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Family studies to find rare high risk variants
in migraine
Rikke Dyhr Hansen, Anne Francke Christensen and Jes Olesen*

Abstract

Introduction: Migraine has long been known as a common complex disease caused by genetic and environmental
factors. The pathophysiology and the specific genetic susceptibility are poorly understood. Common variants only
explain a small part of the heritability of migraine. It is thought that rare genetic variants with bigger effect size may be
involved in the disease. Since migraine has a tendency to cluster in families, a family approach might be the
way to find these variants. This is also indicated by identification of migraine-associated loci in classical linkage-
analyses in migraine families. A single migraine study using a candidate-gene approach was performed in 2010
identifying a rare mutation in the TRESK potassium channel segregating in a large family with migraine with aura, but
this finding has later become questioned. The technologies of next-generation sequencing (NGS) now provides
an affordable tool to investigate the genetic variation in the entire exome or genome. The family-based study
design using NGS is described in this paper. We also review family studies using NGS that have been successful
in finding rare variants in other common complex diseases in order to argue the promising application of a
family approach to migraine.

Method: PubMed was searched to find studies that looked for rare genetic variants in common complex diseases
through a family-based design using NGS, excluding studies looking for de-novo mutations, or using a candidate-gene
approach and studies on cancer. All issues from Nature Genetics and PLOS genetics 2014, 2015 and 2016 (UTAI
June) were screened for relevant papers. Reference lists from included and other relevant papers were also searched.
For the description of the family-based study design using NGS an in-house protocol was used.

Results: Thirty-two successful studies, which covered 16 different common complex diseases, were included in
this paper. We also found a single migraine study. Twenty-three studies found one or a few family specific
variants (less than five), while other studies found several possible variants. Not all of them were genome wide
significant. Four studies performed follow-up analyses in unrelated cases and controls and calculated odds ratios that
supported an association between detected variants and risk of disease. Studies of 11 diseases identified rare variants
that segregated fully or to a large degree with the disease in the pedigrees.

Conclusion: It is possible to find rare high risk variants for common complex diseases through a family-based
approach. One study using a family approach and NGS to find rare variants in migraine has already been published but
with strong limitations. More studies are under way.

Keywords: Next generation sequencing, Common complex disease, Whole genome sequencing, family approach, Whole
exome sequencing, Migraine genetics
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Background
With a lifetime prevalence of 16%, migraine affects 75 mil-
lion Europeans. It can be very disabling for the individual
and is a large economic burden to society [1]. Unraveling
the genetics of migraine is therefore highly relevant. Mi-
graine is a complex disorder caused by several genes and
environmental factors [2, 3]. A higher concordance of
migraine in monozygotic than in dizygotic twins, and the
1.9-3.8 fold higher risk of migraine among first degree rela-
tives of affected individuals, indicates an important genetic
component [2–5] Twin studies show a heritability of 34%–
65% [5, 6]. Heritability of migraine with typical aura (MA)
that affects approximately one third of migraineurs is
higher than for migraine without aura (MO), and evidence
supports that MA and MO have different, though some-
what overlapping, etiology [7, 8]. The diagnosis of migraine
is based solely on patients’ history in the absence of vali-
dated biomarkers.
Causal mutations in three genes have been identified for

familial hemiplegic migraine (FHM), a rare and severe,
autosomal dominantly inherited subtype of migraine with
aura [9–11]. However, these genes are apparently not
involved in the prevalent types of migraine [12, 13].
Several linkage studies and association studies using a
candidate-gene approach have failed to identify any robust
association between genetic variants and the prevalent
types of migraine (see Table 1 for explanation of terms
and methods mentioned) [14]. Recently, a large meta-
analysis including almost 60,000 affected subjects demon-
strated 44 independent common single nucleotide poly-
morphisms (SNPs) associated with migraine [15]. Odds
ratios (ORs) ranged between 0.85 and 1.11, and the mech-
anisms of action in migraine are unknown. It is now clear
that no common variants are associated with a medium or
high risk of migraine. Thus, common variants cannot ex-
plain much of the observed heritability of migraine. In
general, only 1.5%–50% of heritability of common com-
plex diseases and traits can be explained by common vari-
ants [16]. In other words, variants with medium or high
risk must be rare and therefore not possible to capture by
genome-wide association studies (GWAS) in unrelated
case–control samples [17]. Migraine sometimes clusters
in families with an inheritance pattern that often looks
dominant. MA in particular seems to aggregate in large
families [2, 3]. It is reasonable to think that rare genetic
variants or mutations with medium to high effect size play
an important role in these large families [18]. The same
could be the case for families with multiple individuals
affected by MO. A search for rare variants conferring a
medium to high risk of migraine should therefore focus
on families with many affected with migraine. Thus, it is
hypothesized that the prevalent types of migraine can be
oligogenic or even monogenic inherited, as is also hypoth-
esized for many other common complex diseases [18]. If

oligogenetic inherited, susceptibility is due to a specific
combination of rare variants and unrelated cases represent
a wide range of different combinations. These would be
impossible to capture by GWAS alone. In a family, the
combination of variants is probably specific to that one
family, and because of this clustering of variants it will in-
crease the chance to find it. Linkage analysis is the method
of choice when studying monogenic disorders, but linkage
studies are difficult in case of oligogenic inheritance. Pre-
vious linkage analyses in migraine families have shown
association between several loci and MA and MO with
LOD > 3 [19–25]. None of these associations have been
consistently replicated and the causal genetic variants
remain to be identified, but it shows that the family
approach is promising for migraine. Based on an a-priori
hypothesis about the involvement of the TRESK potas-
sium channel (encoded by the KCNK18 gene) in MA,
Lafreniére et al. 2010 sequenced the entire gene region
(i.e. a candidate-gene approach) and identified five variants
in a case–control sample, of which one rare variant was
subsequently shown to segregate perfectly with MA in a
large multigenerational family (eight affected and 8 un-
affected members) [26]. However, this association has later
become questioned [26–28]. The technology of next-
generation sequencing (NGS) now provides an affordable
tool to investigate genetic variation in the entire exome or
genome [29]. In theory, a family based study design and
genome sequencing can embrace the search for rare
variants with both high and medium effect size,
whether monogenic or oligogenic. The family approach
using NGS has not yet been used in migraine genetic
research on a larger scale, but we and probably several
other groups now have ongoing studies. We therefore
judge it timely to investigate how the family approach
and NGS has been used successfully in other common
complex disorders, and to deduce from that the possi-
bilities for its application in migraine.

Method
This is a focused review and by no means exhaustive on
the topic of NGS in common complex diseases.
PubMed was searched to find studies on rare genetic

variants using NGS in common complex diseases with
positive findings.. There is no clear definition of the term
“common disease”. The definition of a “rare disease” is not
clear either, but it is defined by the European Commission
as “prevalence of less than five per 10,000 in the Commu-
nity” [30]. We therefore defined diseases not fitting this
definition as common. Successful studies with a family-
based design using a NGS method, not looking for de novo
mutations or already known candidate genes were in-
cluded. Studies focusing on cancer were also excluded.
We searched the following terms: “Exome AND
sequencing AND pedigree AND rare AND variants”
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which resulted in 192 articles of which 29 abstracts
were read, 15 were read in full and 14 were included.
Also the terms “family-based AND “exome-sequencing”
AND rare AND variants” were searched and yielded 17
articles (three already included) out of which nine ab-
stracts were read and eight articles were read in full
resulting in three included studies.
“Migraine AND “whole genome sequencing ”and “mi-

graine AND” “whole exome sequencing” only yielded three
and nine hits respectively and one article were read in full
and included.
We especially wanted to include studies of bipolar

disorder and schizophrenia, because the diagnosis, like
for migraine, relies on clinical characteristics in lack of
a biomarker. Therefore, we also searched the terms
“Schizophrenia AND “whole genome sequencing” AND
families” yielding six articles whereof two were included,
“Schizophrenia AND “whole exome sequencing” AND
families” yielding 13 articles (one already included) of
which 8 abstracts were read, 5 of them in full resulting in
3 included. The terms ““bipolar disorder” AND “whole
exome sequencing” AND families” resulted in one article
which was not included and ““bipolar disorder” AND
“whole genome sequencing” AND families” resulted in
two articles of which one was included.
The last search was performed the 12th of June 2016.
We expected highly relevant articles on the topic

would be published in Nature Genetics and PLOS
genetics. Therefore every issue of the two journals
published in 2014, 2015 and 2016 (UTAI June), were
screened for relevant papers. This and reading through
reference lists of reviews and other relevant papers

lead to inclusion of another 10 studies. A total of 32
studies were included (Fig. 1).

Methodology of the family approach
In the following we shall describe a promising design for
a family-study to find rare high risk variants in complex
diseases used in our ongoing studies. For explanation of
the different methods and terms mentioned, see table 1.

Inclusion
Multigenerational pedigrees with as many affected and
unaffected individuals as possible will optimize the chance
to find causal variants. The affected family members have
to be in direct bloodline, with a minimum of affected
spouses. There must be a trio of an affected child and an
affected as well as a non-affected parent and also an
affected relative in direct blood line as many meioses away
as possible to narrow down the number of shared variants.

Diagnosis
To distinguish affected individuals from unaffected, the
diagnostic process is of crucial importance. A single
wrongly diagnosed individual in a family, whether af-
fected or unaffected, will diminish the chance to identify
the causal genetic variant(s) in the segregation analysis.
For migraine this is difficult as no diagnostic biomarker
exists. The diagnosis relies on a detailed recording of
symptoms and unambiguous diagnostic criteria of the
International Headache Society (international classifica-
tion of headache disorders third edition (ICHD 3-beta)
[31]). A validated semi-structured interview based on
the diagnostic criteria, allows a reliable diagnosis. The

Fig. 1 Flowchart of the searching process
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interview should be performed by a specially trained
physician or senior medical student. An example is the
validated, semi-structured migraine interview used at the
Danish Headache Center [32].

Molecular genetics
Whole exome sequencing (WES) or preferably whole
genome sequencing (WGS) can be performed on DNA
from blood samples or cells from other biological materials
like mucosal cells from a buccal swab. The analysis will be
a combination of an association- and a segregation analysis
which will require a combination of several sequencing and
genotyping methods. Based on an in-house protocol and
literature review we propose the following.
A so called family trio is selected from each pedigree for

sequencing (in some cases it can be preferable to only
sequence the proband). WGS is optimal because causal gen-
etic variants can be localized in non-protein coding regions.
WES may be chosen because of the lower cost. A trio com-
posed of a nuclear family with an affected child, an affected
parent, a non-affected parent (Fig. 2) and a distantly related
affected family member from the same pedigree as many
meioses from the trio as possible are sequenced.
Several hundred variants are usually shared between the

affected individuals. The disease-causing variants will often
not be present in DNA from the unaffected relative. The
use of a more distantly related affected individual in the
analysis will decrease the number of possible causal variants
because a distantly related person shares less DNA with the
two affected individuals in the trio. Quality testing of the
sequencing like depth of coverage (the a verage number of
times a nucleotide is expected and observed to be se-
quenced) will not be explained here in details, but the
importance of this step should be noted.

Filtering
To narrow down the number of variants, a filtering process
is hereafter necessary. This can be done in several ways.
They all depend on several existing databases with genetic
information. These databases consist of collections of struc-
tural variants like SNPs and copy number variants (CNVs)
detected by different studies. All SNPs known to date are
for example gathered in public databases like dbSNP [33].
Other examples are the 1000 genomes project data, the
Database of Genomic Variants [34], and more local data-
bases like LuCamp containing 700.000 SNPS from 2000
Danish individuals [35]. The strategy is to filter out and ex-
clude all variants known in all available genetic databases as
the causal variants are expected to be private for a family.
Some studies choose to include rare variants present in
databases with minor allele frequency (MAF) <0.5% or
<0.1% [36]. A third strategy is to filter out variants with e.g.
MAF >0,1%, thereby excluding variants common in the
population from the study data [37, 38].

Co-segregation studies
The remaining family specific variants then have to be
tested for segregation with disease in the pedigree. This
can be done by a classical Sanger sequencing of the rele-
vant genes in all the non-sequenced family members or
by SNP genotyping. Ideally the causal variant is present
only in affected individuals, but the possibility of un-
affected carriers has to be taken into account because of
incomplete penetrance, or later debut of the disease.
Calculating a so called LOD score (LOD = logarithm of
the odds), can help as a measure of probability of linkage
between a variant and a disease.
Oligogenic inheritance where more than one variant

are found to segregate in a pedigree is very likely in

Fig. 2 Example of a MA family suited for a family approach analysis. A trio and a distantly related, affected family member are marked with
dashed lines. The arrow marks the proband

Hansen et al. The Journal of Headache and Pain  (2017) 18:32 Page 5 of 10



common diseases. Therefore, it is possible that this ap-
proach will result in multiple variants segregating in one
family, all playing a role for the pathogenicity in that
family.

Further analyses
Further analysis, like testing whether some of the segre-
gating variants are shared between different families
within the same study is interesting. The likelihood of a
variant to be disease-causing can be tested by screening
a sample of unrelated cases or additional sets of affected
families for the mutation [36]. Screening for other muta-
tions in the involved genes is also relevant. A so called
burden test can be done. The load of rare mutations in a
gene or gene family present in cases vs. controls reflects
the probability of a gene to be involved in disease patho-
genesis. Afterwards, functional studies involving labora-
tory tests are crucial to investigate how detected variants
are involved in pathogenic mechanisms of the disease of
interest. Different kinds of software like polyphen-2 [39]
and SIFT [40] have been developed to predict to which
extent a variant or mutation is functional. This predic-
tion is based on the possibility of a variant to be e.g.
deleterious or in-frame. Laboratory tests may show
whether the mutation resides in a gene (this will always
be the case when using WES) or in a regulatory area.
Other relevant questions to ask are: in which processes
or pathways is the variant involved? Does this affect
gene or protein expression or function? Can this explain
development of symptoms of the investigated disease?
Functional laboratory studies in cells from humans or
animals can help answer these questions (Fig. 3).

Successful use of the family approach in diseases
other than migraine
Family studies using different variants of the approach de-
scribed above or some of its elements have already

provided interesting results in common complex diseases
other than migraine.
Thirty-two studies that fulfilled the criteria were included

in this review [36–38, 41–69]. Six of them studied bipolar
disorder, five of them studied schizophrenia (SCZ), three of
them autism spectrum disorder (ASD) and two of them
type II diabetes, while four studies focused on late onset
Alzheimer’s disease (LOAD). There was one study focusing
on each of the following: Parkinson’s disease, age-related
macular degeneration (AMD), adiponectin level, atrial fib-
rillation, intracranial aneurysms, nonsyndromic cleft lip and
palate (NSCLP), nonsyndromic hearing impairment, otitis
media, preeclampsia, primary open angle glaucoma, inflam-
matory bowel disease and reumathoid arthritis. The study
groups ranged from one to eighty families of varying size.
They all used a combination of genetic methods like WGS,
WES, sanger sequncing, GWAS and linkage-analysis. Some
also used identity by descent analysis (IBD). Only three
studies did WGS and three studies made use of family trios.
One study searched for rare CNVs instead of SNPs [41]. 23
of the studies found one or a few variants (<5) specific for a
family and the rest found several variants without finding
one causal variant. Study details on disease, sample, tech-
niques and findings are listed in Additional file 1: Table S1.
Four studies performed a follow-up analysis in unrelated

cases and controls and presented an OR. Wetzel-smith et
al. detected a missense variant (rs137875858 in UNC5C) in
a large family with 8 LOAD cases using WGS, WES,
linkage-analysis and assay genotyping. The same variant
was found in four other pedigrees. Further genotyping of
LOAD cases (8,050) and controls (98,194) resulted in an
OR= 2.15 (95% CI = [1.21; 3.84], P = 0.0095) [42]. By WES
and genotyping Cruchaga et al. detected a rare variant
(rs145999145 in PLD3) segregating in 2 pedigrees with
multiple LOAD cases. When testing independent cohorts
of sporadic cases (4,998) and controls (6,356) they found an
OR= 2.10 (95% CI = [1.47; 2,99] P=2.39×10−10-). For

Fig. 3 Description of the family approach in summary
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familial LOAD cases (1,106) vs. unrelated controls (6,356)
an OR of 3.39 (95% CI = [2.14; 5.39] P = 1.18×10−6) was
calculated [36]. Kohli et al. made use of WES, linkage ana-
lysis, genotyping and Sanger sequencing to study one pedi-
gree counting 15 individuals. They found a rare variant
(rs377155188 in TTC3) which segregated perfectly with
LOAD in the pedigree. They calculated an OR for LOAD
of 3.35 for sporadic cases (6,669) vs. controls (5,585) [43].
The result did not reach statistical significance (CI not spe-
cified). Goes et al. exome sequenced 36 individuals from 8
families and calculated ORs for variants in three genes with
association to bipolar disorder in a case–control follow-up
study (3,541 cases, 4,774 controls). It resulted in ORs of
2.73 (P = 0.016), 6.7 (P = 0.0039) and 2.78 (P = 0.045) for
variants in MLK4, APPL2 and HSP90AA1 respectively [44].
Some studies found complete segregation between a

variant and the studied disease and a few of them will be
highlighted in the following. Cruceanu et al. exome-
sequenced DNA from caucasian individuals affected with a
highly heritable subtype of bipolar disorder in multigener-
ational families with three to seven affected individuals.
Focus was on variants with MAF<1% in the general popula-
tion. A missense variant was detected on chromosome 11
(position116652892) that leads to substitution of an ami-
noacid in the encoded protein. The variant segregated with
affected family members in a family (five individuals) and
was not present in unaffected family members selected as
controls (six individuals). Whether this variant contributes
to bipolar disorder is not known because of lack of know-
ledge about the involved gene [37].
Nyegaard et al. studied a five generational family contain-

ing 17 individuals with nonsyndromic hearing impairment
(two of them dead). Seven already known hearing loss
genes were not involved. 11 individuals were selected for
SNP genotyping. 11.034 detected SNPs were included in a
parametric linkage analysis which resulted in a significant
linkage peak at chromosome six. To narrow down the size
of the detected locus, 26 family members were genotyped
for seven microsatellite markers. Then DNA from an
affected individual was selected to undergo next generation
sequencing (NGS) at the locus site by a costume designed
sequence array. This identified 28,300 variants. One variant
found in a coding region and predicted to have a functional
effect was identified after excluding common variants. The
mutation c.574C>T in CD164 was found in all affected
individuals including a young girl with signs of a beginning
hearing loss. The variant was absent in 12 unaffected family
members, in one with unknown phenotype and in 1200
unrelated controls [45].

Suggested application of the family approach to
migraine
The studies reviewed here largely followed the steps we
have described, but with many variations. In our description

of a family based study design, we suggest to use family
trios for WGS. Only three studies [46–48], one of them still
ongoing, did this. Also, only three studies [42, 46, 49] made
use of WGS, which probably reflects that the cost of WGS
has only been manageable very recently. It is highly likely
that the non-coding regulatory areas play an important role
in common migraine [70]. Georgi et al. chose to study a
pedigree in an isolated population which has also been
suggested as a possible approach to find rare variants
[16, 46, 71, 72]. 23 studies [36–38, 41–45, 48–62]
reported the finding of less than five family specific
variants (not all significant). Some studies could not
find one specific causal variant probably because
disease susceptibility is caused by more than one rare
variant specific to a family (oligogenic inheritance).
Detection of variants only makes sense if it is followed
by further studies to clarify the causality of the variant.
An et al. found several variants associated with autism
spectrum disorder. They found enrichment of rare
causal variants in key neurobiological processes, and
overrepresentation of the rare causal variants in func-
tions involving neuronal development, signal trans-
duction and synapse development [48].
In the future, combinations of gene variants might be

analyzed by “omics” approach, where bioinformatics inte-
grate genomics, epigenomics, transcriptomics, proteomics
and metabolomics [73, 74]. We excluded Ratnapriya et al.
[75] from the reviewing part of this study because they
studied a rare subtype of macular degeneration. They
found a rare variant in a family with early onset macular
degeneration in FBN2, but also a common variant in the
same gene with a modest association to AMD cases. It is
an excellent example of how both rare and common
variants in a single gene can contribute to complex forms
of a disease phenotype and the understanding of its
pathophysiology.
Few studies focused on CNV’s, and only Van Den

Bossche et al. [41], studying schizophrenia, succeeded in
finding a CNV associated with disease. Rare inherited
CNVs were more frequent in familial schizophrenia than in
an unaffected control cohort [76]. This supports CNVs as
an area of interest when searching for rare disease variants
in migraine. In the future, NGS methods will be able to
capture CNVs [77].
As mentioned, ORs for SNPs associated with migraine

found through a GWAS ranged between 0.85 and 1.24.
In the studies using a family approach reviewed here the
ORs in follow-up case–control studies ranged between
2.10 and 6.7, the last one for the association between a
variant in APPL2 and bipolar disorder. Like migraine,
bipolar disorder and schizophrenia are common and
complex neurological disorders with a clearly heritable
factor and a diagnosis based on history in the absence of
a biomarker. Success in these disorders raises hope to
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find specific rare variants with high relative risk in migraine
families. Jiang et al. reported the preliminary finding of six
novel rare non-synonymous mutations in a Chinese family
with clustering of migraine without aura using WES. They
included four cases (a father and three children) and four
unrelated controls. However, the study had several limita-
tions [78]. As far as we know, Jiang et al. is the only study
using a family approach and NGS in migraine that has been
published. F. Michael Cutrer, Mayo Clinic, Rochester has
carried out WES in two large migraine families, according
to a published grant description [79]. Five candidate genes
were found to segregate with MA in one family. In the
other family, including individuals with varying phenotypes,
a single variant was detected. Whether the variants are rare
was not stated. These results have unfortunately not been
published. A similar study is ongoing on at the Danish
Headache Center. This project aims to find rare genetic
variants conferring a high risk of migraine using a family
approach exactly as described previously. Extended Danish
families with MA or MO are included. The study is still
collecting data and biological material for sequencing and
genotyping. A family approach in migraine will en-
counter obstacles. Correct phenotyping cannot avoid
that unaffected controls may develop migraine later.
The probability that some affected family members do
not carry a family specific variant is high due to the
high prevalence of migraine in the general population.
Also, unaffected carriers are a possibility due to low
level of penetrance. This will complicate the analysis.
Many families contain a mix of individuals with MO,
MA or so called MAMO (co-occurring MA and MO).
It is not known whether the two phenotypes are part
of a spectrum of the same disease or different diseases.
Taking these problems into account, we still believe
that a family approach is the best way to find variants
with a high relative risk. Such variants can be the key
to understand the pathophysiological mechanisms of
migraine, and much more so than the common variants
discovered by GWAS. It is obvious that migraine is highly
genetically heterogeneous. Pathophysiology as well as
response to prophylactic drugs vary considerably [80, 81].
On the other hand, 80% of patients respond to injection
of Sumatriptan suggesting the existence of a final common
pathway [82, 83]. If the etiology of just a few sub-
phenotypes can be identified with certainty, it seems pos-
sible to identify one or more migraine pathwaysthat may
be relevant for many patients, even if the genetic cause
that lead to the discovery is rare. New targets for better
and more specific treatments may then be discovered.

Review and conclusions
It has proven possible to find rare high risk variants
for common complex diseases through a family based
approach. One study using a family approach and NGS

to find rare variants in migraine has already been
published but it has strong limitations. More studies
are under way.
Future family approach studies could be advanced by

choosing isolated populations or individuals with severe
phenotypes as study groups and include analysis of
mitochondrial DNA and “omics”.

Additional files
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measures are stated where possible. (DOCX 64 kb)
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