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Nitrogen, as limiting nutrient for plant growth and crop yield, is a main
component of fertilizers and heavily used in modern agriculture. Early reports
from over-application of fertilizers in crop production have shown to repress
the transition from vegetative to reproductive phase. For the model plant
Arabidopsis thaliana, there is evidence that low nitrogen conditions promote
early flowering, while high nitrogen as well as nitrogen starvation conditions
display the opposite effect. To gain a better understanding of how nitrogen
affects the onset of flowering, we reviewed the existing literature for A. thaliana
and carried out a meta-analysis on available transcriptomics data, seeking
for potential genes and pathways involved in both nitrogen responses and
flowering time control. With this strategy, we aimed at identifying potential
gateways for integration of nitrogen signaling and potential regulators that
might link the regulatory networks controlling nitrogen and flowering in A.
thaliana. We found that photoperiodic pathway genes have high potential to
be involved in nitrogen-dependent flowering.

Introduction

Nitrogen, the most abundant mineral in plants, is also
one of the most limiting growth factors. Being part of
all buildings blocks of life: nucleic acids, amino acids
and proteins or metabolic products, nitrogen represents
about 2% of plant dry tissue (Miller and Cramer 2005).
Several specific strategies has evolved for nitrogen fix-
ation and uptake in different plant families. However,
the model plant Arabidopsis thaliana does not rely
on extraordinary fixation strategies like nodulation or
mycorrhiza, but is solely dependent on direct nitrogen
uptake from the soil. Inorganic nitrogen is available
either as ammonium (NH4

+) or nitrate (NO3
−), with

the latter being especially abundant in agricultural soils
(Crawford and Glass 1998). Nitrogen uptake is followed
by assimilation and reduction of nitrate to nitrite and fur-
ther to ammonium, catalyzed by nitrate (NR) and nitrite

Abbreviations – Ca2+, calcium; GA, gibberellin; GS/GOGAT, glutamine synthetase/glutamate synthetase; NIR, nitrite reduc-
tase; NR, nitrate reductase.

reductase (NIR), respectively. The assimilation of ammo-
nium can take place in the root or in the shoot by
photorespiration and ammonium is incorporated
into organic molecules through the glutamine syn-
thetase/glutamate synthetase (GS/GOGAT) pathway
(Weber and Flügge 2002).

As nitrogen is crucial for growth, plants must be
able to constantly measure nitrogen availability in their
environment and respond accordingly. Beyond its role
as nutrient, nitrate was recently described as a signaling
molecule in plants (Bouguyon et al. 2012). Identified in
first place as a dual affinity nitrate transporter (Tsay et al.
1993, Liu et al. 1999), later studies produced evidence
for NRT1.1 being a nitrate sensor and signaling trigger,
i.e. a transceptor, similar to nutrient sensing in yeast
(Ho et al. 2009, Gojon et al. 2011). NRT1.1 can sense
external nitrate concentrations and switch between
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low- and high-affinity modes in an inverse fashion to
external nitrate concentrations (Ho et al. 2009). Its affin-
ity depends on the phosphorylation status of the threo-
nine residue 101, whereas the phosphorylated form facil-
itates high- and the dephosphorylated form low-affinity
transport (Liu and Tsay 2003). Moreover, NRT1.1 triggers
a primary response after nitrate sensing, characterized
by the induced expression of the high affinity nitrate
transporter NRT2.1. Interestingly, the induction of the
primary nitrate response is retained in nrt1.1 mutants
(e.g. chl1–9) lacking actual transport abilities, which
suggests that nitrate transport and sensing is decoupled
in NRT1.1 (Ho et al. 2009). In line with these results, it
was shown that the phosphorylation status of NRT1.1 is
important to regulate the expression of primary response
genes after its initial induction (Bouguyon et al. 2015).
Changes in gene expression triggered by nitrate and
mediated by NRT1.1 are dependent on the second mes-
senger Ca2+ (Riveras et al. 2015). Transcriptome studies
revealed diverse nitrogen-regulated genes and pathways,
supporting nitrogen as a signal (Undurraga et al. 2017).
Consequently, nitrate shapes plant physiology and
development in a broad manner from the induction of
seed germination and regulation of root architecture to
shoot development and the onset of flowering (Alboresi
et al. 2005, Castro Marín et al. 2011, Vidal et al. 2014,
Kiba and Krapp 2016, Yuan et al. 2016).

During their lifetime, plants undergo several funda-
mental developmental transitions; germination, a shift
to an autotroph lifestyle, a juvenile to adult vegeta-
tive transition and finally, as in the case of A. thaliana,
reaching the reproductive state. These transitions dur-
ing development require precise timing, regulation and
appropriate responses to environmental cues. This gener-
ates the need for tight management of plant metabolism
including appropriate allocation of important macronu-
trients such as nitrogen. As a consequence, nitrogen has
been associated with the regulation of all developmental
phase changes, from the embryo to reproduction (Vidal
et al. 2014). This review focuses on developmental gene
networks influenced by nitrogen availability and sensing,
in particular the transition from vegetative to reproduc-
tive growth, or how nitrogen shapes flowering time reg-
ulation in Arabidopsis.

Nitrogen, a regulatory element for timing
of flowering

The timing of flowering is a pivotal event in annual
plants; and it has consequences for fertility and pop-
ulation sustainability. The flowering time network has
been classified to be controlled by five major geneti-
cal pathways, namely autonomous, endogenous aging,

gibberellin (GA), photoperiodic and vernalization path-
ways (Srikanth and Schmid 2011) (Fig. 1). Environmen-
tal changes serve as information input to the network,
and environmental conditions such as heat, drought,
cold, salinity or high irradiation can alter flowering
time. The responses to environmental changes typically
vary between A. thaliana accessions with accelerated
or decelerated flowering process, which can be inter-
preted as escape strategy into the next generation in
the case of early flowering (Kazan and Lyons 2016,
Takeno 2016). Changes in the overall nutritional status
and nutrient availability can change onset of flowering
in a species- and accession-dependent manner. Nitro-
gen limitation has been shown to modify the network
by induction of early flowering (Srikanth and Schmid
2011), while A. thaliana plants grown under high nitro-
gen conditions flower later than plants grown under low
conditions. Likewise, plants exposed to severe nitrogen
starving conditions are delayed in development and also
flower late (Lin and Tsay 2017). Especially in native soils,
the levels of bioavailable nitrogen highly fluctuate in
space and time. In agriculture soils, these fluctuation are
also present, up to 10 mM nitrate is considered as aver-
age, whereas ammonium is less abundant with concen-
trations below 1 mM (Crawford and Glass 1998, Miller
et al. 2007). Indeed, strictly defined laboratory standards
for nitrogen sources and concentrations do not exist yet,
which have resulted in many different choices made for
starvation, sufficient, inhibitory and high nitrogen supply.
Not only the amount, but also the kind of growth media
influences the availability and effect of nitrogen concen-
tration on plant growth, as recently reviewed regarding
flowering time (Lin and Tsay 2017). Evidence for nitrate
itself as the signal regulating flowering time was found
when complementation of low nitrate with glutamine did
not rescue the early flowering phenotype (Castro Marín
et al. 2011).

Potential regulatory links between nitrogen
signaling and the flowering network

No nitrogen pathway within the flowering network has
been described yet, but an increasing number of stud-
ies seek potential genes involved in the integration
of nitrogen availability/sensing/signaling into flowering
time control. Testing prominent flowering time genes
for their response to nitrogen represent a direct, tar-
geted approach to decipher the regulatory intercon-
nectivity between nitrogen signaling and the onset of
flowering. Central elements of the flowering network
such as CONSTANS (CO) and GIGANTEA (GI) modulate
the flowering time through the photoperiodic and cir-
cadian pathway. In inductive long day conditions, both
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Fig. 1. Model of flowering time regulation in response to nitrogen. Crosstalk of the major flowering time pathways in A. thaliana and regulatory genes
are further discussed in the text. Interconnected but distinct pathways (gray boxes) respond to environmental changes like day length or temperature
and internal signals. The model represents a plant grown under nitrogen sufficient conditions.

proteins act as positive regulators of the expression of
the florigen FLOWERING LOCUS T (FT). Active FT pro-
tein travels to the SAM where it interacts with FLOWER-
ING LOCUS D (FD) to induce meristematic key genes
such APETALA1 (AP1), SUPRESSOR OF OVEREXPRES-
SION OF CO 1 (SOC1) and accordingly LEAFY (LFY),
thus inducing flower formation. Autonomous and vernal-
ization pathways function through repression of FLOW-
ERING LOCUS C (FLC) to induce flowering. Commonly,
mutants of the autonomous pathway leading to elevated
FLC levels, day length independent late flowering and
the mutation is reversible by prolonged cold, known
as vernalization. The MADS-box transcription regulator
FLC inhibits the expression of floral integrators includ-
ing FT, SOC1 and FD, among others. FLC in turn is
downregulated after vernalization. In certain A. thaliana
accessions, cold treatments trigger antisense transcrip-
tion of the FLC locus, leading to COOLAIR RNA pro-
duction and subsequent silencing of FLC transcription.
FLC also act in the aging pathway through prolonged

progression from juvenile to vegetative phase, caused by
inhibition of SQUAMOSA PROMOTER-BINDING PRO-
TEIN (SBP)-LIKE (SPL) transcription factors, SPL15 and
SPL3 (Deng et al. 2011). In addition, the flc-3 mutant
enters the transition from juvenile to adult more rapidly,
indicated by increased number of abaxial trichomes and
early transition to the adult leaf shape (Mentzer et al.
2010, Willmann and Poethig 2011).

Developmental phase transitions are further co-
ordinated by the action of the microRNA (miRNA)
families miRNA156 and miRNA172. During aging, the
abundance of miRNA156 declines constantly along with
a gradual increase of its targets, the SPL transcription
factor transcripts. SPLs increase during development
accompanied by miRNA172, causing the posttranscrip-
tional downregulation of the repressive APETALA2-like
transcriptions factor family (AP2). Decrease in AP2 lev-
els together with photoperiodic inductive long days lead
to FT gene activation. The floral induction by the FD-FT
complex is guided by SPL3/4/5 through binding an
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upstream promotor region of the meristem genes AP1,
FRUITFULL (FUL/AGL8) and LFY (Jung et al. 2016). In
contrast, SPL9/15 mainly promote flowering through GA
responses and in combination with induction of miR172
expression (Wu et al. 2009, Yu et al. 2012). The bioac-
tive GA4 accumulates at the apical meristem shortly
before the onset of flowering whereas the synthesis
occurs in the leaves. Phytochromes mediate under pho-
toperiodic control the upregulation of GA20ox resulting
in increased GA concentrations in the leaves. GA trans-
port into the shoot apical meristem is gated through the
inactivation of GA by GA20x, constituting a fine tuning
mechanism for GA induced activation of SOC1 and LFY
via the repression of the DELLA proteins GAI and RGA
(Achard et al. 2004, Jasinski et al. 2005, Hisamatsu and
King 2008). This illustrates that age-induced flowering
is tightly connected with photoperiodic factors and GA
signaling, orchestrated by posttranscriptional regulation.

Nitrogen nutrition modulates the basic
flowering pathways

Castro Marín et al. (2011) showed that the flower-
ing time response to different nitrate regimes (1, 10
or 35 mM, all supplemented with 4 mM glutamine) is
stronger in mutants of photoperiodic (co-2 and ft.-7) and
autonomous (fwa-1, fve1 and fy-1) pathways. Mutants
of the GA pathway (gai or ga1–3) showed a trend,
but no significant response. Furthermore, overexpression
of CO and consequently constitutive activation of the
photoperiodic pathway, as well as the inhibition of
autonomous and vernalization pathways due to over-
expression of FLC, abolishes the flowering response to
nitrate, resulting in accelerated or elevated flowering
time, respectively. Increased FLC expression in fwa-1,
fve1 and fy-1 is, however, not strong enough to prevent
a N-regulated flowering response (Castro Marín et al.
2011).

The triple mutant fca co-2 ga1-3, blocked in photo-
periodic, autonomous and GA pathway, reveals a severe
phenotype and never flowers under long- or short-day
conditions, yet, flowering can still be promoted by
vernalization (Reeves and Coupland 2001, Castro Marín
et al. 2011). Interestingly, low nitrate is also able to
induce flowering in this triple mutant, which is not the
case for other stresses like: high light, high temperature,
photochilling or continuous light (Castro Marín et al.
2011).

Endogenous GA levels can increase or decrease upon
low- and high-nitrate treatments (Liu et al. 2013) indicat-
ing a wide input spectrum for nitrogen into the flowering
network. On the expression level, the flowering repres-
sor FLC is repressed, while positive flowering integrators

like FT, LFY and AP1 are upregulated in low nitrate con-
ditions (Kant et al. 2011). In addition, expression of GA1
and CO is increased if plants are grown under limiting
nitrate conditions. SOC1, an integrator of signals from
multiple flowering pathways is upregulated as well (Liu
et al. 2013). Taken together, nitrogen is influencing genes
from autonomous, vernalization, GA and photoperiodic
pathways.

Circadian clock, light perception, metabolic
status and aging represent nitrogen targets

Recently, low nitrogen was reported to increase
NADPH/NADP+ and ATP/AMP ratios following induc-
tion of FERRODOXIN-NADP(+)-OXIDOREDUCTASE
1 (FNR1) expression (Yuan et al. 2016). The higher
ATP/AMP ratios reduced nuclear ADENOSINE
MONOPHOSPHATE-ACTIVATED PROTEIN Kinase
(AMPK) activity and CRYTOCHROME 1 (CRY1) phos-
phorylation, stabilizing nuclear CRY1 abundance. In
addition, mutant lines of cry1 and fnr1 are insensitive to
changes in nitrogen availability and lack N-responsive
flowering phenotypes. CRY1 is known to interact with
SPA1 to suppress COP1-mediated degradation of CO in
response to blue light (Liu et al. 2011). Concerning dif-
ferent nitrogen regimes, CRY1 seems to either enhance
or decrease the expression amplitude of the core cir-
cadian genes CIRCARDIAN CLOCK ASSOCIATED 1
(CCA1), LATE ELONGATED HYPOCOTYLE (LHY) and
TIMING OF CAB EXPRESSION 1 (TOC1). The regula-
tion of CCA1 expression and phase shift trough changes
in organic nitrogen (glutamate/glutamine) levels was
previously identified and it was shown that CCA1
binds the promoters of the N-assimilatory genes BASIC
LEUCIN-ZIPPER 1 (bZIP1), GLUTAMATE DEHYDRO-
GENASE 1 (GDH1) and GLUTAMINE SYNTHETASE
CYTOSOLIC ISOZYME 1–1 (GLN1) towards a preferred
glutamine metabolism (Gutiérrez et al. 2008). Together,
these results link light perception, photoperiod and the
circadian oscillator with N-related flowering control.
Regarding the effect of day length, short days show the
severest effect, but the N-responsive flowering pheno-
type is stable in day neutral and long days (Lin and Tsay
2017).

Under nitrogen starvation (0 mM) the aging pathway
is rolled back, indicted by induction of miR156 and
reduced miR172 expression levels (Pant et al. 2009,
Liang et al. 2012, Fischer et al. 2013). Consequently,
one of the miR156 targets, SPL3 is also downregulated
under nitrogen starvation, inhibiting the phase change
to reproductive live style (Vidal et al. 2014). In addition,
reduced miR172 levels will potentially lead to higher
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Table 1. Key parameters of used datasets and related studies (Additional information for each gene identified and corresponding dataset included
can be found in Table S1).

Data set/Factor Sample tissue Age Media type Studies

3 mM nitrate treatment after severe (0.3 mM) growth Shoot 21 days Rockwool Bi et al. 2007
3 mM vs 0.3 mM nitrate Shoot 21 days Rockwool
Nitrate-free vs nitrate-treatment (5, 10 or 15 mM) for 8 h Root 42 days Sand Gutiérrez et al. 2007
10 days nitrate starvation Shoot 35 days Hydroponics Krapp et al. 2011
10 days nitrate starvation Root 35 days Hydroponics
2 days nitrate starvation Shoot 35 days Hydroponics
2 days nitrate starvation Root 35 days Hydroponics
2–10 days nitrate starvation Shoot 35 days Hydroponics
2–10 days nitrate starvation Root 35 days Hydroponics
Nitrate starvation Seedling 10 days MS Liang et al. 2012
limiting (3 mM) KNO3 vs sufficient (10 mM) KNO3 Shoot 25 days Soil Peng et al. 2007
4 h 0.5 mM NH4Cl/ KNO3treatment after 24 h N starvation Root 12–14 days Hydroponics Ristova et al. 2016
4 h 1 mM KNO3treatment after 24 h N starvation Root 12–14 days Hydroponics
4 h 1 mM NH4Cl treatment after 24 h N starvation Root 12–14 days Hydroponics
30 min+3 mM KNO3vs starved Seedling 9 days Liquid culture Scheible et al. 2004
3 h+3 mM KNO3 vs starved Seedling 9 days Liquid culture
Full nutrition vs starved Seedling 9 days Liquid culture
20 min 250 μM KNO3 Roots 10 days Liquid culture Wang et al. 2003
Normal to low nitrogen/before to after floral transition Seedling 7 days MS Yuan et al. 2016
Normal to low nitrogen Seedling 7 days MS

amounts of AP2-like transcription factors, delaying tran-
sition to reproductive phase through potential stronger
repression of FT. In flowering time, prolonged nitrogen
starvation results in delayed flowering, likely even to an
arrest in development. Lin and Tsay recently described a
U-shaped flowering response from nitrogen starvation to
nitrogen superior growth conditions, showing the delay-
ing effect of starving and excess amounts of nitrogen on
flowering (Lin and Tsay 2017).

How to identify key factors
in nitrogen-regulated flowering

Although nitrogen is well known to affect the onset of
flowering time, the genes mediating crosstalk between
the nitrogen and flowering time regulatory networks have
remained elusive. We hypothesized that, building on
the extensive knowledge of the flowering time networks,
candidate genes linking nitrate sensing and flowering
time control can be retrieved from already existing tran-
scriptomics datasets. In order to conduct a meta-analysis
to identify candidate genes involved in flowering time
regulation and nitrogen responses and thereby comple-
ment targeted approaches focusing on one or few of
the major hubs in the flowering network, we searched
the literature for suitable datasets. The datasets that was
included in the meta-analysis all used A. thaliana wild
type plants (Columbia-0) as genetic background and cov-
ered a diverse range of nitrogen treatments (from starva-
tion to high nitrogen stress) as well as different growth

stages and developmental conditions (Table 1 and Table
S1, Supporting information).

Transcriptomic data from nine studies including 20
conditional sets (Wang et al. 2003, Scheible et al. 2004,
Bi et al. 2007, Gutiérrez et al. 2007, Peng et al. 2007,
Krapp et al. 2011, Liang et al. 2012, Ristova et al. 2016,
Yuan et al. 2016) were compared to 379 known flow-
ering time genes obtained from the FLOweRing Inter-
active Database (Bouché et al. 2016). Out of these,
115 genes showed significant fold-changes in transcript
abundance in response to the applied nitrogen treatment
in at least one conditional set (Table 1). Analyzing those
further, we found differently regulated genes belonging
to eight different input pathways of the flowering network
(Fig. 2A). The most strongly represented groups were the
photoperiodic and autonomous pathways, together cov-
ering over 50%. Further analysis using the PANTHER
classification of the molecular function (Mi et al. 2013)
reveals an enrichment in genes associated with transcrip-
tion factor activity, DNA and nucleic acid binding com-
pared to the input search list (Fig. 2B). These findings are
in line with the current knowledge on the flowering time
regulation as outlined above. Nevertheless, the strong
representation of the photoperiodic pathway and tran-
scription factor genes is notable and narrows down the
list of genes potentially linking nitrogen responses and
flowering time.

In order to identify genes responding to nitrogen
treatments across various conditions we restricted the
candidate list to genes with a frequency≥3, leading
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Fig. 2. Frequency plot of N-responsive flowering time genes. Expression data of designated flowering time genes was extracted from published array
data (Table S1). Only significant (P <0.05) and minimum two fold changed, if stated in the corresponding publication was included in the analysis. (A)
Frequency of significantly changed flowering time genes. Genes are sorted according to pathways in the flowering time network and their frequency
in array data. Dotted line indicates the threshold ≥ 3 for further analyses. (B) Analysis of functional categories was performed using PANTHER (version
11.1) with the A. thaliana PANTHER GO-Slim biological process annotation released 2016–10-24. Upper pie chart: Distribution of molecular gene
functions in the flowering time input gene list (379 genes). Lower pie chart: Distribution of molecular gene function in the output gene list for
N-responsive flowering time genes (by 115 genes).

to a final set of 17 genes (Figs-2A and 3). After this
more stringent analysis, the genes from the photope-
riodic pathway still represent the majority of the can-
didate genes. Strikingly, none of the major floral inte-
grators like CO, FT and SOC1 or the main repressor
FLC is represented in the meta-analysis. Contrary, the
peripheral pathway genes are responsive to nitrogen with
the potential to influence the major hubs. The two genes
that exhibited the highest frequency in our survey are
CONSTANS-LIKE 5 (COL5) and REVEILLE2 (REV2/CIR1).
REV2 is a MYB-related gene controlled by light and the
central oscillator. Its expression is known to reduce the
amplitude of CCA1 and LHY, as well as the expression
of CO and FT. Overexpression of REV2 causes delay in
flowering whereas the cir1 knockout is early flowering
(Zhang et al. 2007). In addition, REV2 is a positive regula-
tor of freezing tolerance (Guan et al. 2013). REV2 shows
a fast acceleration of expression upon nitrogen treat-
ment and is downregulated under starvation (Table S1).
Notably, REV2 was only found in data sets using nitrate
as the sole nitrogen source. However, our data land-
scape is dominated by nitrate treatments and is thereby
biased towards genes responding to nitrate (Fig. 4B and

Table S1). Assay parameters like plant tissue, age or day
length do not seem to be critical for the response of REV2
(Fig. 4). COL5 is a CONSTANT-LIKE transcription fac-
tor, showing a CO-like circadian and diurnally regulated
expression pattern. The overexpression of COL5 can
induce SOC1 and FT, leading to early flowering without
affecting CO (Hassidim et al. 2009). COL5 is similarly
to REV2 downregulated under nitrogen starvation and
increased after nitrogen application (Table S1). The nitro-
gen source, however, does not seem to be critical, as the
COL5 transcript respond to nitrate and ammonium treat-
ments. In contrast, the exclusive detection of COL5 in
root sample is remarkable (Fig. 4), because gene expres-
sion maps indicate a low baseline expression in roots,
except of increasing expression after cold treatments
(Schmid et al. 2005). Further analysis revealed another
interesting candidate gene, the NUCLEAR FACTOR Y
SUBUNIT A4 (NF-YA4), affiliated with the photoperiodic
flowering pathway. NF-YA4 exhibits the second high-
est frequency within the survey and shows a nitrate
treatment-dependent response. Furthermore, NF-YA4 is
only present in shoot data sets from adult plants (Fig. 4).
Interestingly, all three nitrogen-regulated genes, REV2,
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Fig. 3. Distribution of N-responsive genes enriched in the meta-analysis. N-responsive flowering time genes with a minimum frequency≥3 (dotted
line). Short names are given in the graph; for respective expression data, see Table1.

COL5 and NF-YA4 have in common that they are cold
inducible (Schmid et al. 2005). The fact that none of
the major hubs from the flowering network was found
is not surprising for several reasons. Their transcrip-
tional responses to changes in nitrogen availability could
be transient or masked by diurnal and developmental
expression patterns. Moreover, many central regulators
of flowering time are tightly regulated at both the tran-
scriptional and post-translational level, but the relative
contribution of the mechanisms in response to nitrogen
treatments remains to be investigated. However, a fast
response to changes in individual environmental factors
does not meet the nature of a hub that initiates nonre-
versible developmental transitions, like the initiation of
FT movement initiates floral transition in the meristem.
Instead, regulatory hubs involved in developmental deci-
sions need to integrate signals and feedback information
from multiple pathways in order to provide the system
with sufficient robustness.

Perspectives

The timing of flowering and responses to nitrogen nutri-
tion are two major traits affecting plant reproductive suc-
cess as well as productivity of crops. Both traits and
their underlying pathways are under intensive investiga-
tion – mostly each by itself. As the induction or delay of

flowering is a matter of nitrogen availability, as supported
by experimental evidence (Castro Marín et al. 2011, Kant
et al. 2011, Yuan et al. 2016, Lin and Tsay 2017), inte-
grated studies of both traits must be strengthened to
obtain a broader understanding. Thus, spatio-temporal
aspects of nitrogen sensing and signaling will provide
insight into flowering time control. The processing of
the signal might take place in the root, where nitrogen
is sensed by NRT1.1 or related NRT family members.
Alternatively, direct transmission of either endogenous
nitrogen or additional vasculature mobile signals might
occur. Signal integration may take place directly in the
shoot apical meristem as well as in the leaf, bypassing,
e.g. the photoperiodic pathway. However, to elucidate
the molecular mechanism mediating N-responsive flow-
ering requires integrative omics studies under a broad
range of defined conditions.
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Fig. 4. Candidate genes in the context of the data landscape. Bar graphs show the distribution of genes with a frequency≥3 across grouped
experimental parameters. Pie charts depict the representation within each group of experimental parameters for all 66 observations of differential
gene expression (17 candidate genes, 20 datasets). Additional details on the experimental setup for each dataset included can be found in Table
S1. (A) tissue; (B) nitrogen source (Nitrogen: combined treatment of nitrate and ammonium); (C) plant age (days) at the point of harvesting for
transcriptome analysis; (D) day length.
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