
u n i ve r s i t y o f co pe n h ag e n

A categorical foundation for structured reversible flowchart languages

Glück, Robert; Kaarsgaard, Robin

Published in:
Electronic Notes in Theoretical Computer Science

DOI:
10.1016/j.entcs.2018.03.021

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Glück, R., & Kaarsgaard, R. (2018). A categorical foundation for structured reversible flowchart languages.
Electronic Notes in Theoretical Computer Science, 336, 155-171. https://doi.org/10.1016/j.entcs.2018.03.021

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269303103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2018.03.021
https://curis.ku.dk/portal/da/persons/robert-gluck(4a63cb84-71dd-4cf5-a00f-4697b6d4ea17).html
https://curis.ku.dk/portal/da/persons/robin-kaarsgaard(a7603594-2558-40b9-b772-bd1133365510).html
https://curis.ku.dk/portal/da/publications/a-categorical-foundation-for-structured-reversible-flowchart-languages(c7f8a601-fecc-46f3-bcbb-9fa566ad813e).html
https://doi.org/10.1016/j.entcs.2018.03.021

A Categorical Foundation for Structured
Reversible Flowchart Languages

Robert Glück2 Robin Kaarsgaard3

DIKU, Department of Computer Science, University of Copenhagen

Abstract

Structured reversible flowchart languages is a class of imperative reversible programming languages allowing
for a simple diagrammatic representation of control flow built from a limited set of control flow structures,
as ordinary structured flowcharts allow for conventional languages. This class includes the reversible
programming language Janus (without recursion), as well as more recently developed reversible programming
languages such as R-CORE and R-WHILE. In the present paper, we develop a categorical foundation for this
class of languages based on inverse categories with joins. We generalize the notion of extensivity of restriction
categories to one that may be accommodated by inverse categories, and use the resulting decision maps
to give a reversible representation of predicates and assertions. This leads to a categorical semantics for
structured reversible flowcharts, from which we show that a program inverter can be extracted. Finally, we
exemplify our approach by the development of a small structured reversible flowchart language, use our
framework to both straightforwardly give it semantics and derive fundamental theorems about it, and discuss
further applications of decisions in reversible programming.

Keywords: Reversible computing, flowchart languages, structured programming, denotational semantics,
category theory

1 Introduction

Reversible computing is an emerging paradigm that adopts a physical principle of

reality into a computation model without information erasure. Reversible computing

extends the standard forward-only mode of computation with the ability to execute

in reverse as easily as forward. Reversible computing is a necessity in the context

of quantum computing and some bio-inspired computation models. Regardless of

the physical motivation, bidirectional determinism is interesting in its own right.

The potential benefits include the design of innovative reversible architectures (e.g.,

[23,22,25]), new programming models and techniques (e.g., [27,11,19]), and the

enhancement of software with reversibility (e.g., [5]).

1 The authors acknowledge the support given by COST Action IC1405 Reversible computation: Extending
horizons of computing. We also thank the anonymous reviewers for their thoughtful and detailed comments.
2 Email: glueck@acm.org
3 Email: robin@di.ku.dk

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 336 (2018) 155–171

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.03.021

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:glueck@acm.org
mailto:robin@di.ku.dk
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.03.021
https://doi.org/10.1016/j.entcs.2018.03.021
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

The semantics of reversible programming languages are usually formalized using

traditional metalanguages such as structural operational semantics or denotational

semantics based on complete partial orders. However, these are geared towards the

definition of conventional programming languages. The fundamental properties of a

reversible language are not naturally captured by these metalanguages and are to

be shown individually for each semantic definition, such as the required backward

determinism and the invertibility of object language programs.

This paper aims at providing a new categorical foundation specifically for for-

malizing reversible programming languages, in particular the semantics of reversible

structured flowchart languages [24], which are the reversible counterpart of the

structured programming languages used today. This formalization is based on join

inverse categories with a developed notion of extensivity for inverse categories, which

gives rise to natural representations of predicates and assertions, and consequently

to models of reversible structured flowcharts. The goal is to provide a framework for

modelling these languages, such that the reversible semantic properties of the object

language are naturally ensured by the meta language.

The semantic framework we are going to present in this paper covers the reversible

structured languages regardless of their concrete formation, such as atomic operations,

elementary predicates, and value domains. Reversible programming languages that

are instances of this computation model include the imperative language Janus [27]

without recursion, and the while languages R-WHILE and R-CORE with dynamic data

structures [12,13]. Further, unstructured reversible flowchart languages, such as

reversible assembly languages with jumps [9,2], can be transformed into structured

ones thanks to the structured reversible program theorem [24].

Overview: In Section 2, we give an introduction to structured reversible flowchart

languages, while Section 3 describes the restriction and inverse category theory

used as backdrop in later sections. In Section 4, we warm up by developing a

notion of extensivity for inverse categories, based on extensive restriction categories

and its associated concept of decisions. Then, in Section 5, we put it all to use

by showing how decisions may be used to model predicates and ultimately also

reversible flowcharts, and use this to extract a program inverter. In Section 6, we

develop a small language to exemplify our framework, and discuss other applications

in reversible programming. Section 7 offers some concluding remarks.

2 Reversible structured flowcharts

Structured reversible flowcharts naturally model the control flow behavior of reversible

(imperative) programming languages in a simple diagrammatic representation, as

classical flowcharts do for conventional languages. A crucial difference is that

atomic steps are limited to partial injective functions and they require an additional

assertion, an explicit orthogonalizing condition, at join points in the control flow.

A structured reversible flowchart F is built from four blocks (Fig. 1): An atomic

step that performs an elementary operation on a domain X specified by a partial

injective function a : X ⇀ X; a while loop over a block B with entry assertion

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171156

� a � �
�
�

�
�p1

t

f

���
����

��p2 t

f�B�

� ���
����

��p1

t

f

� B1

��
�

�
�p2

t

f

�

� B2
�

� B1
� B2

�

(a) Step (b) While loop (c) Selection (d) Sequence

Fig. 1. Structured reversible flowcharts.

p1 : X → Bool and exit test p2 : X → Bool ; a selection of block B1 or B2 with entry

test p1 : X → Bool and exit assertion p2 : X → Bool ; and a sequence of blocks B1

and B2.

A structured reversible flowchart F consists of one main block. Blocks have

unique entry and exit points, and can be nested any number of times to form more

complex flowcharts. The interpretation of F consists of a given domain X (typically,

a store) and a finite set of partial injective functions a and predicates p : X → Bool .

Computation starts at the entry point of F in an initial x0 (the input), proceeds

sequentially through the edges of F , and ends at the exit point of F in a final xn
(the output), if F is defined on the given input.

The assertion p1 in a reversible while loop (marked by the circle) is a new

flowchart operator: the predicate p1 must be true when the control flow reaches the

assertion along the t-edge, and false when it reaches the assertion along the f -edge;

otherwise, the loop is undefined. The test p2 (marked by a diamond) has the usual

semantics. This means that B in a loop is repeated as long as p1 and p2 are false.

The selection has an assertion p2, which must be true when the control flow

reaches the assertion from B1, and false when the control flow reaches the assertion

from B2; otherwise, the selection is undefined. As usual, the test p1 selects B1 or

B2. The assertion makes the selection reversible.

Despite their simplicity, reversible structured flowcharts are reversibly univer-

sal [1], which means that they are computationally as powerful as any reversible

programming language can be. Given a suitable domain X for finite sets of atomic

operations and predicates, there exists, for every injective computable function

f : X → Y , a reversible flowchart F that computes f .

Reversible structured flowcharts (Fig. 1) have a straightforward representation

as program texts defined by the grammar

B ::= a | from p loop B until p | if p then B else B fi p | B ; B .

Reversible structured flowcharts defined above corresponds to the reversible language

R-WHILE [12], but their value domain, atomic functions and predicates are unspecified.

As a minimum, a reversible flowchart needs blocks (a,b,d) because selection (c) can

be simulated by combining while loops that conditionally skip the body block or

execute it once. R-CORE [13] is an example of such a minimal language.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 157

3 Restriction and inverse categories

The following section contains the background on restriction and inverse category

theory necessary for our later developments. Unless otherwise specified, the defini-

tions and results presented in this section can be found in introductory texts on the

subject (e.g., [10,14,6,7,8]).

Restriction categories [6,7,8] axiomatize categories of partial maps. This is done

by assigning to each morphism f a restriction idempotent f , which we think of as

a partial identity defined precisely where f is. Formally, restriction categories are

defined as follows.

Definition 3.1 A restriction category is a category C equipped with a combinator

mapping each morphism A
f−→ B to a morphism A

f−→ A satisfying

(i) f ◦ f = f ,

(ii) g ◦ f = f ◦ g,
(iii) f ◦ g = f ◦ g, and
(iv) g ◦ f = f ◦ g ◦ f

for all suitable g.

As an example, the category Pfn of sets and partial functions is a restriction

category, with f(x) = x if f is defined at x, and undefined otherwise. Note that being

a restriction category is a structure, not a property; a category may be a restriction

category in several different ways (e.g., assigning f = id for each morphism f gives

a trivial restriction structure to any category).

In restriction categories, we say that a morphism A
f−→ B is total if f = idA, and

a partial isomorphism if there exists a (necessarily unique) partial inverse B
f†
−→ A

such that f † ◦ f = f and f ◦ f † = f †. Isomorphisms are then simply the total partial

isomorphisms with total partial inverses. An inverse category can then be defined as

a special kind of restriction category 4 .

Definition 3.2 An inverse category is a restriction category where each morphism

is a partial isomorphism.

Every restriction category C gives rise to an inverse category Inv(C), which has

as objects all objects of C , and as morphisms all of the partial isomorphisms of

C . As such, since partial isomorphisms in Pfn are partial injective functions, a

canonical example of an inverse category is the category Inv(Pfn) ∼= PInj of sets

and partial injective functions.

Since each morphism in an inverse category has a unique partial inverse, as

also suggested by our notation this makes inverse categories canonically dagger

categories [20], in the sense that they come equipped with a contravariant endofunctor

(−)† satisfying f = f †† and id†A = idA for each morphism f and object A.

Given two restriction categories C and D , the well-behaved functors between them

are restriction functors, i.e., functors F satisfying F (f) = F (f). Analogous to how

4 This is a rather modern definition due to [6]. Originally, inverse categories were defined as the categorical
extensions of inverse semigroups; see [18].

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171158

regular semigroup homomorphisms preserve partial inverses in inverse semigroups,

when C and D are inverse categories, all functors between them are restriction

functors; specifically they preserve the canonical dagger, i.e., F (f †) = F (f)†.

3.1 Partial order enrichment and joins

A consequence of how restriction (and inverse) categories are defined is that hom

sets C (A,B) may be equipped with a partial order given by f ≤ g iff g ◦ f = f (this

extends to an enrichment in the category of partial orders and monotone functions).

Intuitively, this states that f is below g iff g behaves exactly like f when restricted

to the points where f is defined. A sufficient condition for each C (A,B) to have

a least element is that C has a restriction zero; a zero object 0 in the usual sense

which additionally satisfies A
0A,A−−−→ A = A

0A,A−−−→ A for each endo-zero map 0A,A.

One may now wonder when C (A,B) has joins as a partial order. Unfortunately,

C (A,B) has joins of all morphisms only in very degenerate cases. However, if instead

of considering arbitrary joins we consider joins of maps that are somehow compatible,

this becomes much more viable.

Definition 3.3 In a restriction category, say that parallel maps f and g are disjoint

iff f ◦ g = 0; and compatible iff f ◦ g = g ◦ f .
It can be shown that disjointness implies compatibility, as disjointness is expect-

edly symmetric. Further, we may extend this to say that a set of parallel morphisms

is disjoint iff each pair of morphisms is disjoint, and likewise for compatibility. This

gives suitable notions of join restriction categories.

Definition 3.4 A restriction category C has compatible (disjoint) joins if it has

a restriction zero, and satisfies that for each compatible (disjoint) subset S of any

hom set C (A,B), there exists a morphism
∨

s∈S s such that

(i) s ≤ ∨
s∈S s for all s ∈ S, and s ≤ t for all s ∈ S implies

∨
s∈S s ≤ t;

(ii)
∨

s∈S s =
∨

s∈S s;

(iii) f ◦ (∨s∈S s
)
=

∨
s∈S(f ◦ s) for all f : B → X; and

(iv)
(∨

s∈S s
) ◦ g =

∨
s∈S(s ◦ g) for all g : Y → A.

For inverse categories, the situation is a bit more tricky, as the join of two

compatible partial isomorphisms may not be a partial isomorphism. To ensure this,

we need stronger relations:

Definition 3.5 In an inverse category, say that parallel maps f and g are disjoint

iff f ◦ g = 0 and f † ◦ g† = 0; and compatible iff f ◦ g = g ◦ f and f † ◦ g† = g† ◦ f †.

We may now extend this to notions of disjoint sets and compatible sets of

morphisms in inverse categories as before. This finally gives notions of join inverse

categories:

Definition 3.6 An inverse category C has compatible (disjoint) joins if it has a

restriction zero and satisfies that for all compatible (disjoint) subsets S of all hom

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 159

sets C (A,B), there exists a morphism ∨s∈Ss satisfying (i) – (iv) of Definition 3.4.

A functor F between restriction (or inverse) categories with joins is said to be

join-preserving when F (
∨

s∈S s) =
∨

s∈S F (s).

3.2 Restriction coproducts, extensivity, and related concepts

While a restriction category may very well have coproducts, these are ultimately

only well-behaved when all coproduct injections are total; if this is the case, we say

that the restriction category has restriction coproducts. If a restriction category has

all finite restriction coproducts, it also has a restriction zero serving as unit.

In [8], it is shown that the existence of certain maps, called decisions, in a

restriction category C with restriction coproducts leads to the subcategory Total(C)

of total maps being extensive (in the sense of, e.g., [4]). This leads to the definition

of an extensive restriction category 5 .

Definition 3.7 A restriction category is said to be extensive (as a restriction

category) if it has restriction coproducts and a restriction zero, and for each map

A
f−→ B + C there is a unique decision A

〈f〉−−→ A+A satisfying

(D.1) ∇ ◦ 〈f〉 = f and (D.2) (f + f) ◦ 〈f〉 = (κ1 + κ2) ◦ f .

In the above, ∇ denotes the codiagonal [id, id]. A consequence of these axioms

is that each decision is a partial isomorphism; one can show that 〈f〉 must be

partial inverse to [κ†1 ◦ f, κ†2 ◦ f] (see [8]). Further, when a restriction category with

restriction coproducts has finite joins, it is also extensive with 〈f〉 = κ1 ◦κ†1 ◦ f ∨κ2 ◦
κ†2 ◦ f . As an example, Pfn is extensive with A

〈f〉−−→ A+A for A
f−→ B +C given by

〈f〉(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ1(x) if f(x) = κ1(y) for some y ∈ B

κ2(x) if f(x) = κ2(z) for some z ∈ C

undefined if f(x) is undefined

.

While inverse categories only have coproducts (much less restriction coproducts)

in very degenerate cases (see [10]), they may very well be equipped with a more

general sum-like symmetric monoidal tensor, a disjointness tensor.

Definition 3.8 A disjointness tensor on a restriction category is a symmetric

monoidal restriction functor − ⊕ − satisfying that its unit is the restriction zero,

and that the canonical maps

�1 = A
ρ−1

−−→ A⊕ 0
id⊕0−−−→ A⊕B �2 = B

λ−1−−→ 0⊕B
0⊕id−−−→ A⊕B

5 The name is admittedly mildly confusing, as an extensive restriction category is not extensive in the usual
sense. Nevertheless, we stay with the established terminology.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171160

are jointly epic, where ρ respectively λ is the left respectively right unitor of the

monoidal functor −⊕−.

It can be straightforwardly shown that any restriction coproduct gives rise to

a disjointness tensor. A useful interaction between compatible joins and a join-

preserving disjointness tensor in inverse categories was shown in [3,17], namely that

it leads to a †-trace (in the sense of [16,21]):

Proposition 3.9 Let C be an inverse category with (at least countable) compatible

joins and a join-preserving disjointness tensor. Then C has a trace operator given

by

TrUA,B(f) = f11 ∨
∨
n∈ω

f21 ◦ f22 ◦ f12

satisfying TrUA,B(f)
† = TrUA,B(f

†), where fij = �†
j ◦ f ◦ �i.

4 Extensivity of inverse categories

As discussed earlier, extensivity of restriction categories hinges on the existence of

certain partial isomorphisms – decisions – yet their axiomatization relies on the

presence of a map that is not a partial isomorphism, the codiagonal.

In this section, we tweak the axiomatization of extensivity of restriction categories

to one that is equivalent, but additionally transports more easily to inverse categories.

We then give a definition of extensitivity for inverse categories, from which it follows

that Inv(C) is an extensive inverse category when C is an extensive restriction

category.

Recall that decisions satisfy the following two axioms:

(D.1) ∇ ◦ 〈f〉 = f and (D.2) (f + f) ◦ 〈f〉 = (κ1 + κ2) ◦ f

As mentioned previously, an immediate problem with this is the reliance on the

codiagonal. However, intuitively, what (D.1) states is simply that the decision 〈f〉
cannot do anything besides to tag its inputs appropriately. Using a disjoint join, we

reformulate this axiom to the following:

(D’.1) (κ†1 ◦ 〈f〉) ∨ (κ†2 ◦ 〈f〉) = f

Note that this axiom also subtly states that disjoint joins of the given form always

exist. Say that a restriction category is pre-extensive if it has restriction coproducts,

a restriction zero, and a combinator mapping each map A
f−→ B+C to a pre-decision

A
〈f〉−−→ A+A (with no additional requirements). We can then show the following:

Theorem 4.1 Let C be a pre-extensive restriction category. The following are

equivalent:

(i) C is an extensive restriction category.

(ii) Every pre-decision of C satisfies (D.1) and (D.2).

(iii) Every pre-decision of C satisfies (D’.1) and (D.2).

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 161

Another subtle consequence of our amended first rule is that κ†1 ◦ 〈f〉 is its own
restriction idempotent (and likewise for κ†2) since κ†1 ◦ 〈f〉 ≤ (κ†1 ◦ 〈f〉) ∨ (κ†2 ◦ 〈f〉) =
f ≤ id, as the maps below identity are precisely the restriction idempotents.

Our next snag in transporting this definition to inverse categories has to do

with the restriction coproducts themselves, as it is observed in [10] that any inverse

category with restriction coproducts is a preorder. Intuitively, the problem is not that

unicity of coproduct maps cannot be guaranteed in non-preorder inverse categories,

but rather that the coproduct map A+ B
[f,g]−−→ C in a restriction category is not

guaranteed to be a partial isomorphism when f and g are.

For this reason, we will consider the more general disjointness tensor for sum-like

constructions rather than full-on restriction coproducts, as inverse categories may

very well have a disjointness tensor without it leading to immediate degeneracy.

Notably, PInj has a disjointness tensor, constructed on objects as the disjoint union

of sets (precisely as the restriction coproduct in Pfn, but without the requirement

of a universal mapping property). This leads us to the following definition:

Definition 4.2 An inverse category with a disjointness tensor is said to be extensive

when each map A
f−→ B ⊕ C has a unique decision A

〈f〉−−→ A⊕A satisfying

(D’.1) (�†
1 ◦ 〈f〉) ∨ (�†

2 ◦ 〈f〉) = f

(D’.2) (f ⊕ f) ◦ 〈f〉 = (�1 ⊕�2) ◦ f .
As an example, PInj is an extensive inverse category with the unique decision

A
〈f〉−−→ A⊕A for a partial injection A

f−→ B ⊕ C given by

〈f〉(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(x) if f(x) = �1(y) for some y ∈ B

�2(x) if f(x) = �2(z) for some z ∈ C

undefined if f(x) is undefined

.

Aside from a shift from coproduct injections to the quasi-injections of the disjointness

tensor, a subtle change here is the notion of join. That is, for restriction categories

with disjoint joins, any pair of maps f, g with f ◦ g = 0 has a join – but for inverse

categories, we additionally require that their inverses are disjoint as well, i.e., that

f † ◦ g† = 0, for the join to exist. In this case, however, there is no difference between

the two. As previously discussed, a direct consequence of this axiom is that each

�†
i ◦ 〈f〉 must be its own restriction idempotent. Since restriction idempotents are

self-adjoint (i.e., satisfy f = f †), they are disjoint iff their inverses are disjoint.

Since restriction coproducts give rise to a disjointness tensor, we may straightfor-

wardly show the following theorem.

Theorem 4.3 When C is an extensive restriction category, Inv(C) is an extensive

inverse category.

Further, constructing the decision 〈f〉 as (�1 ◦ �†
1 ◦ f) ∨ (�2 ◦ �†

2 ◦ f) (i.e.,

mirroring the construction of decisions in restriction categories with disjoint joins),

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171162

we may show the following.

Theorem 4.4 Let C be an inverse category with a disjointness tensor, a restriction

zero, and finite disjoint joins. Then C is extensive as an inverse category.

5 Modelling structured reversible flowcharts

In the following, let C be an inverse category with (at least countable) compatible

joins and a join-preserving disjointness tensor. As disjoint joins are compatible, it

follows that C is an extensive inverse category with a (uniform) †-trace operator.

In this section, we will show how this framework can be used model reversible

structured flowchart languages. First, we will show how decisions in extensive inverse

categories can be used to model predicates, and how this representation extends to

give very natural semantics to reversible flowcharts corresponding to conditionals

and loops. Then we will use the “internal program inverter” given by the canonical

dagger functor on C to extract a program inverter for reversible flowcharts.

5.1 Predicates as decisions

In suitably equipped categories, one naturally considers predicates on an object A

as given by maps A → 1 + 1. In inverse categories, however, the mere idea of a

predicate as a map of the form A → 1⊕ 1 is problematic, as only very degenerate

maps of this form are partial isomorphisms. In the following, we show how decisions

give rise to an unconventional yet ultimately useful representation of predicates. To

our knowledge this representation is novel, motivated here by the necessity to model

predicates in a reversible fashion, as decisions are always partial isomorphisms.

The simplest useful predicates are the predicates that are always true respectively

always false. By convention, we represent these by the left respectively right injection

(which are both their own decisions),

�true� = �1

�false� = �2.

Semantically, we may think of decisions as a separation of an object A into witnesses

and counterexamples of the predicate it represents. In a certain sense, the axioms

of decisions say that there is nothing more to a decision than how it behaves when

postcomposed with �†
1 or �†

2. As such, given the convention above, we think of

�†
1 ◦〈p〉 as the witnesses of the predicate represented by the decision 〈p〉, and �†

2 ◦〈p〉
as its counterexamples.

With this in mind, we turn to boolean combinators. The negation of a predicate-

as-a-decision must simply swap witnesses for counterexamples (and vice versa).

In other words, we obtain the negation of a decision by postcomposing with the

commutator γ of the disjointness tensor,

�not p� = γ ◦ �p� .

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 163

With this, it is straightforward to verify that, e.g., �not true� = �false�, as
�not true� = γ◦�1 = γ◦id⊕0◦ρ−1 = 0⊕id◦γ◦ρ−1 = 0⊕id◦λ−1 = �2 = �false� .
For conjunction, we exploit that our category has (specifically) finite disjoint joins,

and define the conjunction of predicates-as-decisions �p� and �q� by

�p and q� = (�1 ◦ �†
1 ◦ �p� ◦ �†

1 ◦ �q�) ∨ (�2 ◦ (�†
2 ◦ �p� ∨ �†

2 ◦ �q�)).
The intuition behind this definition is that the witnesses of a conjunction of predicates

is given by the meet of the witnesses of the each predicate, while the counterexamples

of a conjunction of predicates is the join of the counterexamples of each predicate.

Noting that the meet of two restriction idempotents is given by their composition,

this is precisely what this definition states. Similarly we define the disjunction of�p� and �q� by

�p or q� = (�1 ◦ (�†
1 ◦ �p� ∨ �†

1 ◦ �q�)) ∨ (�2 ◦ (�†
2 ◦ �p� ◦ �†

2 ◦ �q�)),
as �p or q� then has as witnesses the join of the witnesses of �p� and �q�, and

as counterexamples the meet of the counterexamples of �p� and �q�. With these

definitions, it can be shown that, e.g., the De Morgan laws are satisfied.

That all of these are indeed decisions can be shown straightforwardly, as summa-

rized in the following closure theorem.

Theorem 5.1 Decisions in C are closed under Boolean negation, conjunction, and

disjunction.

5.2 Reversible structured flowcharts, categorically

To give a categorical account of structured reversible flowchart languages, we assume

the existence of a suitable distinguished object Σ of stores, which we think of as the

domain of computation, such that we may give denotations to structured reversible

flowcharts as morphisms Σ → Σ.

Since atomic steps (corresponding to elementary operations, e.g., store updates)

may vary from language to language, we assume that each such atomic step in

our language has a denotation as a morphism Σ → Σ. In the realm of reversible

flowcharts, these atomic steps are required to be partial injective functions; here, we

abstract this to require that their denotation is a partial isomorphism (though this

is a trivial requirement in inverse categories).

Likewise, elementary predicates (e.g., comparison of values in a store) may

vary from language to language, so we assume that such elementary predicates

have denotations as well as decisions Σ → Σ ⊕ Σ. If necessary (as is the case

for Janus [27]), we may then close these elementary predicates under boolean

combinations as discussed in the previous section.

To start, we note how sequencing of flowcharts may be modelled trivially by

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171164

means of composition, i.e.,

�c1 ; c2� = �c2� ◦ �c1�
or, using the diagrammatic notation of flowcharts and the string diagrams for

monoidal categories in the style of [21] (read left-to-right and bottom-to-top),

�
� c1 � c2 �

�
= �c1� �c2� .

To extend this elementary model to one that additionally models reversible condi-

tionals, we observe that the partial inverse to a decision is precisely its corresponding

assertion. Intuitively, a decision separates an object into witnesses (in the first

component) and counterexamples (in the second). As such, the partial inverse to

a decision must be defined only on witnesses in the first component, and only on

counterexamples in the second.

With this in mind, we achieve a denotation of reversible conditionals as

�if p then c1 else c2 fi q� = �q�† ◦ �c1� ⊕ �c2� ◦ �p�
or, as diagrams

�
����� ���

����
��p
t

f

� c1
��

�
�
�q

t

f

�

� c2 �

	

� = �p�

�c2�

�c1�

�q�† .

It is straightforward to see that this has the usual operational behavior of reversible

conditionals. For example, when �p� = �q� = �true� we get

�if p then c1 else c2 fi q� = �q�† ◦ �c1� ⊕ �c2� ◦ �p�
= �true�† ◦ �c1� ⊕ �c2� ◦ �true�
= �†

1 ◦ �c1� ⊕ �c2� ◦ �1 = �c1�
and analogously for the symmetric case.

For reversible loops, we use the †-trace operator to obtain the denotation

�from q loop c until p� = TrΣΣ,Σ(idΣ ⊕ �c� ◦ �p� ◦ �q�†)
or diagrammatically

�
�� �

�
�

�
�qt

f

���
����

��p t

f�c�

�

	

� = �q�† �p�

�c�

.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 165

That this has the desired operational behavior follows from the fact that the †-trace
operator is canonically constructed in join inverse categories as

TrUX,Y (f) = f11 ∨
∨
n∈ω

f21 ◦ fn
22 ◦ f12 .

Recall that fij = �†
j ◦ f ◦ �i. As such, for our loop construct defined above, the

f11-cases correpond to cases where a given state bypasses the loop entirely; f21 ◦ f12
(that is, for n = 0) to cases where exactly one iteration is performed by a given state

before exiting the loop; f21 ◦ f22 ◦ f12 to cases where two iterations are performed

before exiting; and so on. In this way, the given trace semantics contain all successive

loop unrollings, as desired.

While it may seem like a small point, the mere existence of a categorical semantics

in inverse categories for a reversible programming language has some immediate

benefits. In particular, that a programming language is reversible can be rather

complicated to show by means of operational semantics (see, e.g., [27, Sec. 2.3]), yet

it follows directly in our categorical semantics, as all morphisms in inverse categories

have a unique partial inverse. Additionally, reversible loops are significantly easier

to work with categorically as †-traces than operationally; the operational semantics

of Janus [27, Fig. 4] demonstrate adequately just how difficult it can be to give an

operational semantics for reversible loops.

5.3 Extracting a program inverter

A desirable syntactic property for reversible programming languages is to be closed

under program inversion, in the sense that for each program p, there is another

program I[p] such that �I[p]� = �p�†. Janus, R-WHILE, and R-CORE [27,12,13] are all

examples of reversible programming languages with this property. This is typically

witnessed by a program inverter, that is, a procedure mapping the program text of

a program to the program text of its inverse program 6 .

Suppose that we are given a language where elementary operations are closed

under program inversion (i.e., where each elementary operation b has an inverse I[b]
such that �I[b]� = �b�†). We can extend this to a program inverter for reversible

conditionals and loops as follows, by structural induction with the hypothesis that�I[c]� = �c�†. Given some conditional statement if p then c1 else c2 fi q, we

notice that

�if p then c1 else c2 fi q�† = (�q�† ◦ �c1� ⊕ �c2� ◦ �p�)†
= �p�† ◦ �c1�† ⊕ �c2�† ◦ �q�††
= �p�† ◦ �c1�† ⊕ �c2�† ◦ �q�
= �p�† ◦ �I[c1]� ⊕ �I[c2]� ◦ �q�
= �if q then I[c1] else I[c2] fi p�

6 While semantic inverses are unique, their program texts generally are not. As such, a programming
language may have many different sound and complete program inverters, though they will all be equivalent
up to program semantics.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171166

which yields the inversion rule

I[if p then c1 else c2 fi q] = if q then I[c1] else I[c2] fi p .

Fortunately, this is precisely the usual inversion rule for reversible conditionals (see,

e.g., [12,13]). For reversible loops, we have

�from q loop c until p�† = TrΣΣ,Σ(idΣ ⊕ �c� ◦ �p� ◦ �q�†)†
= TrΣΣ,Σ((idΣ ⊕ �c� ◦ �p� ◦ �q�†)†)
= TrΣΣ,Σ(�q� ◦ �p�† ◦ idΣ ⊕ �c�†)
= TrΣΣ,Σ(idΣ ⊕ �c�† ◦ �q� ◦ �p�†)
= TrΣΣ,Σ(idΣ ⊕ �I[c]� ◦ �q� ◦ �p�†)
= �from p loop I[c] until q�

where the fact that it is a †-trace allows us to move the dagger inside the trace, and

dinaturality of the trace in the second component allows us to move idΣ ⊕ �c�† from

the very right to the very left. This gives us the inversion rule

I[from q loop c until p] = from p loop I[c] until q

which matches the usual inversion rule for reversible loops [13]. We summarize this

in the following theorem:

Theorem 5.2 If a reversible structured flowchart language is syntactically closed

under inversion of elementary operations, it is also closed under inversion of reversible

conditionals and loops.

6 Applications

In this section, we briefly cover some applications of the developed theory: We

introduce a small reversible flowchart language and use the results from the previous

sections to give it semantics, and discuss how decisions may be used as a programming

technique to naturally represent predicates in a reversible functional language.

6.1 Example: A reversible flowchart language

Consider the following family of (neither particularly useful nor particularly useless)

reversible flowchart languages for reversible computing with integer data, RINTk.

RINTk has precisely k variables available for storage, denoted x1 through xk (of

which x1 is designated by convention as the input/output variable), and its only

atomic operations are addition and subtraction of variables, as well as addition

with a constant. Variables are used as elementary predicates, with zero designating

truth and non-zero values all designating falsehood. For control structures we have

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 167

Σ = Z
k

�xi� (a1, . . . , ak) =

{
�1(a1, . . . , ak) if ai = 0

�2(a1, . . . , ak) otherwise

�xi += xj� (a1, . . . , ak) = (a1, . . . , ai−1, ai + aj , . . . , ak)

�xi += n� (a1, . . . , ak) = (a1, . . . , ai−1, ai + n, . . . , ak)

�xi −= xj� (a1, . . . , ak) = (a1, . . . , ai−1, ai − aj , . . . , ak)

Fig. 2. The object of stores and semantics of elementary operations and predicates of RINTk in PInj.

reversible conditionals and loops, and sequencing as usual. This gives the syntax:

p ::= true | false | xi | p and p | not p (Tests)

c ::= c ; c | xi += xj | xi −= xj | xi += n

| if p then c else c fi p

| from p loop c until p (Commands)

Here, n is the syntactic representation of an integer n. In the cases for addition

and subtraction, we impose the additional syntactic constraints that 1 ≤ i ≤ k,

1 ≤ j ≤ k, and i = j, the latter to guarantee reversibility. Subtraction by a constant

is not included as it may be derived straightforwardly from addition with a constant.

A program in RINTk is then simply a command.

We may now give semantics to this language in our framework. For a concrete

model, we select the category PInj of sets and partial injections, which is a join

inverse category with a join-preserving disjointness tensor (given on objects by the

disjoint union of sets), so it is extensive in the sense of Definition 4.2 by Theorem 4.4.

By our developments previously in this section, to give a full semantics to RINTk in

PInj, it suffices to provide an object (i.e., a set) of stores Σ, denotations of our three

classes of elementary operations (addition by a variable, addition by a constant, and

subtraction by a variable) as morphisms (i.e., partial injective functions) Σ → Σ, and

denotations of our class of elementary predicates (here, testing whether a variable

is zero or not) as decisions Σ → Σ ⊕ Σ. These are all shown in Fig. 2. It is

uncomplicated to show that all of these are partial injective functions, and that the

denotation of each predicate �xi� is a decision, so that this is, in fact, a model of

RINTk in PInj.

We can now reap the benefits in the form of a reversibility theorem for free:

Theorem 6.1 (Reversibility) Every RINTk program p is semantically reversible

in the sense that �p� is a partial isomorphism.

Further, since we can straightforwardly show that
�
xi += xj

�†
=

�
xi −= xj

�
and �xi += n�† = �xi += −n �, we can use the technique from Sec. 5.3 to obtain a

sound and complete program inverter.

Theorem 6.2 (Program inversion) RINTk has a (sound and complete) program

inverter. In particular, for every RINTk program p there exists a program I[p] such
that �I[p]� = �p�†.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171168

pnot :: PBool α ↔ PBool α

pnot (True x) = False x

pnot (False x) = True x

peven :: Nat ↔ PBool Nat

peven 0 = True 0

peven (n + 1) = fmap (+1) (pnot (peven n))

Fig. 3. The definition of the even-predicate as a decision on natural numbers.

6.2 Decisions as a programming technique

Decisions offer a solution to the awkwardness in representing predicates reversibly.

On the programming side, the reversible duplication/equality operator [11] (see also

[26]) can be seen as a distant ancestor to predicates-as-decisions, in that it provides

an ad-hoc solution to the problem of checking whether two values are equal in a

reversible manner.

Decisions offer a more systematic approach: They suggest that one ought to

define Boolean values in reversible functional programming not in the usual way,

but rather by means of the polymorphic datatype

data PBool α = True α | False α

storing not only the result, but also what was tested to begin with. With this

definition, negation on these polymorphic Booleans (pnot) may be defined straight-

forwardly as shown in Figure 3. In turn, this allows for more complex predicates to

be expressed in a largely familiar way. For example, the decision for testing whether

a natural number is even (peven) is also shown in Figure 3, with fmap given in the

straightforward way on polymorphic Booleans. For comparison, the corresponding

irreversible predicate is typically defined as follows, with not the usual negation of

Booleans

even :: Nat → Bool

even 0 = True

even (n + 1) = not (even n) .

As such, the reversible implementation as a decision is nearly identical, the only

difference being the use of fmap in the definition of peven to recover the input value

once the branch has been decided.

7 Concluding remarks

In the present paper, we have built on the work on extensive restriction categories

to derive a related concept of extensivity for inverse categories. We have used this

concept to give a novel reversible representation of predicates and their corresponding

assertions in (specifically extensive) join inverse categories with a disjointness tensor,

and in turn used these to model the fundamental control structures of reversible

loops and conditionals in structured reversible flowchart languages. This approach

allowed us to derive a program inversion theorem for structured reversible flowchart

languages, and we illustrated our approach by developing a family of structured

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 169

reversible flowchart languages and using our framework to give it denotational

semantics, with theorems regarding reversibility and program inversion for free.

The idea to represent predicates by decisions was partially inspired by the

instruments associated with predicates in Effectus theory [15]. Given that side

effect free instruments ι satisfy a similar rule, ∇ ◦ ι = id, and that Boolean effecti

are extensive, it could be interesting to explore the connections between extensive

restriction categories and Boolean effecti, especially as regards their internal logic.

Finally, on the programming language side, it could be interesting to further

explore how decisions can be used in reversible programming, e.g., to do the heavy

lifting involved in pattern matching and branch joining. As our focus has been

on the representation of predicates, our approach may be easily adapted to other

reversible flowchart structures, e.g., Janus-style loops [27].

References

[1] Axelsen, H. B. and R. Glück, What do reversible programs compute?, in: M. Hofmann, editor, Foundations
of Software Science and Computation Structures. Proceedings, Lecture Notes in Computer Science 6604
(2011), pp. 42–56.

[2] Axelsen, H. B., R. Glück and T. Yokoyama, Reversible machine code and its abstract processor
architecture, in: V. Diekert, M. V. Volkov and A. Voronkov, editors, Computer Science – Theory and
Applications. Proceedings, Lecture Notes in Computer Science 4649 (2007), pp. 56–69.

[3] Axelsen, H. B. and R. Kaarsgaard, Join inverse categories as models of reversible recursion, in: B. Jacobs
and C. Löding, editors, FOSSACS 2016, Proceedings (2016), pp. 73–90.

[4] Carboni, A., S. Lack and R. F. C. Walters, Introduction to extensive and distributive categories, Journal
of Pure and Applied Algebra 84 (1993), pp. 145 – 158.

[5] Carothers, C. D., K. S. Perumalla and R. M. Fujimoto, Efficient optimistic parallel simulations using
reverse computation, ACM Trans. Model. Comput. Simul. 9 (1999), pp. 224–253.

[6] Cockett, J. R. B. and S. Lack, Restriction categories I: Categories of partial maps, Theoretical Computer
Science 270 (2002), pp. 223–259.

[7] Cockett, J. R. B. and S. Lack, Restriction categories II: Partial map classification, Theoretical Computer
Science 294 (2003), pp. 61–102.

[8] Cockett, R. and S. Lack, Restriction categories III: Colimits, partial limits and extensivity, Mathematical
Structures in Computer Science 17 (2007), pp. 775–817.

[9] Frank, M. P., “Reversibility for efficient computing,” Ph.D. thesis, EECS Dept., Massachusetts Institute
of Technology (1999).

[10] Giles, B. G., “An Investigation of some Theoretical Aspects of Reversible Computing,” Ph.D. thesis,
University of Calgary (2014).

[11] Glück, R. and M. Kawabe, A program inverter for a functional language with equality and constructors,
in: A. Ohori, editor, Programming Languages and Systems. Proceedings, Lecture Notes in Computer
Science 2895 (2003), pp. 246–264.

[12] Glück, R. and T. Yokoyama, A linear-time self-interpreter of a reversible imperative language, Computer
Software 33 (2016), pp. 108–128.

[13] Glück, R. and T. Yokoyama, A minimalist’s reversible while language, IEICE Transactions on Information
and Systems E100-D (2017), pp. 1026–1034.

[14] Guo, X., “Products, Joins, Meets, and Ranges in Restriction Categories,” Ph.D. thesis, University of
Calgary (2012).

[15] Jacobs, B., New directions in categorical logic, for classical, probabilistic and quantum logic, Logical
Methods in Computer Science 11 (2015), pp. 1–76.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171170

[16] Joyal, A., R. Street and D. Verity, Traced monoidal categories, Mathematical Proceedings of the
Cambridge Philosophical Society 119 (1996), pp. 447–468.

[17] Kaarsgaard, R., H. B. Axelsen and R. Glück, Join inverse categories and reversible recursion, Journal
of Logical and Algebraic Methods in Programming 87 (2017), pp. 33–50.

[18] Kastl, J., Inverse categories, in: H.-J. Hoehnke, editor, Algebraische Modelle, Kategorien und Gruppoide,
Studien zur Algebra und ihre Anwendungen 7, Akademie-Verlag, 1979 pp. 51–60.

[19] Mogensen, T. Æ., Partial evaluation of the reversible language Janus, in: Partial Evaluation and
Program Manipulation. Proceedings (2011), pp. 23–32.

[20] Selinger, P., Dagger compact closed categories and completely positive maps, Electronic Notes in
Theoretical Computer Science 170 (2007), pp. 139–163.

[21] Selinger, P., A survey of graphical languages for monoidal categories, in: B. Coecke, editor, New
Structures for Physics (2011), pp. 289–355.

[22] Thomsen, M. K., H. B. Axelsen and R. Glück, A reversible processor architecture and its reversible
logic design, in: A. De Vos and R. Wille, editors, Reversible Computation. Proceedings, Lecture Notes in
Computer Science 7165 (2012), pp. 30–42.

[23] Thomsen, M. K., R. Glück and H. B. Axelsen, Reversible arithmetic logic unit for quantum arithmetic,
Journal of Physics A: Mathematical and Theoretical 43 (2010), p. 382002.

[24] Yokoyama, T., H. B. Axelsen and R. Glück, Reversible flowchart languages and the structured reversible
program theorem, in: L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir
and I. Walukiewicz, editors, International Colloquium on Automata, Languages and Programming.
Proceedings, Lecture Notes in Computer Science 5126 (2008), pp. 258–270.

[25] Yokoyama, T., H. B. Axelsen and R. Glück, Optimizing clean reversible simulation of injective functions,
Journal of Multiple-Valued Logic and Soft Computing 18 (2012), pp. 5–24.

[26] Yokoyama, T., H. B. Axelsen and R. Glück, Towards a reversible functional language, in: A. De Vos
and R. Wille, editors, RC 2011, Lecture Notes in Computer Science 7165 (2012), pp. 14–29.

[27] Yokoyama, T. and R. Glück, A reversible programming language and its invertible self-interpreter, in:
Partial Evaluation and Semantics-Based Program Manipulation. Proceedings (2007), pp. 144–153.

R. Glück, R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 336 (2018) 155–171 171

	Introduction
	Reversible structured flowcharts
	Restriction and inverse categories
	Partial order enrichment and joins
	Restriction coproducts, extensivity, and related concepts

	Extensivity of inverse categories
	Modelling structured reversible flowcharts
	Predicates as decisions
	Reversible structured flowcharts, categorically
	Extracting a program inverter

	Applications
	Example: A reversible flowchart language
	Decisions as a programming technique

	Concluding remarks
	References

