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Highlights 

 Surface plasmon resonance was used to characterize HePS-milk protein interactions 

 Binding affinity depends on HePS size, repeat structure, pH and ionic strength 

 Heat- -lactoglobulin dramatically increased HePS binding capacity 

 

 

 

ABSTRACT 

Interactions of exopolysaccharides and proteins are of great importance in food science, but 

complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure 

was established to characterize binding of seven structure-determined, branched hetero-

exopolysaccharides (HePSs) of 0.14 4.9 MDa from lactic acid bacteria to different milk proteins ( -

casein, -casein, native and heat- -lactoglobulin) at pH 4.0 5.0. Maximum binding capacity 

(RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- 

and 600-fold, respectively, in the complexation with native -lactoglobulin at pH 4.0. Highest RUmax 

and KA,app were obtained with heat- - -casein, respectively. Overall, RUmax 

and KA,app decreased 6- and 20-fold, respectively, with increasing pH from 4.0 to 5.0. KA,app was 

influenced by ionic strength and temperature, indicating that polar interactions stabilize HePS protein 

complexes. HePS size as well as oligosaccharide repeat structure, conferring chain flexibility and 

hydrogen bonding potential, influence the KA,app.  

Keywords: 
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Hetero-exopolysaccharides (HePSs) - - -casein, binding parameters, surface 

plasmon resonance (SPR), dynamic light scattering (DLS) 

 

Abbreviations: 

-casein; -lactoglobulin; DLS, dynamic light scattering; EPS, exopolysaccharide; Gal, 

galactose; GalNAc, N-acetylgalactosamine; Glc, glucose; GlcNAc, N-acetylglucosamine; hBLG, heat-

treated BLG; HePS, hetero-exopolysaccharide; HoPS, homo-exopolysaccharide; KCN -casein; LAB, 

lactic acid bacteria; nBLG, native BLG; pI, isoelectric point; Pyr, pyruvate; Rha, rhamnose; SEC, size-

exclusion chromatography; SNR, signal-to-noise ratio; SPR, surface plasmon resonance. 

 

1. Introduction 

Homo- and hetero-exopolysaccharides (HoPSs and HePSs) are secreted by a wide variety of Gram-

positive and Gram-negative bacteria, yeasts, molds, and microalgae (Donot, Fontana, Baccou, & 

Schorr-Galindo, 2012). HoPSs produced from sucrose by extracellular glucan- and fructansucrases 

(Monsan, Bozonnet, & Albenne, 2001; Zannini, Waters, Coffey, & Arendt, 2015) contain either D-

glucopyranose or D-fructofuranose residues connected by a few glycosidic bond types (Laws, Gu, & 

Marshall, 2001), while HePSs are complex and synthesized intracellularly from nucleotide sugars 

catalyzed by glycosyltransferases yielding oligosaccharide repeats, which are polymerized and secreted 

as HePS (Schmid, Sieber, & Rehm, 2015; van Kranenburg, Vos, van Swam, Kleerebezem, & de Vos, 

1999). The repeats contain 3 9 monosaccharide residues, typically glucose (Glc), galactose (Gal), 

rhamnose (Rha), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), or glucuronic acid, 

in either pyranose or furanose configuration (Broadbent, McMahon, Welker, Oberg, & Moineau, 2003; 

De Vuyst, De Vin, Vaningelgem, & Degeest, 2001). Glycerol, pyruvate (Pyr), phosphate, acetate, and 
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other substituents may occur (De Vuyst et al., 2003; Gruter, Leeflang, Kuiper, Kamerling, & 

Vliegenthart, 1993, 1992; Nakajima, Hirota, Toba, Itoh, & Adachi, 1992; Van Calsteren, Gagnon, 

Nishimura, & Makino, 2015; Van Calsteren, Pau-Roblot, Bégin, & Roy, 2002). The molar size of 

HePSs spans a wide range, and the structural diversity of oligosaccharide repeats is high with regard to 

monosaccharide composition, anomer configuration, regioselectivity, and substituents.  

Exopolysaccharides (EPSs) can protect bacteria against changes in temperature, pH, light intensity, 

and other environmental stresses (for reviews see (De Vuyst et al., 2001; Donot et al., 2012; Freitas, 

Alves, & Reis, 2011; Hidalgo-Cantabrana et al., 2014; Patten & Laws, 2015)) and are commonly 

involved in formation and stabilization of biofilms (Sutherland, 2001). Lactic acid bacteria (LAB) 

produce HePSs in smaller amount than HoPSs (Torino, Font de Valdez, & Mozzi, 2015), but HePS 

nevertheless contribute very substantially in improving the  physical and rheological properties of 

fermented milk products (Ayala-Hernández, Hassan, Goff, Mira de Orduña, & Corredig, 2008; De 

Vuyst & Degeest, 1999; Leroy & De Vuyst, 2004; Mende, Rohm, & Jaros, 2015). Interaction with milk 

proteins and water-binding capacity of HePSs have been connected with decreased syneresis, increased 

viscosity, firmness, creaminess, and a shiny surface of fermented dairy products (Folkenberg, Dejmek, 

Skriver, & Ipsen, 2005, 2006). Additionally, HePS protein interactions may confer beneficial health 

effects in humans including antitumor activity (Wang et al., 2014), immunomodulation (Chabot et al., 

2001; Hidalgo-Cantabrana et al., 2012), antioxidant properties (Zhang et al., 2013), anti-atherosclerotic 

activity (Tok & Aslim, 2010), antimutagenicity (Tsuda, Hara, & Miyamoto, 2008), and biosorption of 

lead (Feng, Chen, Li, Nurgul, & Dong, 2012).  

Analysis of HoPS milk protein interactions by surface plasmon resonance (SPR) has previously 

showed the binding capacity to decrease with pH increasing from 4.0 to 5.5 and to vary with HoPS 

linkage type, branching, and molecular size (Babol, Svensson, & Ipsen, 2011; Diemer et al., 2012). In 
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the present work, the SPR methodology was further developed to describe both HePS protein binding 

capacity and apparent affinity. In this study, seven structurally diverse LAB HePSs (HePS-1 HePS-7) 

were used, all previously described in relation to viscosity regulation in yogurt fabrication (Bouzar, 

Cerning, & Desmazeaud, 1996; B Degeest, Mozzi, & De Vuyst, 2002; Doleyres, Schaub, & Lacroix, 

2005; Kimmel, Roberts, & Ziegler, 1998; Robitaille et al., 2009), immune effect (Bleau et al., 2010; 

Lebeer, Claes, Verhoeven, Vanderleyden, & De Keersmaecker, 2011), or prevention of antibiotic-

associated diarrhea (Vanderhoof et al., 1999).  The aim of this study was to test the hypothesis that 

HePS size and structure determine the ability to bind milk proteins. This procedure can monitor effects 

of various environmental conditions on polysaccharide protein interactions in a quantitative manner, 

disclose functional determinants of HePS protein complex formation, and screen LAB strains relevant 

for application in food products as well as the capability to form non-food complexes, e.g. in biofilms. 

 

2. Materials and methods  

2.1. HePSs  

HePS-1 HePS-7 were purified from culture supernatants of LAB strains, pre-cultured and fermented 

(20 48 h) in relevant media (Supplementary Table S1; Supplementary methods S1.1), and subjected to 

structure analyses (Supplementary methods S1.2 and S1.3). HePSs were quantified using the phenol

sulfuric acid method (Dubois, Gilles, Hamilton, Rebers, & Smith, 1956) with monosaccharide mixtures 

mimicking oligosaccharide repeat compositions as standards.  

 

2.2. HePS molar mass (Mw)  

Molar mass of HePS-1 HePS-7 was determined by size-exclusion chromatography (SEC) (solvent 

delivery system (LC-10AD), autosampler (SIL-10A), RI detector (RID-10A); all Shimadzu, Kyoto, 
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Japan) on an OH-PK SB-805HQ, 300 × 8 mm, pore size 500 Å column (Shoko CO., Ltd, Tokyo, 

Japan) in 10 mM sodium citrate/citric acid pH 4.0. Dextran standards (4.5 MDa, 1.45 MDa, 560 kDa, 

350 kDa (American Polymer Standards Corporation, Mentor, OH, USA), 276.5 kDa, 196.3 kDa, 123 

kDa (Pharmacosmos, Holbaek, Denmark)) and pullulan of 22 kDa were used for calibration. Standards 

(1.0 2.7 mg ml ) and HePSs (1.0 2.0 mg ml ) dissolved in the above buffer, degassed, kept 

overnight, and filtered (0.45 µm filters; Frisenette ApS, Knebel, Denmark) were analyzed (100 µl) at a 

flow rate of 0.5 ml min .
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HePS M values were obtained from the standard curve using a linear regression equation: 

 

where Ve is the elution volume (r2=0.992). 

 

2.3. Milk protein stocks 

- - -caseins (BCN and KCN) (all Sigma-Aldrich, St. Louis, 

MO, USA) were dissolved (1.0 mg ml ) in 10 mM sodium acetate pH 4.0, centrifuged (20000g, 4°C, 

20 min) and the supernatants diluted (50 µg ml ) for sensor chip immobilization (see 2.5.1). BLG (5 

mg ml ) in 50 mM sodium phosphate pH 6.8, 30 mM NaCl, was heat-treated (85°C, 15 min) (hBLG) 

and centrifuged (as above). The supernatant was dialyzed against 10 mM sodium acetate pH 4.0 and 

diluted (50 µg ml ) for immobilization (see 2.5.1). For dynamic light scattering (DLS) (see 2.4), BLG 

(5.0 mg ml ) was stirred in deionized water (150 rpm, 13 h, room temperature) and centrifuged (as 

above). Concentrations were determined spectrophotometrically at 280 nm using molar extinction 

coefficients ( ) 17210, 11460, and 19035 M  cm  calculated by ProtParam (Gasteiger et al., 2005) 

from amino acid sequences for BLG, BCN, and KCN, respectively (GenBank accessions: BLG, 

2Q2M_A; BCN, AAA30431; KCN, CAA33034). 

 

2.4. Dynamic light scattering   

Lyophilized HePS-3 in deionized water (3 mg ml ) was left overnight at 4°C for complete 

dissolution, filtered (0.45 µm filters; Frisenette ApS), mixed with BLG (see 2.3) to final 0.1 and 1.0 mg 

ml , respectively, in 10 mM sodium citrate (pH 3 6) or Tris HCl (pH 7 8) and equilibrated 30 min 

prior to DLS analysis. Particle sizes of HePS-3, BLG, and HePS-3+BLG mixtures were analyzed 

(23°C, scattering angle 90°; BI-200SM; Brookhaven Instruments Corporation, Holtsville, NY, USA) 
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and the distributions of mean apparent translational diffusion coefficients (DT) determined by fitting the 

DLS autocorrelation functions (obtained with the Brookhaven system) using nonnegative constrained 

least squares. Distribution of mean apparent DT was converted to distribution of hydrodynamic 

diameter (dH) using the Stokes-Einstein equation: 

 

where k is the Boltzmann constant 23 J/K), T 

viscosity (0.93 mPa.s; assumed to be that of water at 296 K). 

 

2.5. Surface plasmon resonance 

2.5.1. Protein immobilization  

Proteins (see 2.3) were covalently coupled to SPR sensor chips (CM5, CM4, C1; GE Healthcare, 

Uppsala, Sweden) using the automatic immobilization wizard (Biacore T100 Control Software; GE 

 and Amine Coupling Kit (GE Healthcare) for sample flow cell, while the 

reference flow cell underwent the same treatment without protein. CM4 and CM5 were prepared by 7 

min injections of i) 0.05 M N-hydroxysuccinimide, 0.2 M 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide, ii) protein (50 µg ml 1 in 10 mM sodium acetate pH 4.0), and iii) 1 

M ethanolamine pH 8.5 to block remaining activated carboxyl groups. C1 was washed 2 × 1 min with 

0.1 M glycine NaOH pH 12.0, 0.3% (v/v) Triton X-100 followed by activation, immobilization, and 

blocking of activated carboxyl groups as above.    

 

2.5.2. SPR analysis   

Standard SPR analysis (25°C; Biacore T100; GE Healthcare) in running buffer of ionic strength 

similar to milk (10 mM sodium acetate pH 4.0, 70 mM NaCl, 0.005% surfactant P20; GE Healthcare) 
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(Babol et al., 2011) comprised 180 s association, 60 s dissociation, two consecutive 60 and 30 s 

regeneration cycles (10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid pH 9.0, 1 M NaCl, 3 

mM ethylenediaminetetraacetic acid, 0.005% surfactant P20) and 300 s equilibration (running buffer). 

Influence of pH (4.0 5.0) and NaCl (70 200 mM) was assessed. Temperature (25 35°C) effect was 

analyzed under standard conditions. Binding of HePS-1 HePS-7 was analyzed at seven concentrations 

(1 200 µg ml ) using 60 µl min 1 to minimize mass transport effects. The change in refractive index 

caused by the accumulation of HePS interacting with the immobilized protein on the sensor surface is 

reported in response units (RU), where the sensorgram is in measured RU plotted versus time. After 

each HePS series, two samples below the critical HePS concentration (see 3.2.1) were analyzed to 

evaluate reproducibility. HePS-1 (10 µg ml ), showing robust and reproducible well-fitted 

sensorgrams, was used as a control to monitor the protein surface activity before and after each HePS 

interaction series. Reference cell and buffer blank responses were subtracted from sensorgrams to 

correct for nonspecific binding to the surface, mechanical drift, and external systemic noise (Myszka, 

2000). Data were processed using Scrubber2 (Biologic Software Pty. Ltd., Campbell, Australia) and 

an in-house script (in MATLAB; The MathWorks, Natick, MA, USA) calculating steady-state 

response values at equilibrium (RUeq) by averaging the signal at 6 4 s prior to dissociation. Steady-

state analyses adopted a 1:1 Langmuir interaction model (Myszka, 2000):  

 

RUeq is the steady-state response at HePS concentration C and KD,app the apparent equilibrium 

dissociation constant. RUmax is the maximum HePS binding capacity of the protein surface. KD,app and 

RUmax were calculated by plotting RUeq against C and using nonlinear least-squares fitting routines 
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. KA,app, calculated 

as 1/KD,app, is the apparent equilibrium association constant. 

  

3. Results and Discussion  

3.1. HePS structure and size  

HePS-1 HePS-7 oligosaccharide repeat structures (Fig. 1) were confirmed by 1H nuclear magnetic 

resonance spectra (Supplementary Fig. S1) judged to be identical to spectra of HePSs from authentic 

strains or in the literature (Table 1). Sugar compositions were verified for the rhamnose-containing 

HePS-2, HePS-3, and HePS-6 (Supplementary results S2.1), and the HePS-7 oligosaccharide repeat 

was prepared and characterized by mass spectrometry (Supplementary results S2.1). Mw contributes to 

function (Cerning, Bouillanne, Landon, & Desmazeaud, 1992; De Vuyst & Degeest, 1999; van den 

Berg et al., 1995) and was determined by SEC (Table 1; Supplementary Fig. S2).  
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Figure 1 Structures of HePS repeat units. HePS-1 (Lactococcus lactis ssp. cremoris NCIMB 700967), HePS-2 
(Lactobacillus delbrueckii ssp. bulgaricus NCIMB 702483), HePS-3 (Lactobacillus rhamnosus GG (ATCC 
53103)), HePS-4 (Streptococcus thermophilus CNRZ 1068), HePS-5 (Lactobacillus delbrueckii ssp. bulgaricus 
CNRZ 1187), HePS-6 (Lactobacillus casei LB31), and HePS-7 (Streptococcus thermophilus RD534). 
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3.2. SPR analysis of HePS milk protein interaction  

3.2.1. SPR protocol development 

SPR analyses were previously used to determine binding between HoPS (0.5 mg ml 1) and milk 

proteins immobilized at high density (RU=1130 4200) on a dextran-coated CM4 sensor chip (Babol et 

al., 2011; Diemer et al., 2012). Surprisingly, HePS-3 (0.5 mg ml ) exhibited more pronounced binding 

to the CM5 and CM4 reference cell compared to the native BLG (nBLG) sample cell, even at lower 

protein density (RU=395) than used in the HoPS study (Fig. 2A B). Similar reference cell binding to 

CM5 and CM4 was observed for all HePSs analyzed in this study (data not shown).  

 

Figure 2 Sensorgrams of HePS- -lactoglobulin (nBLG) immobilized on different SPR sensor chips. 
Reference cell: dashed line; sample cell: solid line; difference sensorgram: dotted line. A) HePS-3 (0.5 mg ml 1) 
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injected on CM5 with 395 RU immobilized nBLG; B) HePS-3 (0.5 mg ml 1) injected on a CM4 sensor chip with 
190 RU immobilized nBLG. C) 0.4 mg ml 1 HePS-3 injected on a C1 chip with 75 RU immobilized nBLG. D) 
0.04 mg ml 1 HePS-3 injected on a C1 chip with 75 RU immobilized nBLG. 

 

Both the CM5 and the CM4 sensor chips are dextran coated, with the CM4 chip having a shorter 

dextran layer and a lower carboxyl group density than the CM5 chip. Considering sample and reference 

cell responses as signal and noise, respectively, the signal-to-noise ratio (SNR) was 0.88 with nBLG 

CM5 and improved only 5% when using nBLG CM4. Remarkably, adverse HePS dextran binding was 

avoided using the matrix-free C1 chip that raised the SNR by 36% at 0.4 mg ml and 150% at 0.04 mg 

ml  HePS-3 (Fig. 2C-D) compared to CM5. The sensorgram shape clearly indicated rapid saturation of 

the C1 reference cell by HePS-3 and the binding to nBLG C1 approached steady state at the end of 

injection (Fig. 2D). Additionally, the density of immobilized protein was kept low minimizing the two 

common SPR obstacles; mass transport limitations; and crowding (Myszka & Morton, 1998). Slow 

dissociation, however, as also previously found in SPR analysis -glucan HoPS milk protein and a 

lacquer polysaccharide polylysine binding (Bai & Yoshida, 2013; Diemer et al., 2012) made C1 chip 

regeneration necessary for all HePSs, and the effectiveness of this was confirmed by superb 

reproducibility for binding (in duplicate) of 1 and 6 µg ml  HePS-3 (Fig. 3A). Importantly, at high 

concentrations of injected HePS, binding to the C1 reference cell was arising causing a decrease in the 

RUeq upon steady-state binding analysis (Supplementary Fig. S3). The acceptable HePS concentration 

entailing minuscule binding to the reference cell was HePS specific and referred to as the critical HePS 

concentration. Below the critical HePS concentrations ranges, the assay reliably featured typical 

sensorgrams allowing determination of maximum binding capacity (RUmax) and KD,app (Fig. 3A B), 

which represents a major advancement over the previous established SPR procedure (Babol et al., 

2011; Diemer et al., 2012). The steady-state binding curve analysis (Fig. 3B) indicated apparent affinity 
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for protein and HePS most likely undergoing multiple binding, hence the slow dissociation 

(Myszka, 2000). Avidity effects are inherent to the polysaccharide structure and have physiological 

relevance in biofilms (Sheppard & Howell, 2016) as well as importance for industrial associative 

polysaccharide milk protein interactions involved in texturizing microstructures of dairy products 

(Folkenberg et al., 2006).  

For statistical evaluation of the SPR procedure, assays with nBLG immobilized at three different levels 

were carried out (Table 2). Although the immobilization level increased by ~300% from 288 to 866 

RU, the apparent affinity was only little  affected yielding an average KA,app of 0.208±0.022 nM. 

Table 2. Binding of HePS- -lactoglobulin at 
three different immobilization levels (RU) on a C1 chip. 
Immobilization level KA,app Average KA,app 

(RU) (nM) (nM) 

288 0.217 
311 0.230 0.208±0.022 
866 0.178 

 

Additionally, two negative control polysaccharides, showing only minuscule binding to the reference-

cell and no binding to the sample-cell with immobilized BLG, support the protein binding by HePS 

(Supplementary Fig. S4). 
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Figure 3 SPR binding curves between HePS- -lactoglobulin (nBLG) on a C1 chip 
(RU = 288). A) SPR sensorgrams of HePS-3 injected for 180 s followed by 120 s dissociation. HePS was 

1): 0, blue; 1 in duplicate, red and bordeaux; 3, yellow; 6 in 
duplicate, purple and dark blue; 12, green; 30, light blue. B) Steady-state analysis determination of RUmax and 
KDapp using fitting to a 1:1 binding model. 

 

3.2.2. HePS-3 interaction with native -lactoglobulin 

A pH increase from 4.0 to 4.5 caused KA,app and RUmax for HePS-3 and nBLG to decrease 1.3- and 2.9-

fold, respectively (Table 3), while no binding was observed at pH 5.0 near the reported nBLG pI of 

4.7 5.3 (Mercadante et al., 2012; Sakurai, Konuma, Yagi, & Goto, 2009; Verheul, 1998). Reduced net 

charge of nBLG or change in ionization state of one or more critical side chains may suppress binding 

at pH 5.0. At pH 4.0 and 100 mM NaCl, KA,app and RUmax decreased 2.3- and 1.4-fold compared to 70 

mM NaCl (Table 3); no interaction was detected at 200 mM NaCl.  
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Table 3. Binding of HePS- -lactoglobulin on C1 chip. 

pH   NaCl (mM) Temperature (°C) 

  4.0 4.5 5.0 
 
70 100 200 

 
25 30 35 

KA,app (µM 1) 262.7 ± 10.5 208.6 ± 12.4 n.d. 252.2 109.0 n.d. 232.7 ± 2.6 256.2 ± 5.6 275.5 ± 8.3 

RUmax 18.6 ±   0.7 6.5 ± 0.6 n.d.   19.3 13.5 n.d.   27.0 ± 1.3 25.6 ± 1.2 24.3 ± 1.1 

n.d. = no detectable signal.  

 

The effects of pH and ionic strength suggest that polar interactions are important for complexation, 

while the modest increase in KA,app with increasing temperature (25 35°C) (Table 3) indicated minimal 

role of hydrophobic interactions.  

DLS analysis (Fig. 4) supported the pH dependence of HePS-3 binding. dH of nBLG was constant at 

6.0±0.4 nm in 70 mM NaCl at pH 3 8, thus close to 7 nm reported for the BLG dimer (Baldini et al., 

1999). HePS-3 had dH  in the range 100.9±2.7 106.0±3.1 nm at pH 3 6 (Fig. 4, insert). In the absence 

of salt, BLG and HePS-3 gave dH values of 8.2 ± 0.2 nm and 118.3 ± 0.7 nm, respectively, thus no 

remarkable size difference appeared as a consequence of the presence of NaCl for the two free 

molecules (data not shown). HePS-3 nBLG mixture had a stable particle mean dH = 37.6±2.9 nm at pH 

>5 increasing to a maximum mean dH at pH 4 of 184.6±1.3 nm. In absence of NaCl, dH of HePS-3

nBLG increased to 448.0±4.8 nm, thus electrostatic shielding weakened HePS-3 nBLG interactions, in 

accordance with pH and ionic strength effects shown also by SPR. Similarly, DLS data collected at 

173° for the HePS-3 BLG mixture in 10 mM sodium citrate pH 4.0 gave dH values of 246 ± 11 nm and 

50 ± 3 nm in the absence and presence of salt, respectively.  
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Figure 4 DLS of HePS- -lactoglobulin (nBLG) at different pH. Solid line: 1 mg ml 1 
nBLG in 70 mM NaCl. Dotted line: 1 mg ml 1 nBLG mixed with 0.1 mg ml 1 HePS-3 in 70 mM NaCl. Dashed 
line: 1 mg ml 1 nBLG mixed with 0.1 mg ml 1 HePS-3 without NaCl. Insert: Size of HePS-3 as function of pH in 
70 mM NaCl.    

 

3.2.3. HePS binding capacity  

Noise level and activity of the C1 protein surface were assessed as stable during the entire assay 

(Supplementary results S2.2).Every HePS bound well to nBLG, BCN, KCN, and hBLG (Fig. 5; 

Supplementary Table S2), with few exceptions. Thus no interaction was observed between nBLG and 

any of the HePSs at pH 5.0, and for HePS-2 also at pH 4.5 (Fig 5A). No interaction was detected 

between HePS-6 with any of the four proteins at pH 5.0. Moreover, protein surface saturation was not 

achieved below the HePS critical concentration level for nBLG HePS-2 (pH 4.0), BCN HePS-7 (pH 

4.5), KCN HePS-2 (pH 5.0), hBLG HePS 5 (4.5), and hBLG HePS-7 (pH 4.0) (Fig. 5A). 

Generally, RUmax decreased when pH increased from 4.0 to 5.0 (Fig. 5A; Supplementary Table S2), 

resembling SPR data -glucan HoPSs binding milk proteins (Babol et al., 2011; Diemer et al., 2012). 

pI for nBLG was about 5 and calculated to 5.37 for BCN and 6.29 for KCN (Gasteiger et al., 2005) and 
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RUmax decrease from pH 4.0 to 5.0 may stem from reduced protein net charge. Remarkably, average 

RUmax at pH 4.0 of all HePSs to BCN (406 RU) was roughly 40% of RUmax obtained with KCN (406 

RU), while nBLG (512 RU) only reached around 15% of average RUmax with KCN. The same ranking 

for the proteins were found with -glucan HoPS where RUmax at pH 4.0 was about 50% with BCN and 

15% with nBLG of the RUmax value for KCN (Babol et al., 2011). Notably, RUmax was >10-fold higher 

with hBLG (1023 RU) than nBLG (512 RU). This, together with binding occurring at pH 5.0 to hBLG 

but not to nBLG, underscores that heat-treated BLG has increased HePS binding capacity. This may be 

explained from previous structural analysis establishing that heat treatment of BLG (>80°C) triggers an 

incipient unfolding of BLG leading to increased exposure of inner hydrophobic amino acid side chains 

(Moro, Báez, Busti, Ballerini, & Delorenzi, 2011). Finally, to preclude that lack of detected BLG

HePS binding at pH 5.0 was not due to low immobilization level of nBLG (512 RU), a C1 surface with 

nBLG immobilized at equivalent level (1022 RU) as the hBLG surface (1023 RU) was established and 

proven unable to bind any of the analyzed HePSs at pH 5.0 (data not shown).  
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Figure 5 Binding parameters (RUmax, KD,app, and KD,app,repeat) for HePS-1 HePS-7 with -lactoglobulin 
- -casein (KCN, white), and heat- -lactoglobulin (hBLG, 

yellow) as a function of pH in the range 4.0 5.0. A) RUmax, B) molar affinities by moles of repeating units, 
KA,app,repeat (µM 1), C) molar affinities by moles of HePS, KA,app (nM 1). KA,app below 2.5 nM-1 are illustrated in 
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figure D in µM 1 for better inspection of the low values. Asterisks represent cases where steady state was not 
achievable. As the ranges spanned are rather large, and the numbers represented are rounded off the raw data are 
reported in Supplementary Table S2. 

 

HePS-2, HePS-6, and HePS-7 gave low (HePS-6 the lowest) RUmax values with all four proteins and 

no binding at pH 5.0. Low RUmax values may be explained by the relatively small size of these HePSs 

(Table 1). HePS-3, however, had similar molar mass as HePS-2 and HePS-7, but gave very high 

RUmax, indicating HePS binding capacity and, most probably, binding affinity are influenced by other 

properties than the molar mass (see 3.2.4). 

3.2.4. Affinity of milk proteins for HePSs 

The molar KA,app for all four investigated protein surfaces varied >3-fold in the pH range 4.0 5.0 for 

HePS-2, HePS-6, and HePS-7 (except for HePS-7 BCN and HePS-2 KCN), but from negligibly to 3-

fold for HePS-1 and HePS-3 HePS-5 (Fig. 5C-D; Supplementary Table S2). By contrast, the KA,app for 

HePS-7 BCN and HePS-2 KCN was only modestly affected (~1.4- and ~2.1-fold) in the pH range 

4.0 5.0. The largest affinity reduction was observed for HePS-2 BCN (>20-fold) from pH 4.0 to 5.0 

and HePS-6 KCN (>15-fold) from pH 4.0 to 4.5. With HePS-7, KA,app for nBLG and KCN decreased 

>4-fold  at pH 4.0 to 5.0 and >9-fold for hBLG at pH 4.5 to 5.0. Notably, KA,app for all four milk 

proteins, except for the HePS-2 nBLG complex, was reduced as pH increased to pH 5.0. By contrast, 

although changes in KA,app for HePS-1 and HePS-3 HePS-5 were modest (<3-fold), their affinity had a 

tendency to increase with increasing pH in the range 4.0 5.0, except for HeSP-3 nBLG, HePS-4

nBLG and HePS-5 hBLG displaying a small affinity decrease of ~1.1-, ~1.6- and ~1.6-fold, 

respectively.  
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Highest apparent affinity of all four protein surfaces was observed with nBLG and BCN binding 

HePS-1, HePS-4, HePS-5, and to some degree with HePS-3 (Fig. 5C-D; Supplementary Table S2). A 

large molar mass of HePS-1, HePS-4, and HePS-5 (3.3 4.9 MDa; Table 1) compared to HePS-2, 

HePS-3, HePS-6, and HePS-7 (0.14 0.39 MDa; Table 1) and high KA,app probably reinforce multiple 

binding and avidity effects (Fig. 5C-D; Supplementary Table S2). Still, HePS-2, HePS-3, and HePS-7, 

despite similar molar mass of around 0.3 MDa, bound milk proteins with different affinity and pH 

dependency, indicating that other properties of HePSs than molar mass contribute to the protein 

affinity.  

Molar affinity (KA,app,repeat) based on repeat unit size (648.57 1141.04 Da; Table 1) ignores the large 

differences in HePS molar size (Fig. 5B; Supplementary Table S2). The relative KA,app,repeat for milk 

proteins was generally highest for HePS-3 and HePS-4 and lowest for HePS-6 and HePS-7 (Fig. 5B; 

Supplementary Table S2). HePS-3 and HePS-4 differ from the other HePSs by containing backbone 

GlcNAc and GalNAc residues, respectively (Fig. 1), which may impose higher binding energy than 

regular sugar residues, as further supported by comparing KA,app,repeat for HePS-4 and HePS-7, having 

similar repeat structures both containing (branch) linkages combined with compositions 

of 1:2:1 Glc:Gal:GalNAc and 2:2 Glc:Gal, respectively (Fig. 1). Highest apparent affinity for the four 

protein surfaces was seen with HePS-4 and the lowest with HePS-7, suggesting GalNAc has a positive 

effect on the interaction. However, avidity effects due to large differences in molar mass probably also 

influence the difference in KA,app,repeat between HePS-4 and HePS-7. Notably, HePS-3 and HePS-7 had 

similar molar mass but differed significantly in KA,app,repeat, being higher for HePS-3 with all proteins 

(Fig. 5B; Supplementary Table S2). Thus, different repeat unit structures were demonstrated to result in 

different KA,app,repeat. KA,app,repeat of HePS-6 was generally low, except for KCN and hBLG at pH 4.0 

(Fig. 5B; Supplementary Table S2). The rhamnose-rich HePS-6 repeat (4:2:1:1 Rha:Glc:Gal:pyruvate) 
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may have low affinity, as this 6-deoxyhexose can form one hydrogen bond less than regular hexoses. A 

potential negative charge from the pyruvate in HePS-6 (Fig. 1) may also affect binding. 

HePS-2 had medium affinity for the four protein surfaces, except KCN at pH 5.0 and nBLG at pH 

4.0, where saturation was not achieved, indicative of low affinity (Fig. 5B; Supplementary Table S2). 

Furthermore, no interaction was detected with nBLG at pH 4.5 5.0. The HePS-2 repeat unit of seven 

sugar residues (5:1:1 Gal:Glc:Rha) includes three branches assumed to cause substantial chain stiffness 

that may lead to lower binding compared to less branched HePSs (Fig. 1). HePS-1 and HePS-5 had 

very similar molar mass, linkage type, monosaccharide configuration, and number of branches and also 

gave similar KA,app,repeat with all four proteins (Fig. 5B; Supplementary Table S2).  

As seen with regard to binding capacity, affinity of hBLG and nBLG differed remarkably with all 

HePSs (Fig. 5A-B; Supplementary Table S2). HePS-1 and HePS-3 showed 5 7-fold higher KA,app for 

nBLG than for hBLG, while HePS-4 and HePS-5 showed 2 5-fold higher KA,app for nBLG (Fig. 5C-D; 

Supplementary Table S2). By contrast, HePS-6 and HePS-7 had 7 9-fold higher KA,app for hBLG as 

compared to nBLG. The difference in binding properties probably results from the conformational 

change of BLG induced by heat treatment (Moro et al., 2011). Furthermore, increase of KA,app,repeat was 

observed with increasing pH as before for all four protein surfaces for HePS-1 and HePS-3 HePS-5, 

except for HeSP-3 nBLG and HePS-4 nBLG and HePS-5 hBLG, while binding capacity of the 

proteins decreased in the same pH range (Fig. 5A-B; Supplementary Table S2). Thus, a simple 

correlation was not observed between binding capacity and apparent affinity within the pH range 

4.0 5.0, which emphasized the importance of ability to determine both RUmax and KA,app of HePS

protein interactions by this SPR procedure. 
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Overall, the outcome of the present study presumably reflects that structural determinants of repeat 

units elicit variation in HePS functionality - -linkages (Laws 

et al., 2001), furanose confers higher flexibility than pyranose residues (Seo et al., 2008), while 

branches reduce flexibility (Tuinier et al., 2001). The diversity in HePS linkage type, monosaccharide 

ring configuration, and degree of branching thus invokes considerable span of HePS flexibility. This in 

turn has direct implication for manufacture of fermented dairy products where the milk is severely heat 

treated (i.e. at 90 95oC for several minutes) prior to fermentation in order to ensure better texture as a 

consequence of disulfide interactions between BLG and KCN on the surface of the casein micelles as 

well as in the serum phase (Donato & Guyo . Subsequent production of HePS by the 

starter culture used during fermentation will then further influence texture through potential interaction 

(aggregative or segregative) with the milk proteins (van de Velde, de Hoog, Oosterveld, & Tromp, 

2015). These authors have also noted that molecular weight, linkage type, and charge of HePS are the 

main factors determining their effect on structure. From the present results, it would appear that a 

viable strategy to control texture in fermented dairy products could be to characterize starter cultures in 

terms of the parameters inducing flexibility and the charge density of the HePS produced in order to 

maximize binding affinity. This, however, has to be complemented with textural and microstructural 

characterization on actual dairy products and verified with a larger set of samples.  

4. Conclusions  

The established SPR protocol provides a tool for screening and validating HePS milk protein 

interactions by steady-state analysis of the maximum binding capacity RUmax and the apparent 

association constants KA,app and KA,app,repeat. The procedure is sensitive, uses a small amount of HePS for 
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full binding analysis, and is applicable in evaluating both food and non-food protein polysaccharide 

interactions. To our knowledge, this is the first study where comparative HePS milk protein binding 

affinities have been reported. The effects of pH, ionic strength, and temperature changes suggest 

HePS protein complex formation to be driven mainly by polar interactions. Heat treatment (85oC/15 

min) of BLG dramatically increased its HePS binding capacity but reduced the affinity. Even though 

differences in binding properties were not assigned to specific chemical properties of HePSs, the data 

support that both molar mass and oligosaccharide repeat structure are important for complexation as 

measured by maximum binding capacity RUmax and apparent association constants KA,app and 

KA,app,repeat.  
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