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ARTICLE

Transcriptional decomposition reveals active
chromatin architectures and cell specific regulatory
interactions
Sarah Rennie1, Maria Dalby1, Lucas van Duin1 & Robin Andersson 1

Transcriptional regulation is tightly coupled with chromosomal positioning and three-

dimensional chromatin architecture. However, it is unclear what proportion of transcriptional

activity is reflecting such organisation, how much can be informed by RNA expression alone

and how this impacts disease. Here, we develop a computational transcriptional decom-

position approach separating the proportion of expression associated with genome organi-

sation from independent effects not directly related to genomic positioning. We show that

positionally attributable expression accounts for a considerable proportion of total levels and

is highly informative of topological associating domain activities and organisation, revealing

boundaries and chromatin compartments. Furthermore, expression data alone accurately

predict individual enhancer–promoter interactions, drawing features from expression

strength, stabilities, insulation and distance. We characterise predictions in 76 human cell

types, observing extensive sharing of domains, yet highly cell-type-specific

enhancer–promoter interactions and strong enrichments in relevant trait-associated var-

iants. Overall, our work demonstrates a close relationship between transcription and chro-

matin architecture.
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The three-dimensional organisation of a genome within a
nucleus is strongly associated with cell-specific transcrip-
tional activity1,2. On a global level, transcriptional activa-

tion or repression is often accompanied by nuclear relocation of
chromatin in a cell-type-specific manner, forming chromatin
compartments3 of coordinated gene transcription4–6 or silen-
cing7. Locally, chromatin forms sub-mega base pair domains of
self-contained chromatin proximity, commonly referred to as
topologically associating domains (TADs)8,9. TADs frequently
encompass interactions between regulatory elements, such as
between promoters and enhancers10–13, as well as between co-
regulated genes9, which reflects cell-type-restricted transcriptional
programmes14. In contrast, ubiquitously expressed promoters are
enriched close to domain boundaries8 and co-localise in the
nucleus15. A tight coupling between transcriptional activity and
chromosomal positioning is further supported by positional
clustering of co-expressed eukaryotic genes16,17, a phenomenon
that is preserved across taxa18. In addition, neighbouring gene
expression correlation co-evolves and is particularly evident at
distances below a mega base pair19. Furthermore, facultative
heterochromatin may cover mega base pair regions20 and thus
affect several neighbouring genes. These observations are in line
with coordinated gene expression and chromatin states within
TADs9,21, suggesting that the coupling between gene expression
and chromatin architecture is, at least partly, linked to chromo-
somal positioning.

Genetic disruption or chromosomal rearrangements of TAD
boundaries may result in aberrant gene transcription as a con-
sequence of altered regulatory activities22 or regional chromatin
states23. While this suggests a key role for chromatin structure in
correct transcriptional activity, a general directional cause and
effect between chromatin architecture and transcriptional activity
is unclear. On one hand, TAD boundaries are to a large extent
invariant between cell types8,9 and have been suggested to be
mainly formed by architectural proteins11,24–26 independent of
transcription15. On the other hand, transcription seems to play a
major role in the maintenance of regulatory organisation within
TADs15,27. In addition, chromatin compartments are not affected
by architectural protein depletion26. Rather, nuclear three-
dimensional co-localisation of genes seems to be driven to a
large degree by transcriptional activity6,15,28–30.

The strong relationships between transcription, chromatin
state, chromosomal positioning and three-dimensional chromatin
organisation can be exploited for inference of one feature from
another. Compartments of transcriptional activity can be deduced
from genome-wide chromatin interaction data3,11 and, inversely,
co-expression is indicative of enhancer–promoter (EP) interac-
tions31. In addition, RNA expression was placed among the top-
ranked features for predicting EP interactions in a recent
machine-learning approach32. However, it is unclear what pro-
portion of expression is associated with chromatin topology and
chromosomal positioning and what proportion is reflecting reg-
ulatory programmes independent of the former. A way to sys-
tematically extract and separate these components from
expression data could lead to new insights into chromatin
topology and cell-type-specific transcriptional regulation. This is
of high importance since genome-wide profiling of chromatin
interactions using chromatin conformation capture techniques
such as HiC33 is largely intractable due to several limitations
including low spatial resolution, high cost and requirements of
large abundant cellular material.

In this study, we establish a transcriptional decomposition
approach to investigate and model the coupling between tran-
scriptional activity, chromosomal positioning and chromatin
architecture. Via modelling of expression similarities between
neighbouring genomic loci, we show that the proportion of

expression related to genome architecture can be separated from
effects independent of genomic positioning, and that both com-
ponents are strongly represented with contributions depending on
cell type and location. We demonstrate that the positionally
dependent (PD) component is highly reflective of chromatin
organisation, revealing chromatin compartments and structures of
transcriptionally active TADs. We further demonstrate how
transcriptional components can be used to infer cell-type-specific
chromatin interactions and find informative transcriptional fea-
tures, including enhancer expression strength, which distinguish
long-distance interacting from non-interacting EP pairs. We
demonstrate the accuracy of our approach in well-established cell
lines and then decompose expression data from 76 human cell
types in order to investigate their active chromatin architectures.
Our results indicate extensive sharing of expression-associated
domain structures across human cells, reminiscent of that
observed for active TADs. Promoter-localised, positionally inde-
pendent (PI) events as well as EP interactions are, on the other
hand, highly cell-type specific. Finally, we demonstrate how
transcriptional components and predicted EP interactions can be
used to gain insights into the genetic consequences of complex
diseases. We observe variable enrichments of genetic variants in
expression components across cell types and traits and find several
EP interactions in which disease-associated SNPs at enhancers
may cause aberrant expression of distal genes. Taken together, we
observe a tight coupling between transcriptional activity and
three-dimensional chromatin architecture and suggest that reg-
ulatory topologies, domain structures and their activities may be
inferred by RNA expression data and chromosomal position
alone.

Results
Transcriptional decomposition of RNA expression data. We
posited that a proportion of steady-state RNA expression is
reflecting three-dimensional chromatin organisation. We rea-
soned that a transcription unit (TU) is likely to be more similar in
terms of expression to its proximal TUs than to distal loci, which
are likely to be associated with different domains of chromatin
interactions. Thus, coordination of expression is related between
positional and chromatin neighbourhoods (Fig. 1a). However,
expression is also influenced by gene-specific transcriptional and
post-transcriptional regulatory programmes independent of a
TU’s chromosomal position. Therefore, in order to investigate the
coupling between transcriptional activity and genome organisa-
tion, we need to be able to estimate the proportion of expression
from a genomic region that can be explained by its chromosomal
position. To this end, we developed a transcriptional decom-
position approach (Fig. 1b) to separate the component of
expression reflecting an underlying positional relationship
between neighbouring genomic regions (PD) component) from
the expression dictated by TUs’ individual regulatory programs
(PI component). Our strategy is based on approximate Bayesian
modelling34 and utilises replicate measurements to decompose
normalised aggregated RNA expression read counts in genomic
bins into two components (PD and PI) and some constant
intercept (Methods). The expression associated with each geno-
mic bin was modelled as a sum of the two transcriptional com-
ponents (random effects model), as illustrated in Fig. 1a. The
decomposition of this sum into its respective components
(summands) can be interpreted as an optimisation problem over
a chromosome to best separate the proportion of total expression
that is similar between consecutive genomic bins (PD) from
position-independent expression (PI).
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Decomposition reveals positional dependency on expression.
We applied transcriptional decomposition to replicated cap
analysis of gene expression (CAGE)35 data36, measuring tran-
scription initiation sites and steady-state abundances of capped
RNAs from GM12878, HeLa-S3 and HepG2 cells. In the mod-
elling, we used 10-kb genomic bins to capture large-scale posi-
tional effects. We first asked whether the information content of
the two components contained different biological interpretations
as posited. Upon close inspection (Fig. 2a), the PD component
displayed considerably broader patterns than the PI component
and appeared to be highly similar between cell types. Despite the
overall similarities in the PD component, we identified large
differences in individual loci between cells, as exemplified by
KCNN3 and NOS1AP genes (Fig. 2b, c). For instance, NOS1AP is
in GM12878 cells associated with low PD signal and appears to
reside in polycomb-repressed chromatin, as indicated by high
levels of histone modification H3K27me3 and low levels of his-
tone modification H3K36me3. HepG2 and HeLa-S3 cells
displayed opposing signals for this locus, suggesting that the
PD component contains information about chromatin
compartments.

In order to understand the observed effects on a genome-wide
scale, we compared the PD component with HiC-predicted

chromatin compartments11 in GM12878 cells. We observed that
the PD signal in regions of active chromatin was higher than in
those of facultative or constitutive chromatin, while constitutive
chromatin states had the lowest signal (Fig. 3a). Congruently, we
noted that regions of positive PD signal were highly enriched in
expressed genes within a given cell type (odds ratio ranging from
4.3 to 15.9, p<2.210−16 for all three cell types, Fisher’s exact test),
with an average of 93% of expressed genes and 70% of genes
overall located in positive PD regions. Overlaying the PD
component on HiC compartment boundaries also showed clear
shifts, which were many magnitudes stronger than what could be
detected using the PI component (Supplementary Fig. 1a). In
addition, we observed that the PD component clearly correlated
within compartments more strongly than between compartments
(Supplementary Fig. 1b-e). These results show that the states and
boundaries of compartments are reflected by positionally
attributable expression (PD signal) and its relative change
between consecutive bins.

To examine the localised patterns observed for expression
levels not attributable to position (PI component, Fig. 2a), we
trained a random forest model (Methods) on GM12878
transcriptional components to predict the presence or absence
of DNase I hypersensitive sites (DHSs), histone variant H2AZ
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Fig. 1 Transcriptional decomposition separates the proportion of RNA expression related to chromosomal position from positionally independent (PI)
effects. a Schematic illustrating how RNA expression derives from two major sources. The positionally dependent (PD) component reflects the underlying
dependency between linearly proximal TUs in chromosomal, positional neighbourhoods, which are related to chromatin neighbourhoods of TU three-
dimensional proximity. The PI component reflects localised, gene-specific regulatory programs unaffected by the positioning of TUs. b Overall strategy of
how replicated samples are decomposed into transcriptional components. Via approximate Bayesian modelling, normalised RNA expression count data
quantified in genomic bins (here 10 kb), are decomposed into an intercept (α), a PI component and a PD component. The PD component is modelled as a
first-order random walk, in which the difference between consecutive bins is assumed to be Normal and centred at 0 (Methods). The variable y represents
the expression level, x represents the component value in bin i and τ represents the precision of a normally distributed random variable
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and post-translational histone modifications H3K4me3 and
H3K27ac (binarised DNase-seq and ChIP-seq data37 in each
bin), each associated with features of (transcriptionally) active
regulatory elements38. The resulting models allowed us to
generate a probability distribution for each mark given each
transcriptional component. For all tested marks, we observed a
clear bias with stronger predictive power from the PI component
than the PD component (Fig. 3b). These results indicate that the
PI component, in contrast to the PD component, carries
information about regulatory element-localised and expression-
level-associated effects.

Overall, we found that both the PD and PI components
explained considerable proportions of expression levels in
GM12878 cells (Supplementary Fig. 2a). Each component on a
median explained roughly half of the expression levels in
expressed bins, with contributions varying between loci

(Supplementary Fig. 2b). When compared with HeLa-S3 cells,
we observed clear differences in both the PD and PI components
between cell types and that these differences were orthogonal
between components (Fig. 3c, d). Differentially expressed (DE)
bins in the PD component (Benjamini–Hochberg FDR< 0.01,
z-score approximations of the posterior estimates of the PD
differences between GM12878 and HeLa-S3 cells, Supplementary
Data 1) were in line with its relationship with chromatin
compartments, to a large degree associated with cell-type
differences in chromatin states, changing from silent to
H3K36me3-associated active chromatin in upregulated bins
(Supplementary Fig. 2c, d). The PI component, on the other
hand, showed localised differential expression of bins (Supple-
mentary Data 2) that were associated with cell-type-specific
enrichments of predicted binding sites from sequence motifs
recognised by expressed transcription factors (TFs) (Fig. 3e and
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Supplementary Fig. 2e), for instance NFKB and IRF in GM12878
cells.

Similar patterns of transcriptional components derived from
GM12878 CAGE data were found when we applied transcrip-
tional decomposition, guided by CAGE-estimated hyperpara-
meters, to GM12878 RNA-seq data38 (Supplementary Fig. 3,
Supplementary Table 1, Methods), confirming the observed
characteristics and differences between CAGE-derived compo-
nents. Taken together, we conclude that expression data can be
decomposed into a PD component, revealing chromatin com-
partment activity, and a PI component carrying information
about localised, independent expression-associated events.

Expression-associated domains mark active chromatin topol-
ogy. Apart from displaying clear shifts at compartment bound-
aries, we noted that the PD component contained sub-patterns

within broader consecutive regions of positive signals (Fig. 2a).
We posited that such structures could represent finer, tran-
scriptionally active chromatin organisation not necessarily
reflecting chromatin compartments, but rather boundaries of
active TADs. To test this hypothesis, we trained a generalised
linear model (GLM) to predict HiC-derived TAD boundaries11

from features derived from transcriptional components (Supple-
mentary Table 2, Methods). The GLM yielded an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.73
(AUC 0.85 in regions of positive PD signal), indicating that there
is information in expression data to infer TAD boundaries
(Supplementary Fig. 4a, b). Among the features considered, the
model ranked the PD gradient (first-order derivative), the PD
inter-cell stability and PD variance as among the most important
for predicting TAD boundaries (Supplementary Fig. 4c). Based on
the GLM feature importance ranking, we devised a score to rank
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PD boundaries at significant gradients in the PD signal that also
had low positional standard deviation (high stability) across cells
(Fig. 4a, Methods). In GM12878 cells, we detected 4158 boundary
locations of PD sub-patterns. We refer to the regions demarcated
by PD boundaries as expression-associated domains (XADs,
Fig. 4a). In general, GM12878 XAD boundaries coincided with, or
were very close to, the locations of TAD boundaries (Fig. 4d).

We next assessed the occurrence of DHSs, ChIP-seq binding
site peaks for architectural proteins CTCF and Rad21 (a subunit
of cohesin) and histone modifications H3K36me3, H3K27me3
and H3K27ac around GM12878 XAD boundaries (Fig. 4b). We
observed an enrichment of DHSs, H3K27ac and binding of CTCF
alone and, albeit weaker, in combination with Rad21 around
XAD boundaries. In addition, H3K36me3, H3K27ac and DHSs
were more enriched downstream than upstream of positive-
gradient XAD boundaries. The opposite trend was observed for
H3K27me3. The observed DHS and ChIP-seq patterns around
XAD boundaries (Fig. 4b) resemble those around TAD
boundaries in active compartments24,39–41. In line with these
and the GLM results, we observed that GM12878 XAD
boundaries were in general highly enriched in HiC-derived
TAD boundaries11 from the same cells (>3-fold enrichment over
the background, Fig. 4c). Specifically, XAD boundaries were
highly enriched in DHS-associated TAD boundaries (>6-fold
enrichment over the background), but not in those distal to DHSs
(Fig. 4c and Supplementary Fig. 5a, b). Out of 4158 GM12878
XAD boundaries, 2853 (69%) were proximal (within five bins) to
DHS-positive TAD boundaries (Fig. 4d). Still, 69% (5115 out of
7371) of DHS-positive TAD boundaries were distal to XAD
boundaries, suggesting that XADs represent a subset of DHS-
positive TADs. Incomplete overlap between XAD and TAD
boundaries is expected since the detection of XAD boundaries
relies on transcriptional activity. Indeed, joint XAD and TAD
boundaries were primarily found within active chromatin, while
XAD-unsupported DHS-positive TAD boundaries more fre-
quently resided in facultative or constituitive heterochromatin
(Supplementary Fig. 5c, p<1×10−258, χ2 test). Furthermore, joint

XAD and TAD boundaries displayed a higher HiC11 chromatin
interaction directionality8 than DHS-positive TAD boundaries
distal to XAD boundaries (Supplementary Fig. 5d, e), indicating
that expression-associated chromatin is linked with stronger TAD
boundaries (greater insulation). However, both sets were similarly
associated with Rad21 (Supplementary Fig. 5f, g), whose co-
binding with CTCF is believed to provide strong TAD
boundaries24,39,40. Taken together, these results demonstrate that
expression data (PD component) can be used to infer chromatin
topology in active chromatin compartments.

Decomposed expression data predict chromatin interactions.
Since positionally attributable RNA expression was strongly
associated with structures of transcriptionally active TADs, we
questioned the utility of expression data alone in reflecting
individual proximity-based interactions. Namely, what does it
mean to be proximal in the nucleus, from a transcriptional
perspective?

To this end, we collected a total of 25 features in GM12878 that
may be derived from expression data sets alone (Supplementary
Table 3), relating to the values, differences, cross-cell-type
correlations, standard deviations and stabilities of the transcrip-
tional components, as well as XAD boundary insulation and
features relating to local CAGE-measured promoter and enhancer
activities, directionality scores and their chromosomal distances.
To test the power of expression-universal features to classify
chromatin interactions, we used a random forest classification
scheme where we compared it to GM12878 promoter-capture
HiC (CHiC) data12 (Methods). To enable a direct assessment of
the relationships between transcriptional component-derived
features and chromatin interactions, we mapped CHiC data at
10-kb resolution. We used a lenient interaction score threshold to
define positively interacting bin–bin pairs (bin–bin distance
>50 kb and ≤2Mb, based on CHiCAGO42 score ≥ 3, see
Supplementary Table 4), for which each pair referred to a CHiC
promoter bait and a potential target that overlapped with a
transcribed promoter36 or transcribed enhancer31,43. In order to
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deal with the resulting unbalanced data, we over-sampled44 the
positives and under-sampled the negatives in the training data to
a fully balanced set across distances in a 10-fold cross-validation
scheme. However, validations were performed using a 20:1
negative:positive (NP) ratio, similarly to a previous method32, but
also on raw (unmodified) NP ratio. Thus, in each cross-validation
round, we fully balanced the training data and predicted on held-
out data at 20:1 or raw NP ratios.

Overall, we observed a good predictive performance (AUC:0.74)
on raw NP ratios for lenient interaction thresholds (Fig. 5a). Using
a strict interaction threshold (CHiCAGO score ≥ 5) for evaluation
increased the AUC (0.83) but reduced the recall (Fig. 5b). At a
20:1 NP test ratio, the overall predictive performances increased
(AUC 0.82 and 0.88 for lenient and strict interaction thresholds,
respectively). Interestingly, we observed a better precision and
recall when evaluation of results was limited to enhancer targets

(Supplementary Data 3, AUC of 0.85 and 0.89 for lenient and
strict interaction thresholds at a 20:1 NP ratio, respectively; see
Supplementary Fig. 6 for the effect of interaction thresholds on EP
prediction performance). We observed varying predictive perfor-
mances across chromosomes (Supplementary Fig. 7), likely
reflecting differences in gene densities and transcriptional
activities. Despite the overall good EP predictive performance,
both precision and recall decreased over increasing distances on
held-out test data, in accordance with an increasing NP ratio
(Supplementary Fig. 8). To circumvent the distance effect, we
established a distance-dependent threshold in random forest
voting, guided by the optimal F1 score, significantly improving the
predictive performance over distance (Supplementary Fig. 9).
Taken together, we conclude that there is a wealth of information
from properties of expression data alone which could explain
chromatin interactions, and in particular EP interactions. This
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suggests a tight coupling between expression of regulatory
elements and their proximity.

Next, we asked what properties of expression data explained
chromatin interactions. High transcriptional activity at the target
or bait was ranked among the top features for predicting
chromatin interactions (Fig. 5c). In addition, the standard
deviation of the PD component at either the bait or the target
was informative (Fig. 5c). Predicted interactions had a lower PD
standard deviation on average (Supplementary Fig. 10), suggesting
that high-confidence interactions are associated with stable
estimates of active chromatin compartments. Boundary insulation,
defined as the number of XAD boundaries predicted between the
bait and the target, also ranked highly, with a weaker insulation
associated with a higher probability of a chromatin interaction
compared to other pairs at a similar distance (Supplementary
Fig. 10). Since the observation of this property forms the definition
of TAD domains, this lends support of XAD boundaries as
predictors of boundaries of transcriptionally active TADs.
Separately training three random forest classifiers for short-,
medium-, and long-range distances (covering bait–target distances
within (50,200), (200,500) and (500,2000) kb, respectively) allowed
us to further investigate features driving long-range interactions
(Supplementary Fig. 11a). As expected, boundary insulation had a
higher influence on long-distance interactions than shorter ones
(Fig. 5d). Interestingly, when we specifically considered interac-
tions between enhancers and promoters, eRNA expression at the
target enhancer clearly distinguished predicted positive from
predicted negative interactions, and its importance increased over
increasing distances (Fig. 5e).

Motivated by the good performance in predicting EP
interactions, we next used the GM12878-trained random forest
model to predict EP interactions also in HeLa-S3 and HepG2 cells
(Supplementary Data 4, 5). We noted that many predicted
interactions were specific to each cell type (Fig. 5f, 48–78%), with
only a small fraction (9–20%) of interactions shared between all
three cell lines (see Supplementary Fig. 12 for results using a strict
interaction threshold). For instance, the promoter of gene
TDAP2A was predicted to interact with an ~100-kb downstream
enhancer specifically in HeLa-S3 cells, supported by HeLa-S3
RNAPII ChIA-PET interaction data38 (Fig. 5g).

In support of eRNA production at positive interactions, both
enhancers and promoters in predicted cell-type-specific interac-
tions clearly showed an expression bias towards the cell type in
which the interactions were identified, in contrast to shared EP
interactions (Supplementary Fig. 11b, c). These results indicate
that expression of regulatory elements is reflecting both their cell-
type-specific regulatory activities and their regulatory interac-
tions. This is supported by observations that regulatory active
enhancers that are interacting with promoters are more likely to
be transcribed than non-interacting ones45. Taken together, we
demonstrate that transcription is highly informative of three-
dimensional chromatin architecture and may be used to
accurately infer EP interactions.

Transcriptional decomposition reveals cell-type differences.
We have demonstrated that positionally attributable expression
(PD component) can be used to accurately infer boundaries of
active TADs, as well as differences in chromatin compartments
and EP interactions between well-established and biologically
distal cell lines. We continued with exploring what insights could
be gained by transcriptional decomposition of primary cell
expression data, for cell types for which chromatin topology is to
a large degree unknown. We applied transcriptional decomposi-
tion to replicated primary cell CAGE data36 expanding to a total
of 76 human decomposed cell types from 249 CAGE libraries

(Supplementary Data 6, Methods). Using the resulting compo-
nents, we calculated XAD boundaries and extended the previous
set of pairs defined in the GM12878 training above to a common
set of bin pairs across all cell types (Supplementary Table 5), over
which EP interactions were predicted.

Consistent with observations in cell lines (Fig. 2a), the PD and
PI components displayed opposing trends when compared across
cell types. Many genomic bins showed a highly similar PD signal
across cells, while the PI component was rarely shared across
more than a few cell types (Supplementary Fig. 13a,b). The PI
component was grouped more closely according to cell-type
association than the PD component and clearly distinguished
blood cells from mesenchymal, muscle and epithelial cells (Fig. 6a,
b). XAD boundaries tended to be either highly cell-type specific
or ubiquitous (Supplementary Fig. 13c), similar to that of TAD
boundaries46, reflecting the cell-type-specific behaviour of
features around XAD boundaries (Fig. 4b), e.g. DHSs47. In
comparison, EP interactions exhibited very little agreement across
cell types (Fig. 6c), with very few shared interactions across the
full repertoire of samples (Supplementary Fig. 13d). Interestingly,
cell-type-specific EP interactions were on average more distal
than interactions shared across cells (Supplementary Fig. 13e).
When examining EP interactions between groups of cells, we
observed clear differences at key identity genes. Leukocyte-biased
genes ARHGAP25 (Fig. 6d) and CD48 (Supplementary Fig. 14)
showed clear differences in predicted EP interactions, which were
validated by GM12878 CHiC interaction data. Taken together,
these results indicate largely invariant chromatin compartments
between cells and that cell-type identities are governed by
differences in EP interactions or position-independent effects,
which may be driven by localised, cell-type-specific TF-binding
events.

Components guide interpretation of trait-associated variants.
Many complex genetic diseases are associated with genetic var-
iants outside of protein-coding gene sequences in gene-distal
enhancers31,48 and these variants have been suggested to explain a
large portion of disease heredity, in particular in immunological
disorders49. Thus, we investigated the utility of decomposed
expression data and predicted EP interactions in the interpreta-
tion of disease-associated genetic variants. Based upon enrich-
ment analysis of trait-associated SNPs50 and those in strong
linkage disequilibrium (Methods), we observed largely variable
preferences between traits and transcriptional components
(Supplementary Fig. 15a). Interestingly, several diseases and traits
showed a preference for enrichment in positionally attributable
expression (PD-positive bins) or within two bins of XAD
boundaries, indicating that associated genetic variants may alter
chromatin compartments or the activities or structures of
enclosing TADs. Furthermore, while most trait enrichments
were restricted to a few cell types, many of those biased to
positionally attributable expression, for instance Crohn’s disease,
displayed broad association across the panel of investigated cell
types (Supplementary Fig. 15b). Monocytes, including those-
subjected to various pathogens, T cells, B cells and natural
killer cells were found amongst the most highly ranked cell
types associated with Crohn’s disease in PD and PI components
as well as at XAD boundaries (Fig. 7a). This is consistent with the
strong links between Crohn’s disease, inflammation, innate and
adaptive immune system deficiency51. Amongst genes in SNP-
associated bins, we found Crohn’s disease-associated genes
STAT3, ATG16L1 and MHC genes HLA-DWB, HLA-DRA
and HLA-DQA252. Similar to Crohn’s disease, lymphoid leukae-
mia was strongly associated with cells of the immune system
(Supplementary Fig. 16a), but had different genes associated with
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the PD and PI components and at XAD boundaries, including
IRF4, IKZF1, ARID5B, CEBPE, IRF8 and GCSAML.

For Crohn’s disease, we found a significant enrichment of
enhancer-overlapping SNPs in predicted EP interactions of
monocytes treated with Cryptococcus or Salmonella, as well as
in peripheral blood mononuclear cells (Fig. 7a). SNP-associated
enhancers were predicted to interact with several disease-relevant
genes, including PTGER4 (Fig. 7b), TRIB1 (Fig. 7c), CCL1,
OTUD1 and ARMC352,53, and genes so far not associated with
Crohn’s disease ENKUR and THNSL1. For example, promoters of
PTGER4 were predicted to interact with enhancers more than
250 kb upstream of the gene situated in an LD block of GWAS-
associated SNPs (Fig. 7b). Similarly, promoters of TRIB1 were
predicted to interact with an ~100-kb downstream enhancer
overlapping a disease risk locus of SNPs (Fig. 7c). These results
clearly demonstrate how transcriptional decomposition of
expression data can be used to gain insights into disease
aetiology, and thus the value of our generated resource.

Discussion
A detailed understanding of the intricate relationship between
transcription and three-dimensional chromatin organisation and
to what extent they are attributable to each other has been
lacking. Under the assumption that the link between transcrip-
tional activity and chromatin organisation is reflected, at least
partly, by chromosomal positioning, in this study we have aimed
to separate the fraction of RNA expression that is associated with
chromatin topology from localised, independent effects. To this
end, we have developed a transcriptional decomposition
approach that decomposes expression data into positionally
attributable (PD) and independent (PI) components along
chromosomes. We show that positionally attributable expression,
according to the PD component, closely reflects chromatin
compartments and domain architecture, and accounts for a
sizeable overall fraction of TU expression levels. This points to
the existence of large constraints on genomic organisation, sug-
gesting that the global maintenance of chromatin formation is
crucial for correct and precise transcriptional output. On the
other hand, the PI component carries information about reg-
ulatory element-localised and expression-level-associated effects.
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Fig. 7 Analysis of Crohn’s-disease associated SNPs reveals cell-type preferences and regulatory associations. a Crohn’s disease SNP enrichments in
transcriptional components, XAD boundaries and inferred enhancer–promoter interactions (FDR-corrected χ2 tests based on the PD/PI positive bins or the
presence of XAD boundaries/target enhancers per cell type, and trait-associated SNPs). See also Supplementary Figure 16 for enrichments in lymphoid
leukaemia. Significance stars above bars are interpreted as: *P<0.1, **P<0.01 or ***P<0.001. b, c Predicted EP interactions in CD14+ monocytes treated
with Cryptococcus, for genes PTGER4 (b) and TRIB1 (c) for which interacting enhancers overlap or are in close proximity with disease-associated SNPs
(highlighted in yellow). Predicted EP interactions, GENCODE v24 transcripts, FANTOM5 enhancers and the locations of relevant SNPs are displayed below
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We suggest that PI effects may be the result of cell-type-specific
programmes involving, for instance, the differential binding or
effect of TFs, potentially based on a layer of localised regulation
not necessarily attributable to higher-order three-dimensional
chromatin. However, we observe that the level of positional
dependency of expression data varies between loci and cell types,
suggesting locus- and cell-dependent effects of topological orga-
nisation and activity, as well as varying the impact of individual
gene regulatory programmes. This suggests that genes strongly
associated with non-positional expression may be more resistant
to perturbations in chromatin domains, such as deletions of TAD
boundaries, particularly in the context of a certain disease.

The usage of expression data to infer topological chromatin
organisation is limited by the inability to inform on tran-
scriptionally silenced, closed or poised states. However, by
focussing only on expressed TUs, such as those observed with
CAGE, and their relative relationships, we can attempt to
understand patterns that are highly relevant to various cell types
of interest. For example, the majority of detected XAD bound-
aries were proximal to TAD boundaries associated with an open
chromatin site in GM12878 cells. Interestingly, XAD boundary
locations were seen to be strongly informed by the presence of a
stable PD signal across cell types, reflected in their high degree of
sharing, which closely corresponds to the nature of TADs, whose
locations appear to be largely cell-type invariant8,46. This is likely
connected to the enrichment of promoters for actively transcribed
housekeeping genes at the locations of TAD boundaries8,15,
whose expression levels remain stable across cell types. Our
predictions also suggest that active transcription at open chro-
matin loci is linked with stronger TAD boundaries, according to
the observation that chromatin interaction directionality scores
were stronger at TAD boundaries proximal to XAD boundaries
compared to those distal from XAD boundaries, which were
associated with closed chromatin. These results suggest that the
presence of active transcription aids in the reinforcement of the
insulation properties associated with boundary formation, but
may also point to different regulatory mechanisms or roles
involved in boundaries according to their link to active
transcription.

We have shown that expression data alone are predictive of
fine-scale chromatin interactions, based on predictive models
incorporating expression component information, expression
strength, stability and distance. Our results concur with, and
significantly extend, the previous finding that CAGE is an
informative predictor of interactions31,32. Crucially, we bring up
the question of what proximity within the nucleus means from
the standpoint of transcriptional initiation, and our results sug-
gest the two to be tightly coupled. Analysis of predicted features
points to a model whereby a strongly expressed TU with stable
positionally attributable expression is the key predictor of within-
domain interactions in a given cell type, and whereby strength of
target expression becomes more important for predictions over
long distances. Interestingly, of all predicted chromatin interac-
tions, those restricted to EP interactions showed the strongest
predictive power, were biased towards the cell types in which they
are actively transcribed and target enhancer RNA expression
levels rapidly increased with the distance between the bait and the
target.

Since transcriptional decomposition is broadly scalable across
large numbers of samples and applicable to different expression-
sequencing assays, including CAGE and RNA-seq, it potentially
paves the way for large-scale cost- and time-effective computa-
tional analyses across atlases of high-quality expression data sets,
such as FANTOM536 or GTEx54. We have applied our models to
76 cell types from the FANTOM5 consortium, generating pre-
dicted components, XAD boundaries and EP interactions. This

resource allows a deeper understanding of the dynamic regulation
at key identity genes in a wide diversity of cellular states not yet
subjected to methods informing on their higher-order structures.
Comparison across cell types revealed extensive sharing of posi-
tionally attributable expression, while PI effects and, in particular
EP interactions, were to a large degree cell-type specific, parti-
cularly at long distances, and separated cells into groups of similar
type. These results indicate that chromatin compartments are
mostly invariant across cells and that fine-tuning of cell-type-
specific expression levels is mainly mediated by promoter-loca-
lised, position-independent effects or enhancer regulation. The
differences in cell-type specificity also indicate that positionally
attributable expression, on its own, is not sufficient to inform on
EP interactions. While positionally attributable expression seems
to reflect the overall large-scale chromatin state in which a TU
resides, and informs on the architectural compatibility between
regulatory elements, many EP interactions are cell-type specific
and associated with punctuated elevated enhancer and promoter
expression levels. These results argue for RNAPII-centred chro-
matin architectures55,56, whereby transcriptional regulation is
associated with cell-type-specific tethering of EP pairs to RNAPII
foci, leading to coordinated expression increases.

While many complex diseases have clear cell-type-specific
effects and that positionally attributable expression was chiefly
shared between cells, we found an unexpected preference for
enrichments of trait-associated genetic variants in the PD com-
ponent. This suggests that the aetiology of certain diseases may be
coupled with the disruption or alteration of TAD structures or
association with chromatin compartments, which finds support
in the literature22,57. Other traits were associated with cell-type-
specific enrichments of variants in the PI component or at
enhancers in cell-type-specific EP interactions, likely to cause
altered gene expression levels. Our generated resource of reg-
ulatory interactions enabled us to identify several cases of pre-
dicted EP interactions for which enhancer overlap with disease-
associated SNPs was linked with promoters of genes often asso-
ciated with the disease itself. Overall, we expect that our tran-
scriptional decomposition approach and resource will have large
implications for future interpretations of genetic variants asso-
ciated with disease in cell types that are otherwise largely
intractable.

Methods
Processing of CAGE data sets. CAGE data were produced by the FANTOM5
project36. The data mapped to hg38 and CTSSs (CAGE transcription start sites)
were clustered into tag clusters (TCs) according to decomposition peak identifi-
cation (DPI) generation as per FANTOM558. Only samples with more than 0.5
million tags mapping within the TCs were included in the analysis.

Enhancers were called based on bidirectional balanced RNA signatures as per
the FANTOM5 consortium31. Enhancers were only identified distal to known
exons (±100-bp region from boundaries) and transcription start sites ±300 bp
defined by GENCODE v24 annotation. In total, 63,285 enhancers were identified
across 1829 libraries. Due to varying noise levels across CAGE libraries and the
intrinsic low expression levels of transcribed enhancers, library-specific noise levels
were estimated to define a robust set of active (transcribed) enhancers in each
sample. For each library, expression was quantified in randomly sampled mappable
genomic regions distal to assembly gaps, DNase hypersensitive sites (ENCODE),
known exons and gene TSSs (GENCODE) to create a genomic background
expression distribution. For each library, we called an enhancer active (used) if its
expression was above the 99.9th quantile of the library’s genomic background
expression distribution. The resulting robust set consists of 60,215 enhancers over
1829 libraries, being significantly expressed above the background in at least one
library. The expression was quantified and TPM normalised according to the total
number of mapped reads within the full set of TCs (tags per million (TPM)).

CTSS files containing positions of raw CAGE counts from libraries for the
ENCODE tier 1 cell lines (GM12878, K562, HeLa-S3 and HepG2) were intersected
with non-overlapping 10-kb regions across the genome. For each chromosome
(chr1–chr22 and chrX), regions were defined from coordinate 1 (1-based) and in
consecutive complete 10-kb blocks, up to two blocks after the last bin containing a
single CAGE tag across the set of libraries. Region sizes of 40 kb and 100 kb were

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02798-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:487 |DOI: 10.1038/s41467-017-02798-1 |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


also considered, but 10 kb was exclusively used in the analyses for comparability to
high-resolution chromatin capture data sets.

Due to the sparsity of CAGE tags in eterochromatic regions and regions poorly
mapped, including the case of libraries with poor sequencing depth, a zero-inflated
negative binomial distribution was assumed to hold for the counts across the 10-kb
bins on each chromosome, given by, for bin i, Yi � ZINBðpi; μi; kÞ, where Yi is the
bin count, pi represents the zero-probability parameter, μi represents the mean and
k the size or dispersion parameter. The mean is given by μi ¼ k 1�pi

pi
, with variance

σ2i ¼ μið1þ μ
kÞ. The model assumes a zero-truncated negative binomial distribution

on the non-zero counts (Yi � NBðμi; kÞ for yi ¼ 1; 2; ¼ ) with probability equal to
1−pi.

Transcriptional decomposition of CAGE data. The transcriptional decomposi-
tion models the mean log count as a combination of an intercept and two random
effects, set up as νi ¼ αþ PDi þ PIi where a is the intercept, PDi and PIi are
random effects for the PD and PI components, respectively and vi is the linear
predictor given by νi ¼ logðμiÞ � logðEÞ for library depth E where log(E) is
the offset term. The PD component is modelled as a first-order random walk
PDi � PDiþ1 � Nð0; τ�1

rw Þ where PDi � PDiþ1 represents the component difference
between successive bins and τrw is the precision of the normally distributed
differences, with mean 0. The PI component assumes that bins are represented by a
vector of independent and Gaussian-distributed random variables with precision
τiid.

The model was fit in the form of a Bayesian mixed model using the R59 package
R-INLA34 which implicitly assumes a Gaussian field on the parameter space and
uses a Laplacian approximation to allow for fast and deterministic convergence of
parameters. Hyperparameters were defined for the size and zero-probability
parameters (gamma-distributed and Gaussian-distributed prior distributions,
respectively) of the negative binomial distribution, and precision parameters τrw
and τiid (log-gamma-distributed priors) for the PD and PI components,
respectively. Three replicates for each of the ENCODE tier 1 cell lines were
included, assuming library depths equal to the sum of the tags in their respective
CTSS files. ENCODE cell lines were modelled concurrently for each chromosome,
assuming a common distribution for the hyperparameters.

In order to allow for efficient prior estimations, we scaled the random walk
components such that the average variance (measured by the diagonal of the
generalised inverse) is equal to 1. In order to achieve efficient convergence and
avoid precisely defining priors beforehand, the option diagonal = 1 was set within
the INLA call (to avoid falling into sparse errors). The posteriors based on the
converged model were then fed into a second model specifying diagonal = 0 in
order to achieve more accurate estimates.

Transcriptional decomposition of RNA-seq data. To see if chromosomal tran-
scriptional decomposition is broadly applicable to RNA data sets, we applied the
same modelling procedure to deeply sequenced GM12878 RNA-seq samples
(https://www.encodeproject.org/experiments/ENCSR843RJV/)38. The libraries
were mapped to hg38 using HISAT60 with default parameters. Multimappers were
removed using samtools61 and reads were binned at 10-kb resolution (based on
bins defined previously for CAGE) using bamCoverage62. Transcriptional
decomposition was applied to the resulting counts, assuming library depth to be
the total of the genome-wide bin counts. A range of hyper-parameters for the PD
and PI components was tested (corresponding to the CAGE-defined values of the
parameters, and −3 to +3 relative) and the combination was selected, per chro-
mosome, whereby the PD component correlated the most strongly with the PD
component in GM12878 CAGE (ignoring regions not within 25 bins of a TU in
RNA-seq).

Analysis of differences between PD and PI components. To address the pro-
portions of total RNA expression levels allocated to each of the PD and PI com-
ponents, the raw CAGE counts in GM12878 were used to identify 10-kb bin
regions with a mean count greater than 50 tags across the three replicates, thus
ensuring that most selected bins were positive in both components (but removing
those which were not). For each of these bins, the fraction PD

PDþPI was calculated,
where PD and PI are the respective estimates of the PD and PI components in the
bin. These fractions were plotted as a histogram and the median value was iden-
tified as an average ballpark for relative allocation to PD component versus the PI
component.

Genes, according to the GENCODE v24 annotations, were deemed to be
expressed in GM12878 cells if they were associated with at least five tags at their
TSS across the three GM12878 CAGE libraries and compared to the sign of the PD
signal in GM12878 for their containing bins. The full set of genes was based on
those associated with at least one FANTOM5 hg38 library.

Compartment coordinates for GM12878 cells11 were lifted over from hg19 to
hg38 using liftOver tool with default settings. For simplicity of interpretation, the
five compartment types from Rao et al.11 were associated with active (A1,A2),
facultative (B1) and constitutive (B2,B3) chromatin environments. Overlaps
between the 10-kb bin regions and compartment regions were used to assign bins
to chromatin environments, removing bins not having a corresponding overlap
(genomic overlaps were identified using the R package GenomicRanges63). Bins
representing shifts between two different chromatin environments were deemed to

be boundary bins and for sets corresponding to each possible shift (e.g. active to
constitutive), the mean of the PD component signal was calculated for bins at an
increasing distance on either side of the boundary bins, in steps of up to 10 kb and
including 500 kb. Cases at a given distance whereby another boundary bin was
encountered were removed. For each set, a random sampling was used to generate
a list of random boundary bins of length equal to the set size. Background sets were
each generated 100 times to form distributions.

Intra-chromosomal bin pairs which overlapped with an annotated
compartment were assigned an integer according to how many compartment
boundary bins (see above) were between them (boundary insulation). For all bin
pairs, both the absolute first-order difference in the PD signal and the correlation
between the four ENCODE cell lines were calculated. The differences and the
correlations were averaged using the median either at each distance from 10 kb
apart to 2Mb apart or across all distances, separately for each possible boundary
insulation.

ChIP-seq and DNaseI-seq GRCh38 bigwig and peak data were downloaded
from Ensembl FTP and Ensembl biomart based on Ensembl regulatory evidence v
8437. For each mark (DNase1, H2AZ, H3K4me3 and H3K27ac), 10-kb bin regions
were overlapped with binding locations to give the presence or absence of the mark
in each bin. For each of the PI and PD components, the bin estimate, first-order
difference between bin estimates, standard deviation of the bin estimate and
stability of the bin estimate (standard deviation across cell-type PD component
standard deviations) were calculated. For the two components separately, a random
forest model was trained with the mark presence or absence as the response. Out of
the bag probabilities, for the models based on the PD data and the PI data were
compared directly between the two components.

Posterior estimates and standard deviations of the linear combinations
representing the difference in the PD or PI component between GM12878 and
HeLa-S3 equivalent bins were generated from the transcriptional decomposition
models (described above). Since posterior distributions of the estimates are
approximately Gaussian, approximate p values from z-scores were generated in
order to produce standardised scores for the differences. A Benjamini–Hochberg
correction was applied according to the number of bins containing an active TU
(such that there were ≥10 tags across the three replicates in at least one of HeLa-S3
or GM12878), and using an FDR< 0.01 to generate a list of significant DE bins in
each component. H3K27me3 and H3K36me3 ENCODE Broad Institute bigwig
data (from Ensembl Regulatory Build v 84) were quantified in 10-kb genomic bins.
The aggregated signal values in each bin were TPM normalised (according to all
genomic bins). The TPM values for H3K27me3 and H3K36me3 were then
inspected at DE bins between GM12878 and HeLa-S3 cells.

Active regions within the DE PD and PI bins were tested for TF-binding
enrichment using RTFBSDB64. Active regions were defined as expressed
FANTOM5 DPI TCs58, requiring >1 TPM in at least two of the six libraries (three
GM12878 and three HeLa-S3). DPI TCs were extended to regions of −500/+100
around TSSs. DE regions of the PI components with upregulation in HeLa-S3 or in
GM12878 (HeLa-S3 PI, GM12878 PI), and DE regions of the PI components with
upregulation in HeLa-S3 or in GM12878 (HeLa-S3 PD, GM12878 PD), were tested
individually against the universe of expressed TC regions. The analyses were
performed using the human database of TF-binding motifs imported from the Cis-
BP database65, restricted to motifs recognised by TFs expressed in the six libraries
of interest, measured using functional data profiling gene expression levels as
specified in RTFBSDB. Significantly enriched known motifs (FDR< 0.0001) were
selected in each of the four tests and plotted together in a heatmap using the R
package pheatmap (version 1.0.8) with clustering of TFs based on Euclidean
distance.

XAD boundary predictions. TAD regions based on 1-kb resolution HIC data in
GM12878 were downloaded11 and lifted over to hg38, requiring a 1:1 correspon-
dence between regions defined in each of the two builds. Boundaries were assigned
to 10-kb bins based on overlaps. Adjacent bins with boundaries were dealt with by
assigning the boundary to the bin with the largest overlap, so that no two adjacent
bins contained boundaries, resulting in a total of 14,799 distinct bin-sized regions
containing TAD boundaries.

Features were generated per bin according to those listed in Supplementary
Table 2. The set of 10-kb bins containing HIC boundaries (see above) was extended
either side by one bin to supply boundary regions to predict on. Due to the lack of
CAGE information in non-TSS associated regions, the set of bins was reduced to
regions with a potential for a boundary to be predicted by using only the set within
250 kb of a bin containing five tags or more in GM12878 (replicate sum). The
response (presence or absence of a TAD boundary with a bin) was generated in two
ways, first for all bins within this set, and second, under the requirement that the
boundary had to be in a positive random walk region.

In order to assess the features which might distinguish bins containing or not
containing boundaries, a logistic regression model was fit using the glmnet66

package in R. The predictors were scaled before modelling for generating scores of
relative importance, using the caret package (version 6.0-73) in R. To test the
performance of the model at predicting boundary regions, a 2-fold cross-validation
was applied, where the data were randomly split into two equal-sized parts and the
total performance was assessed according to the combined predictions on the
halves of the data which were held out of the modelling after the corresponding
half had been trained on. ROC and precision-recall statistics were generated on a
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per-chromosomal basis, and for all of the chromosomes together, using the ROCR
package67 in R and plotted using custom functions.

The top three features from the generalised linear model outlined in the
previous section were selected, namely the PD component (PD), the difference in
the PD component (PDdiff) and the PD component stability (PDstab). Based on
these three features, the following algorithm was implemented for the detection of
XAD boundaries:

1. Calculate X ¼ PDjPDdiff j
PDstab

.
2. Calculate the local maxima of X and rank in order of largest to smallest values

of X.
3. For each chromosome k, calculate the proportion of bins of positive PD, (pk)

and take the top Nk of the ranked maxima such that Nk ¼ ðpk=
P

chr pkÞN ,
where N is the total target number of XAD boundaries.

4. Split the boundaries into ‘up jumps’ and ‘down jumps’ according to positive
and negative values of PDdiff, respectively.

5. Shift the ‘up jumps’ to the right by one bin (to account for the discrepancy in
which of the bins on either end of the PDdiff should be called the bound).
Leave the ‘down jumps’ as is.

6. Return the vector sort (down jumps, up jumps).
7. Repeat the above for the ENCODE cell lines.
8. For the final set of bounds in GM12878, choose the set such that the bound is

in GM12878 and in at least one other ENCODE cell line (and similarly for the
set in the other cell types).

The above algorithm was applied to the ENCODE random walks, using the
EMD68 package in R to generate the local maxima and specifying a target of 5000
XAD boundaries. This resulted in a final list of 4158 XAD boundaries after the final
filtering step.

XAD boundaries were calculated at bins where the PD component had either a
positive or negative change (first-order difference in PD component). To generate
enrichment of ChIP-seq marks around XAD boundaries, only those with a positive
change were considered, in order to avoid biases from signal averaging. The results
for the negative-gradient boundaries were similar or opposing to those of the
positive-gradient boundaries.

For each of CTCF, DNaseI, H3K36me4, H3K27me3 and H3K27ac, the list of
10-kb bins was overlapped with significantly bound sites to determine how many
sites appeared in each bin. The mean number of sites overlapping the bins
containing the predicted (positive change) XAD boundaries was calculated, then
for bins one away from the boundary and so forth in steps of 10 kb up to a distance
of 500 kb. Cases at a given distance whereby another boundary bin was
encountered were removed to avoid contaminated signal. For the background set, a
set of random XAD boundaries of equal cardinality to the real boundaries were
generated, under the conditions of a positive gradient and within the set of bins
plausible for being predicted as boundaries as previously defined. The same
analysis was performed for CTCF:Rad21, which was based on the number of CTCF
sites multiplied by the number of Rad21 sites which overlapped a given bin.

To calculate the overlap between the XAD set and the TAD set, regions around
the XAD set were extended by five bins (50 kb) on either side and then overlapped
with the set of 10-kb regions deemed to contain TAD boundaries. The number of
TAD boundaries associated with a DHS which fell within these regions were then
counted, together with the number of predicted boundaries which fell in the
vicinity of a DHS-associated TAD boundary bin (defined as at least one DHS
overlapping the TAD boundary bin or one or more of the two adjacent bins).

To calculate the enrichment of XAD boundaries at the locations of boundary
bins overlapping TAD boundaries, the proportion of bins with predicted
boundaries which overlapped the TAD boundary bin set was calculated and
divided by the same value generated from a random set of boundaries (of the same
length as the XAD set, falling within the set of plausible bins). The randomisation
step was repeated 100 times andthe mean enrichment and standard deviation were
calculated. The same analysis was repeated according to where the TAD boundary
was DHS associated and where the TAD boundary was not associated with a DHS
site (defined in the same way as with the overlaps above).

Processed intra-chromosomal HIC data for GM12878 at 10-kb resolution11

were downloaded and normalised, according to supplied recommendations, using
the KR method. The Hi-C directionality score8 was implemented and applied to
locations of TAD boundaries whose corresponding liftovers in hg38 were either
supported or not supported by XAD boundaries (within ±5 bins of the boundary).
The directionality score was calculated for ±25 bins around the location of the
boundary bins and for a jump size of 50 bins to calculate the direction bias of
interactions. Means were plotted to obtain patterns of global directionality bias.

Modelling of chromatin interactions. Capture HIC data for GM12878 were
downloaded and fastq files were extracted using the SRA toolkit. The data were
mapped and corrected using HICUPS69, specifying bowtie270 for the mapping and
GRCh38 for the genome (downloaded from ftp://ftp.ensembl.org/pub/release-85/).
CHiCAGO42 was then applied to the remapped BAM files to call significant
interactions against each bait, using default settings except for specifying 10-kb
binning and with the baits defined as the 10-kb bin containing the defined
sequences from the Capture HIC protocol12 lifted over from hg19 to hg38. Score
cut-offs of ≥3 or ≥5 were applied to the final output in order to determine which

bait–target pairs were considered as interacting, with the rest assigned as non-
interacting.

Binned 10-kb regions were overlapped with Capture HIC protocol defined
baits12, lifted over to hg38. For each such ‘bait bin’, potential targets within 2Mb
(200 bins) were assigned and their numbers reduced according to the presence of
CAGE tags in more than one replicate in at least one of the ENCODE cell lines. For
analyses based on enhancer-associated targets, targets were considered based on
overlap with at least one CAGE-defined enhancer which was active (more than one
tag in more than one replicate) in at least one of the ENCODE cell lines. Only
bait–target pairs which fell into the distance range of between 6 and 200 bins were
considered (corresponding to >50 kb and up to 2 Mb).

The full list of features considered in the interaction modelling are listed in
Supplementary Table 3. Features from the PI and PD profiles were added for each
bait–target pair separately for the bait and the target (see Supplementary Table 2
for their descriptions). Enhancer information was added for the bait and targets
based on the FANTOM5 enhancer set for hg38 (see above)—including the total
eRNA output produced at the enhancer (replicate sum), the number of enhancers
deemed to be active within the bin in the given cell line (at least one tag in at least
one replicate) and the number of cell lines supporting the target enhancer (number
of ENCODE cell lines with at least one enhancer active within the bin). Bin
directionality was calculated based on pooled replicates, using a transcriptional
directionality score31 and assigning a value of 0 where no tags were present. The
boundary insulation between the bait and the target was calculated according to the
number of XAD boundaries observed in the intervening bins. Boundary insulation
was defined up to 3; all values >3 were given a score of 3. The peaks detected were
the number of CAGE peaks overlapping the bait or target bin, according to the
hg38 DPI set from FANTOM5, which was transcribed in that cell type (at least one
tag in at least one replicate). The cross-correlation for the PI and PD components
was calculated per chromosome by correlating the respective PI and PD profiles
over four ENCODE cell lines between the bait and target bins, specifying Kendall
for the correlation method. The first eigenvector was calculated from the cross-
correlation matrices for each chromosome and its value was supplied for the bait
and target bins. Distance was defined as the number of 10-kb bins separating the
bait and the target.

To assess model performance, two data sets from GM12878 were analysed. For
assessing the applicability of the model trained in GM12878 for predicting
interactions in other cell types, the data set as generated was kept in its current
format (termed ‘raw’ format). In addition to this, since the number of positive
interactions decayed sharply with larger distances, a second data set was generated
where the ratio of negative-to-positive cases over distance was balanced by
randomly sampling 20 negatives to each positive in the data set, with replacement
to account for cases where the negative rows were not at least 20-fold in number to
the positive rows.

To generate a balanced data set for training, SMOTE44, as implemented in the
unbalanced package (version 2.0) in R, was applied to the data, specifying
parameters percOver = 200 and percUnder = 150 to generate new positives together
with under-sampling the negatives to achieve a balance of 1:1 in the data set. In
order to balance the data set most fairly over distances, SMOTE was applied
separately across each possible bait–target separation.

The model training, predictions and validations were performed in R using the
randomForest package supplemented with foreach (version 1.4.3) and doParallel
(version 1.0.10) to run on multiple cores. A 10-fold cross-validation was used,
whereby the data set was split randomly into 10 equal-sized pieces and a single
piece was held out as a testing set on each of the 10 runs of the model which was
trained on the remaining 90%. All training was carried out based on a ChiCAGO
score cut-off of 3. All performance statistics and probability estimates in GM12878
were based on predictions made across the held-out runs over the full data set.

To assess whether there are different features which are important for specific
distances without the bias of most examples being weighted towards short
distances, the above analysis outline was repeated for the same data set but
restricted to three possible distances: (50 kb, 250 kb), (250 kb, 500 kb) and (500 kb,
2 Mb). For each set of distances, the mean decrease accuracy (MDA) was averaged
across the 10 runs in order to obtain a final feature performance.

To find the optimal probability cut-off for calling a predicted interaction, the
value for which the F1 statistic was maximised was calculated using the optim
package in R, according to the desired score cut-off. Since the most efficient cut-off
is not fixed according to distance, the F1 statistic was maximised separately for five
sets of bait–target distances: (50 kb, 100 kb), (100 kb, 250 kb), (250 kb, 500 kb),
(500 kb, 1 Mb) and (1 Mb, 2 Mb), and performance was analysed for predictions
generated using the resulting cut-offs. To calculate the effect of the CHiCAGO
score cut-off on precision and recall, we optimised the F1 statistic separately for the
five sets based on a range of score cut-offs (0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5, 5.5 and 6).

The pROC71 package in R was used to generate AUC statistics and the caret
package (version 6.0-73) in R was used to generate the precision, recall and
F1 statistics. Plots were generated using custom functions based on statistics
generated from the ROCR67 package.

The data set for GM12878 was trained as described above against a score of ≥3
and was used to predict on the equivalent set of bin pairs in HeLa-S3 and HepG2,
which were subsequently reduced to those with enhancer targets only (using the
same criteria as described above). Final probabilities were calculated based on the
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mean of probabilities over the 10 runs. The distance-based F1-maximising cut-offs
were applied to obtain a final list of interactions. EP interaction sharing between
GM12878, HeLa-S3 and HepG2 was calculated based on whether the interactions
were present in 1, 2 or 3 of the cell types and venn diagrams were generated using
the R package VennDiagram (version 1.6.17).

Processed Pol II ChIA-PET interaction data for HeLa-S3 were downloaded
from ENCODE38 and start and end regions were lifted over to hg38, removing
those without a 1:1 correspondence between the two builds. Bait–target pairs for
predicted EP interactions in HeLa-S3 were selected according to a probability of at
least 0.6 in HeLa-S3 and a probability of less than 0.4 in GM12878. Both ends were
intersected with the lifted over start and end regions in the ChIA-PET data in order
to generate a list of candidate examples. We selected an example on chromosome 6
due to that chromosome’s high-performance statistics from the modelling
described above. The R package Sushi (version 1.10.0) was used to generate plots of
the resulting loops and lines together with annotations and enhancer locations for
the data sets in the example region.

Analysis and predictions across 76 cell types. A total of 249 FANTOM5 CAGE
libraries were selected according to the availability of sample replicates. Tran-
scriptional decomposition was applied to generate PD and PI components for a
total of 76 cell types (including four ENCODE cell lines and 72 primary cells, see
Supplementary Data 6 for a list of library identifiers and names). For the purposes
of consistency between the ENCODE-generated data sets and the primary cell-
type-generated data sets, the hyperparameters were fixed for the random walk and
independent components to the same values which were generated from the
models in ENCODE (while allowing the hyperparameters for the zero-inflated
negative binomial distribution to vary).

Raw binned data at 10-kb resolution were normalised into tags per million
(TPM) and the mean was taken across replicates to obtain a matrix of 76 columns
against the total genomic bin count (303,065). Only regions potentially transcribed
in the given set of CAGE libraries were considered by asking for bins which had
more than one cell type containing tags. The matrix was transformed into log10
values (adding a pseudo-count of 1) and hierarchical clustering using hclust
(complete linkage method) was applied in R. The ordering from the clustering was
used to guide the row and column ordering in the heatmaps for Fig. 6. The R
function cutree was used to find 10 groups from the clustering, which were
annotated and merged manually to generate the most biologically relevant cell-type
groupings from the data.

A common set of bins (34,953) was derived for comparison between cell types
of the PD and the PI components by choosing the set of bins where the sign of the
PI component was positive in more than one cell type. To generate similarity
matrices, the PD and PI signals were converted into binary values according to
whether the signal was positive (1) or negative (0) (PI–0.1 was used for the
independent component to avoid non-expressed bins with very small positive
estimates). The resultant matrix of 76 columns and rows according to the common
bin set was used to calculate 1–L1 norm between each pair of cell types to calculate
a similarity matrix. The same metric was used for calculating similarity matrices
representing cell-type boundary sharing and cell-type EP sharing, with methods
described in the sections below. The R package pheatmap (version 1.0.8) was used
to generate cell-type group-annotated heatmaps directly from the similarity
matrices, using the cell-type ordering from the hierarchical clustering in the raw
data.

For all cell types, XAD boundaries were calculated from the algorithm described
above for ENCODE data sets, supplying the stability scores across the full set of cell
types. To calculate boundary sharing across all cell types, non-overlapping bins of
size of 100 kb were generated and calculated for each expanded bin in the number
of cell types within which a boundary was found. In order to cover all possible
windows, the expanded bins were shifted by a 10-kb bin 10 times and the final
number of shared boundaries was calculated according to an average of 10.

Data sets with features were generated as described for the ENCODE cell lines
for all cell types, with the bin selection also extended to the full set, thus creating a
common bin set which is larger than that for the ENCODE cell lines alone.
Features non-specific to a cell type were also calculated more broadly with
consideration to the 76 cell types. The model was trained as above using the
GM12878 data set and the broader bin set. Similar model performance was noted
or this model when testing on the raw data set using 10-fold cross-validation. The
held-out set predicted probabilities were used for GM12878 and the predicted
probabilities for the other 75 cell types were generated by averaging over 10 trained
models across the whole data set (to robustly account for random differences in the
data balancing for the training).

The data sets for the 76 cell types were reduced according to whether at least
one data set had an active CAGE enhancer annotated to it, in order to obtain a list
of potential EP interactions. To generate lists of predicted interactions, we
generated distance-based probability cut-offs in GM12878, using the same method
for the ENCODE data sets above, using score cut-offs of ≥3 and ≥5.

To calculate EP interaction-sharing statistics, the ≥3-score cut-off was used and
for each possible number of cell types (from 1 to 76), the number of significant
interactions which were present in exactly that number of cell types was calculated.
To generate the EP-sharing heatmap, all interactions which were present in more
than one cell type were considered and pairwise cell-type similarity was calculated
from (1–L1 norm) between columns of the binary (1 predicted/0 not predicted)

matrix with cell types as columns and interaction set as rows. This
generated a similarity matrix which was plotted using the R package pheatmap
(version 1.0.8) based on the cell-type ordering from the hierarchical clustering in
the raw data.

To isolate examples of interactions specific to blood, interactions meeting the
criteria of present (≥3-score distance-based efficient cut-offs) in at least half of the
cell types labelled as ‘blood cells’ (Supplementary Data 6) and in fewer than a total
of up to a maximum of three more than the number of blood cells within the 76
cell types were classified as ‘blood specific’. For further trimming of examples and
plotting of loops, probabilities assigned to all cell types assigned as blood cells were
averaged into one using the mean. Merged probability vectors were also generated
for endothelial cells, epithelial cells, muscle cells, mesenchymal cells and fibroblasts.
Examples of blood-specific interactions were selected based on the loop being still
significant according to the averaged probabilities. The R package Sushi (version
1.10.0) was used to generate plots of selected examples, including tracks for
annotations and the averaged PD, PI components for blood cells.

GWAS trait-associated SNPs and those in LD were retrieved from the traseR R
package. SNP hg19 coordinates were lifted to hg38. For each trait with at least 50
assigned SNPs, an χ2 test was constructed per each of the 76 cell types and
components (PD, PI and XAD boundaries EP interactions). For the PD and PI
components, the foreground was assigned as the set of bins with a positive
component sign in the given cell type, and the non-foreground was assigned as the
set of bins with a positive component sign in at least one cell type, but not the given
cell type. For the EP interactions, the foreground was assigned as the set of target
enhancers within the given cell type and the non-foreground based on the target
enhancers within any other cell type. For the XAD boundaries, the foreground was
assigned as the boundary bins ±2 bins in the given cell type against a non-
foreground of all boundary bins ±2 bins in any cell type, not including the given
cell type. The odds ratios were calculated based on 2 × 2 contingency tables
including the number of trait SNPs within the foreground/non-foreground and the
number of SNPs for all other trait SNPs within the foreground/non-foreground.
For each component, the p values from the total set of χ2 tests were corrected to an
FDR with the Benjamini–Hochberg correction.

The R package pheatmap (version 1.0.8) was used to generate heatmaps of the
resulting trait enrichments and the R package Sushi (version 1.10.0) was used to
generate interaction plots for the given EP interaction examples. To generate the
heatmaps for the number of cell types with significant trait enrichments, the
number of cell types with FDR<0.01 and an odds of >1.25 were counted per trait,
per component. To calculate the component preference by trait, the resulting data
were normalised per trait before generating the heatmap.

Values for the PD and PI components, together with locations of XAD
boundaries and predicted EP interactions were saved out as BED files, using UCSC
zero-based coordinates, and supplied as supplementary files at Zenodo (https://doi.
org/10.5281/zenodo.556727, Rennie et al.72).

Code availability. The code for transcriptional decomposition and downstream
analyses is available at https://github.com/anderssonlab/
transcriptional_decomposition.

Data availability. Transcriptional decomposition data and downstream results are
available at https://doi.org/10.5281/zenodo.556727 (Rennie et al.72). FANTOM5
hg38 enhancers are available at https://doi.org/10.5281/zenodo.556775 (Dalby
et al.43).
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