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Supernova Neutrinos: New Challenges and Future
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Irene Tamborra
Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

E-mail: tamborra@nbi.ku.dk

Abstract. Neutrinos are key particles in core-collapse supernovae. Traveling unimpeded
through the stellar core, neutrinos can be direct probes of the still uncertain and fascinating
supernova mechanism. Intriguing recent developments on the role of neutrinos during the stellar
collapse are reviewed, as well as our current understanding of the flavor conversions in the stellar
envelope. The detection perspectives of the next burst will be also outlined.

1. Introduction

Since the last core-collapse supernova (SN), the only one detected in neutrinos, substantial
progress has been made as for our understanding of the physics leading to the stellar
explosion [1, 2], the role of neutrinos in the star, and the flavor oscillations in neutrino-dense
media [3, 4]. Several large scale detectors are in place (or will be soon) to detect the next galactic
burst [3, 5, 6]. Nevertheless, we are still far from fully grasping the core collapse physics and
the role of neutrinos in it. In this sense, the detection of the next galactic burst will provide us
with a precious test of our understanding of the stellar dynamics.

Besides the single SN burst, the detection of the diffuse SN neutrino background (DSNB, the
neutrino flux emitted from all SNe exploding somewhere in the Universe) is approaching. The
DSNB will allow us to learn about the stellar population, other than provide with an independent
test of the SN rate [3, 7, 8]. In what follows, we will outline some of the open issues in SN and
neutrino astrophysics, as well as future directions.

2. Supernova simulations: The 3D frontier and recent developments
A core-collapse SN explosion originates from the death of stars with M > 8Mg [1]. The SN
iron core is surrounded by shells of lighter elements; once the Chandrasekhar limit is reached,
the core collapses and the explosion is triggered. The 99% of the explosion energy is released in
neutrinos with average energies of O(10) MeV. The neutrino signal should last for about 10 s.
The SN neutrino signal can be divided in three windows, see Fig. 1: The neutronization burst
marked by a large peak in the v, luminosity (generated because of the rapid electron capture
by nuclei and free protons, as the shock wave crosses the iron core dissociating its nuclei); the
accretion phase where the differences among the fluxes of different flavors are still large especially
between the electron and non-electron flavors; the cooling phase where the neutrino emission
properties of the different flavors become very similar and the luminosity progressively decreases.
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Figure 1. Neutrino luminosities (on the top) and mean energies (on the bottom) for the three
flavors [continue line stands for v.’s, dashed line for 7.’s, dotted (dashed-dotted) line for v,
(7,,-)] as a function of the post-bounce time for a 27 My SN progenitor. The panels on the left
refer to the neutronization phase, the middle panels to the accretion phase, and the panels on

the right to the cooling phase. Figure adapted from from Ref. [3].

Core-collapse hydrodynamic simulations have recently reached the 3D front, unveiling new
and unexpected features [2]. The first successful explosions have been obtained in 3D by several
groups [9, 10, 11, 12] with different degrees of sophistication. Although the SN modelling still
needs to be refined and long-term 3D simulations of the core-collapse are not yet available, the
available hydro simulations are a precious benchmark to test the neutrino mechanism.

The SN explosion is expected to occur according to the delayed neutrino explosion
mechanism [13]: Neutrinos provide new energy to revive the stalled shock wave and trigger the
explosion. During the shock revival phase, hydrodynamical instabilities occur, such as convective
overturns and the standing accretion shock instability (SASI) contribute to enhance the efficiency
of the energy transfer between the neutrinos and the shock wave. Recent 3D SN simulations
suggest that the neutrino signal carries imprints of such instabilities [14, 15]. SASI episodes will
be clearly detectable with neutrino telescopes such as IceCube and Hyper-Kamiokande as shown
in the left panel of Fig. 2. Another instability has been recently discovered: The lepton emission
self-sustained asymmetry (LESA) [2, 16]; LESA is the first instability driven by neutrinos and it
consists of an asymmetric emission of the v, number flux with respect to the 7, one, see the right
panel of Fig. 2. LESA is characterized by a large scale dipolar character and is responsible for
a strong directional dependence of the neutrino fluxes that could affect the SN nucleosynthesis,
oscillations and neutron star kicks.

Besides ordinary core-collapse progenitors, a black-hole forming SN may occur when a SN
collapses in a black hole and the neutrino signal abruptly ends after a few hundreds of ms.
In the past we thought that only progenitors with mass larger than 40My could evolve in
black-hole forming SNe, however recent work shows that low mass progenitors may fail and the
abundance of black-hole forming SN progenitors can reach up to the 30 — 40% of the total SN
population [17, 18]. Black hole forming SNe may considerably enhance the expected DSNB
signal [3].
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Figure 2. Left: Detection rate in IceCube and Hyper-Kamiokande as a function of the post-
bounce time for a 27 Mg SN progenitor for an observer at 10 kpc located along a direction
where the neutrino signal shows strong SASI modulations. Right: Neutrino lepton number flux
(ve — Ue) normalized by its average value for a 11.2 M progenitor at t,; = 240 ms. Figure
adapted from from Refs. [14, 16].

3. Flavor evolution in supernovae
The flavor evolution of neutrinos is described by matrices of densities by the following equations
of motion

O+ T - Vopplt, &, 1) = —ilH (t, &, p), pt, &, §)] + Clp(t, &, 7)) , (1)

where the Hamiltonian contains vacuum, matter, and neutrino—neutrino terms; in particular, the
latter is due to the fact that SNe are neutrino-rich environments and therefore v—v interactions
cannot be neglected [3, 4, 19]. This term makes the equations non-linear and it depends on the
angle between the momenta of the colliding neutrinos. Solving these equations means to deal
with a 7D problem involving quantities changing on different time scales. Simplifications are
therefore required.

The modelling of neutrino—neutrino interactions has been first developed by assuming a
stationary and spherically symmetric SN within the so-called neutrino bulb model [20]: Neutrinos
of all flavors are emitted from each point of the neutrino-sphere in the forward solid angle
uniformly and isotropically. Under this approximation, general features were found such as
the spectral split: A complete swap of the neutrino energy spectra for certain energy ranges
and according to the neutrino mass hierarchy, as shown in Fig. 2. Within this model, it was
proved that the high matter density profile, typical of early post-bounce times (i.e., during the
SN accretion phase), locks the neutrino modes inhibiting multi-angle flavor conversion effects
(Ne > N,) [22]. On the other hand, during the cooling phase, where the fluxes of the neutrinos
of different flavors are more similar to each other, multiple spectral splits were expected to
occur [23].

The above conclusions have been drowned by relying on the assumption that we have a
stationary, spherically symmetric SN, where the neutrino fluxes evolve with radius. However,
more recently, it has been pointed out as new instabilities in the flavor space may arise by
releasing such approximations. For example, within a simplified setup, it has been shown as
breaking the axial symmetry [24], the spatial and directional symmetry [25], or by introducing
temporal instabilities [26], flavor conversions could be induced (i.e., flavor instabilities can be
determined because of the non-homogeneous or non-stationary conditions occurring within the
stellar envelope). The same should be expected by considering a neutrino angular distribution
not limited to the outward direction, as well as in the presence of large 3D effects that make the
system inhomogeneous, non-stationary and anisotropic [15, 16]. Some of the most recent work
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Figure 3. Neutrino (on the left) and antineutrino fluxes (on the right) as a function of the
energy after v—v interactions assuming inverted mass ordering. The fluxes at the neutrino sphere
are shown as dotted lines. Figure taken from Ref. [21].

in this direction seems to suggest flavor equipartition might occur already very close to the SN
core. Existing investigations in this contest are still simplified cases of study and further work
is necessary.

4. What could we learn from the next supernova burst?

A network of neutrino detectors around the world (SNEWS) will alert astronomers in the event
of a SN burst [27], neutrinos arriving earlier than photons on Earth. Moreover, we could
determine the angular location of a SN with its neutrinos [28, 29] with an error of about 5°
in e.g. Super-Kamiokande. Triangulation would be also possible [30]. Such measurements will
be crucial for dim or optically weak SNe where neutrinos could be the only detected particles.
These measurements will be also important for multi-messenger searches.

The neutronization burst signal is independent of the progenitor mass and the nuclear
equation of state. It can be adopted as a standard candle to define the distance of the SN
event [31]. Since the slope of the 7, and 7, light-curves is different, the observed neutrino event
rate will be sensitive to the neutrino mass ordering in, e.g., Cherenkov telescopes. The same
holds for the neutrino channel; if we consider the v, event rate as seen in e.g., a liquid argon
detector, the absence (presence) of the peak of the neutronization burst will hint towards a
normal (inverted) mass ordering [32].

During the accretion phase, the neutrino signal carries characteristic signatures of the SASI
motions and convective overturns, clearly detectable in, e.g., Cherenkov telescopes [15, 14]
providing insights on the core-collapse physics complementary to the ones coming from
gravitational waves. By looking at the first detected neutrino event, we could probe the core
bounce time [33].

The cooling phase signal is strongly sensitive to the nuclear equation of state as well as to
the SN progenitor mass. The exact composition in neutrinos of different flavors is responsible
for determining the nucleosynthesis outcome in the neutrino driven wind [34, 35]. Recent first
attempts of coupling the oscillation codes to the nucleosynthesis networks suggest that, even by
taking into account the existence of an extra light sterile family, it is difficult to create a n-rich
environment in the SN neutrino driven wind (i.e., Yz < 0.5) and to activate the r-process [35],

see e.g. Fig. 4. However, the role of oscillations in the production of heavy elements remains to
be clarified.
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Figure 4. Asymptotic electron fraction (Y.) as a function of the post-bounce time (¢y) in the
presence of only active states, 2active+1sterile families and with and without oscillations. The
electron abundance Y, should be lower than 0.5 in order to create favourable conditions for the
r-process. Figure adapted from Ref. [35].

In synthesis, each of the three phases of the SN neutrino signal offers different opportunities
to learn about the stellar collapse or neutrino properties.

5. Diffuse Supernova Neutrino Background

On average a SN explodes every second in the Universe and we could detect the cumulative
neutrino flux, the DSNB [3, 7, 8]. The DSNB should be clearly detectable in the region around
20-30 MeV, where it is expected to be above the reactor and atmospheric backgrounds.

The detection of the DSNB will be instrumental to constrain the stellar population, it will
provide us with an independent test of the SN rate, and will help us to constrain the fraction
of black-hole forming versus core-collapse SNe. At the same time, the DSNB detection could
help us to constrain the neutrino emission properties as well as exotic physics scenarios. The
possibility of detecting the DSNB will be improved in the next future with the planned JUNO
scintillator detector as well as with the approval of the Gd project for the Super-K detector [3].

6. Summary

Neutrinos play a fundamental role in the physics of a core-collapse supernova. The first successful
supernova hydrodynamic simulations in 3D revealed unexpected and fascinating phenomena and
proved as the detection of the supernova neutrino signal will be instrumental to test the explosion
mechanism.

Core-collapse supernovae are neutrino-dense environments and v—v interactions cannot be
neglected. A careful modelling of the SN environment for studying the oscillation phenomenology
is compulsory and it still incomplete at the moment, despite the intense theoretical activity in
this direction. Neutrino self-interactions are non-linear effects and it has been shown as, by
releasing some of the traditionally adopted symmetry assumptions, instabilities in the flavor
space could be induced.

Each phase of the core collapse neutrino signal could offer different opportunities to learn
about the supernova physics and the synthesis of the new elements. The detection of the DSNB
is expected to happen within the next decade and will offer us with a chance to constrain the
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stellar population as well as to independently test the supernova rate.
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