker couplings using the Coleman–Weinberg 
(CW) mechanism [44], or in the case with stronger couplings with 
a mechanism similar to the generation of �QCD. Of course, the 
(weak coupling version) of CW requires multiple couplings and 
generically a non-minimal UV particle spectrum.

It is also important to notice that there are scalar four-fermion 
current operators with the chiral structure (L̄R)(L̄ R) and (L̄ R)(R̄ L)

defined in the Warsaw basis. However, these operators are not con-
structed out of a pair of bi-linears with the same SM field content. 
As a result, additional vector current operators are induced when 
the (L̄R)(L̄R) and (L̄R)(R̄ L) operators are obtained with a tree 
level exchange. Nevertheless, the presence of multiple four-fermion 
operators induced at tree level from the projection of some four-
fermion scalar currents into the form of the Warsaw basis is clearly 
a more basis dependent conclusion than other arguments made in 
this paper.

4. Conclusions

Driven by the question: “Can one obtain only one dimension six 
operator in the SMEFT from a consistent tree level matching onto 
an unknown new physics sector?”, in this paper we have examined 
the non-minimal character of the SMEFT.

We addressed this question using a (G and CP) symmetry as-
sumption to accommodate the large set of lower energy measure-
ments that probe the symmetry breaking pattern of the SM into 
the TeV mass scale range and beyond. We have focused on the 
tree level matchings capturing the consistent IR limit of a new 
physics sector. Due to the extensive mixing of the operators in L6
under renormalization [3–5], the SMEFT clearly has a non-minimal 
character once loop induced effects are considered, requiring many 
operators for consistent lower energy data analysis.14

We have uncovered some cases where only one operator (ne-
glecting flavor indices) is naively induced at tree level. These oper-
ators in the Warsaw basis are (H† H)3, or of the four-fermion form, 
and come about due to a massive scalar or vector field having non-
trivial representations under the symmetry groups of the SM. We 
have found that vector fields can carry non-zero U(1)Y charge to 
reduce the operator profile by avoiding Higgs scalar currents being 
induced, but these fields have severe unitarity problems due to the 
lack of a three-point vector self-interaction. This indicates the pres-
ence of large non-perturbative matching corrections in addition to 
tree level matching effects. On the other hand, when the massive 
vector fields are not charged under U(1)Y, flavor symmetries can 
be introduced to reduce the IR SMEFT operator profile. In this case, 
a spurion symmetry breaking analysis shows scalar currents are 
still induced, leading to more operators at tree level. In practice, 
fitting to one pure lepton or down quark four-fermion operator is 
not as poorly motivated as fitting to up quark four-fermion opera-
tors due to the relative magnitudes of the flavor breaking spurions 
in each case.

In contrast to the vector fields, the presence of scalar fields in a 
UV sector do not directly cause severe unitarity problems. Integrat-
ing them out could have a relatively minimal operator profile, i.e. 
only Q uu , Q dd or Q ee is induced at tree level in the cases shown in 
Table 11, and only Q H in some cases in Table 10. However, requir-
ing a mass generation mechanism for these fields would lead to 
more matching contributions to the SMEFT operators. The scenario 
of a UV Higgs mechanism, if present, generically induces more op-
erators that are constructed out of the SM Higgs field at tree level. 
This occurs without a suppression by a GQ × GL symmetry break-
ing spurion. When a UV Higgs mechanism is avoided by assuming 
compositeness and a new strong interaction, we have argued that 
the requirement of non-trivial representations for the vector and 
scalar fields to reduce the operator profile would indicate the pres-
ence of an extended spectrum of the composite states – including 
singlet fields – that couple through many SM portals. This would 
lead to more operators with tree level matchings when the ex-
tended spectrum is integrated out.

The SMEFT is a complicated field theory. It is natural and rea-
sonable to seek a reduction of this complexity to use in data 
analyses in the SMEFT framework. Using symmetry assumptions 
is widely accepted. We have examined in this work if an alter-
native ad-hoc approach of using “one operator at a time” in data 
analyses can be representative of a consistent tree level match-
ing to an unknown new physics sector. Our results show that the 
SMEFT has a non-minimal character quite generically and thus this 
approach should be avoided, if possible. To ensure the right conclu-
sions are being drawn on the degree of constraint on unknown UV 
physics sectors, multiple operators should be retained in data anal-
yses. Fortunately global data analyses in the SMEFT can already be 
performed with multiple operators, by using symmetries to sim-
plify the number of parameters present. Further the growing LHC 
data set makes such global analyses even more feasible to execute 

14 Such studies can also require mapping the SMEFT to a lower energy Lagrangian, 
as in studies of B decays. Using the mapping of the SMEFT to C9 and C10 as re-
ported in [46] our results support simultaneous fits to C9 and C10. We do not find 
examples where the combination of Wilson coefficients in the SMEFT at tree level 
naturally cancel out in these lower energy parameters. This is largely due to the chi-
rality of the relevant SMEFT operators. We thank a reviewer for a suggestive inquiry 
on this point in the review process.
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in practice. In some cases, the resulting constraints can be relaxed 
by orders of magnitude [47,48] compared to a “one operator at 
a time” analysis. Nevertheless, our analysis shows that retaining 
multiple operators is preferred, and a relaxation of constraints can 
be required to obtain a consistent IR limit of an underlying UV 
physics sector, when a dynamical origin of the UV scales intro-
duced is demanded.
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