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ABSTRACT
We study distributed declarative workflow execution in an
adversarial setting. In this setting, parties to an agreed-upon
workflow do not trust each other to follow that workflow,
or suspect the other party might misrepresent proceedings
at a later time. We demonstrate how distributed declara-
tive workflow execution can be implemented as smart con-
tracts, guaranteeing (I) enforcement of workflow semantics,
and (II) an incontrovertible record of workflow execution his-
tory. Crucially, we achieve both properties without relying
on a trusted third party.

The implementation is based on the Ethereum blockchain,
inheriting the security properties (I) and (II) from the guar-
antees given by that chain. A recurring challenge for both
the implementation and the analysis is the cost of opera-
tions on Ethereum: This cost must be minimised for honest
parties, and an adversary must be prevented from inflicting
extra cost on others.

1. INTRODUCTION
Mutually distrusting organisations must often collaborate,

as illustrated by the following example. On the Danish
labour market employer-employee disputes are resolved not
by the parties themselves, but by the umbrella organisations
for respectively Danish employers (abbreviated here “DE”)
and Danish unions (abbreviated here“DU”)1. A dispute may
be resolved through negotiations between the two parties, or
if negotiations break down, in court.

1The actual Danish names are“Dansk Arbejdsgiverforening”
(DE) and “Landsorganisationen” (DU).

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and FAB 2018.
Symposium on Foundations and Applications of Blockchain (FAB ‘18)
March 9, 2018, Los Angeles, California, USA.

Given their conflicting interests, DU and DE are mutu-
ally distrusting collaborators. They follow an agreed-upon
process when negotiating a dispute, a process which defines
simple things like who proposes meeting dates, who submits
which document to whom and how, etc.

However, depending on the strength of their respective
cases, they may not have equal incentives to follow this pro-
cess. If an employee has a strong claim to unpaid salary,
DE may be less forthcoming in responding to meeting date
proposals. Conversely, if an employer is planning legal but
unpleasant mass firings, DU may similarly stall the process.
Should a case go to court, either party’s intransigence may
have legal repercussions.

This reluctant collaboration is an example of a cross-or-
ganisational workflow between adversaries. System support
for such a workflow must provide two key guarantees:

(I) Workflow correctness. The system must enforce
the agreed-upon workflow, so that no party can obtain
an advantage by acting out of turn or failing to fulfil
an obligation to act.

(II) Consensus on history. The system must provide
an incontrovertible record of execution, e.g., to decide
in court which party did in fact violate the agreed
upon workflow.

The usual way to achieve (I) and (II) is having participants
agree on a trusted third party. This third party verifies that
the actions taken are within the bounds of the agreement,
and meticulously records the proceeding of the case. How-
ever, such a third party is not always practical: It may be
difficult for the parties to agree on one, and it may be ex-
pensive to retain one, especially at large case volumes.

In this paper, we show how (I) and (II) may be achieved
without a trusted third party by implementing an executable
workflow specification as an Ethereum smart contract.

Our solution is based on recent advances in executable
workflow specifications on the one hand and blockchain tech-
nologies on the other. A blockchain can be used as a mech-
anism to produce a trusted, immutable record of workflow
execution. E.g. if DU and DE were to store the history of

1



their common processes on a blockchain, they could both
trust this history to be correct with very high probability.

Executable workflow specifications. Agreeing on a record
of workflow history is only a part of the puzzle. We must
also enforce adherence to the agreed-upon workflow, i.e.,
the rules governing the exact order in which work can be
done. Instead of encoding a workflow directly as a part of
the source code of the system, it is typically modelled sepa-
rately in a workflow notation such as BPMN [32], Workflow
Nets [1], DECLARE [39], DCR graphs [7, 10], GSM [24], or
CMMN [31]. In the best case, such a model is executed by an
execution engine embedded in the overall system, enabling
straightforward adaptation of work practices by changing
the model rather than redeveloping the system itself.

Traditionally, workflow notations have been flow-based,
describing processes in a style similar to transition systems,
representing precisely the steps that one may go through to
satisfy the goals of the process. Such notations work well for
strict production processes with little variation, but when
applying them to knowledge intensive processes [11], which
usually allow a large degree of flexibility and many different
paths towards the goals of the process, the models tend to
become overly complex and unreadable [39].

Declarative process notations [39, 19, 31, 38] address this
deficiency by capturing not explicit flow but rather the con-
straints and goals of a process, letting the system deduce the
allowed paths to the goal. As shown in [20], the declarative
approach is highly relevant in the case of DU and DE, whose
processes are strongly knowledge intensive.

A declarative process model may be implemented as a
smart contract [36, 40]: a blockchain where blocks represent
not only a common history, but also contracts in the form
of executable code. For example, DU and DE have agreed
that DU will always propose meetings first; encoding this
rule in a smart contract, we can ensure that any attempts
to add new events in violation of this rule are rejected.

Contributions. We show that a declarative workflow engine
can be employed in an adversarial setting by embedding it
on a blockchain as smart contracts. We demonstrate how
this approach can be implemented in practice on the Ethe-
reum [40] blockchain, using the smart contract language So-
lidity and the process execution semantics of DCR graphs [7,
10]. This implementation guarantees (I) correctness with
regard to the agreed-upon workflow and (II) the recording
of an incontrovertible history. Of course, these guarantees
extend no further than the security of the underlying Eth-
ereum blockchain technology, i.e., we assume no adversary
can construct Ethereum blocks faster than the honest nodes.

Cost is an issue: Both the cost of participation in the
workflow, and the possibility of attacks that inflict cost on
honest nodes. In particular, to minimise cost caused by the
Ethereum smart contract model (where each computational
operation incurs a micro-fee), our cost-effective implementa-
tion required both counter-intuitive contract design as well
as other non-trivial performance enhancements.

1.1 Related Work
In [41, 16, 30] the authors propose encoding workflows

as a smart contract on a blockchain. An implementation
of these ideas was given in Caterpillar [28]. In these works,

workflows are modelled by BPMN diagrams [32]. This choice
of notation clearly separates it from the present work: rather
than structured, flow-based processes, we apply the approach
to declarative process notations, thereby providing support
for knowledge-intensive processes.

In [15], the authors introduce a high-level language, in-
spired by institutional grammars, that can be compiled into
Solidity code. The notation has a declarative feel to it, but
describes business contracts rather than workflows. More-
over, the authors do not provide an implementation.

In [23], the authors argue for the suitability of the busi-
ness artefact paradigm towards modelling business processes
on a distributed ledger. The paper lays out their vision, but
does not go into detail on neither exact syntax or semantics,
nor the exact guarantees offered by smart contracts.

In [20], the DU and DE case was studied in the context of
declarative workflow specifications, but relying on a trusted
third party for their collaboration. We use this collaboration
as a running example; there is otherwise no special relation
between the present and this older work.

Both of the properties (I) and (II) are closely related to
classical security properties. It was demonstrated in [5] that
a workflow notation may encompass security policy spec-
ifications. Enforcing distributed adherence to a workflow
definition is related to enforcing distributed adherence to a
security policy, e.g., [4, 33]. Achieving consensus on the his-
tory of a distributed workflow execution is reminiscent of
distributed monitoring, e.g., [43, 25].

2. ETHEREUM
Ethereum [42, 40] is a blockchain extended with user-

created code and arbitrary data encapsulated in smart con-
tracts. When a transaction is included in a block, part of the
verification of that block comprises running the code spec-
ified by the transaction, mutating the state of the contract
accordingly.

This code is executed on the Ethereum Virtual Machine
(EVM), in which each operation has an associated cost de-
noted in Gas. Once the sum of Gas has been calculated for
an execution, it is paid for in the Ethereum cryptocurrency
Ether by the user calling the code, at an Ether/Gas rate
specified by that user. This rate allows miners to prioritise
those calls paying the most.

The EVM is in principle Turing-complete [42]. However,
all computations are in practice finite, limited by the amount
of Gas that a caller is willing to spend.

Ethereum allows one to verify the existence of specific
source code on the blockchain, whether it has been run, and
whether a run was completed successfully or not. Moreover,
Ethereum certifies that code was executed as specified, and
that only authorised parties execute contract calls [42, 40].
This means that when implementing workflows as smart
contracts, any participant can be certain that the source
code is unchanged and that every execution is validated with
respect to both the contract logic and execution rights.

Like the Bitcoin blockchain, the Ethereum blockchain re-
lies on mining being hard to ensure that the probability of
an attacker overtaking the main chain, rewriting history, is
low. However, whereas the Bitcoin blockchain and variants
has seen work on analysing under what circumstances and
with what probabilities that might happen [3, 27, 35, 26, 6,
2, 37, 18] we are unaware of similar analyses for Ethereum.
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3. DCR GRAPHS
In this Section, we recall DCR Graphs, a vehicle for spec-

ifying admissible sequences of event executions. A DCR
Graph specifies an“agreed-upon”workflow, where the events
are the activities of the workflow. A DCR Graph comprises
events (nodes) and relations between events (edges); events
have state which is recorded in a marking. Relations indicate
how executability of one event may depend on the states of
others, and how execution changes such states.

Definition 1 (DCR Graph [19]). A DCR Graph is a
tuple (E,R,M) where

• E is a finite set of events, the nodes of the graph.

• R is the edges of the graph. Edges are partitioned into
five kinds: conditions (→•), responses (•→), mile-
stones (→�), inclusions (→+), and exclusions (→%).

• M is the marking of the graph, a triple (Ex,Re, In) of
sets of events, respectively the previously executed (Ex),
the currently pending (Re), and the currently included
(In) events.

When G is a DCR Graph, we write, e.g., E(G) for the set of
events of G, as well as, e.g., Ex(G) for the executed events
in the marking of G.

We give in Figure 1 an excerpt of the workflow of DU and
DE reported in [20]. The events are nodes in the graph; the
marking of each event is shown graphically: Hold Meeting is
pending, viz. the blue exclamation mark; both Accept events
are excluded viz. the dashed border.

Figure 1: The DU/DE example—a DCR model of a
cross-organisational workflow

By default, every activity may execute any number of
times. We regulate the sequencing of such activity execu-
tions by adding relations between activities. There are five
such relations: Three which mutate the state of some events
when another executes, and two which constrain the ability
of one event to execute depending on the state of others.

3.1 Execution of Events
To specify what happens when an event executes, we have

the response, inclusion, and exclusion relations.
First, the response. When either DE or DU proposes a

date, the other is required to eventually accept one. The
blue responses (•→) from Propose - DU to Accept - DE and

Propose - DE to Accept - DU model this requirement: Exe-
cuting the first event makes the second event pending.

The red exclusions (→%) temporarily remove events from
the process. This can be both an event removing itself after
being executed, as is the case for each instance of Accept,
or an event removing another event, exemplified by Accept -
DU removing Accept - DE and vice versa. We say that such
a removed event is excluded, indicated by a dashed border,
as seen in the two Accept events.

Exclusions are dynamic and may be reverted: When DU
or DE proposes new dates, the other is expected to accept
these dates again. This is modelled through the green inclu-
sions (→+) from Propose - DU to Accept - DE and Propose
- DE to Accept - DU. Because Accept - DU and Accept - DE
are excluded (dashed border), either requires its including
event to happen before it can itself happen.

We formalise the notion of executing an event.
Notation. For a binary relation → ⊆ X × Y and set Z,
we write “→Z” for the set {x ∈ X | ∃z ∈ Z. x → z}, and
similarly for“X→”. For singletons we usually omit the curly
braces, writing →e rather than →{e}.

Definition 2 (Execution [19]). Let G = (E,R,M) be
a DCR Graph with marking M = (Ex,Re, In). If we execute
e in G, we obtain the resulting DCR graph (E,R,M′) with
M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex ∪ e

2. Re′ = (Re \ e) ∪ (e•→)

3. In′ = (In \ (e→%)) ∪ (e→+)

That is, to execute an event e one must: (1) add e to the
set Ex of executed events; (2) update the currently required
responses Re by first removing e, then adding any responses
required by e; and (3) update the currently included events
by first removing all those excluded by e, then adding all
those included by e.

3.2 Enabled Events
Not all events in a graph are necessarily allowed to ex-

ecute. To specify which events are in fact executable we
have conditions and milestones. A condition indicates that
when the source is included but not executed, the target
cannot execute. For example, by convention, DU is always
the first to propose dates. This is modelled by the condition
relation(→•) between Propose - DU and Propose - DE.

When dates have been proposed but not yet accepted, the
meeting cannot be held. The milestone relations (→�) from
Accept - DU and Accept - DE to Hold Meeting ensure this:
a milestone indicates that whenever the source is included
and pending, the target cannot execute. In the diagram, the
Accept events are not yet pending. This is intentional: DU
and DE may skip proposing dates and hold ad hoc meetings.

Unlike the condition relation, an event constrained by a
milestone can become blocked again. In our example, if a
date was accepted but later new dates are proposed, accept-
ing dates becomes pending again, blocking Hold Meeting.

We give formal meaning to these relations.

Definition 3 (Enabled events [19]). Suppose G =
(E,R,M) is a DCR Graph with marking M = (Ex,Re, In).
We say that an event e ∈ E is enabled and write e ∈
enabled(G) iff (a) e ∈ In, (b) In ∩ (→•e) ⊆ Ex, and (c)
In ∩ (→�e) ⊆ E\Re.
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That is, enabled events (a) are included, (b) have their in-
cluded conditions already executed, and (c) have no included
pending milestones. The enabled events for the DCR Graph
in Figure 1 are Propose - DU and Hold Meeting.

General DCR Graphs have labelled events, allowing dis-
tinct events to exhibit the same observable activity, a detail
we have elided in the current paper. In the general case,
DCR Graphs express the union of regular and ω-regular lan-
guages [10].

3.3 Distributed DCR Graphs
Distributed implementations of DCR Graphs were studied

in [22] and [9]. In both cases, the core idea is that workflows
are partitioned in subsets of events, with each participant
owning a particular subset. The owner of an event is re-
sponsible for maintaining the marking (M, Definition 1) of
that event. Moreover, only the owner of an event can exe-
cute it (Definition 2).

Since executing one event may modify others via exclu-
sion, inclusion and response arrows (Definition 2), whenever
a party executes an event, it may have to notify owners of
affected events. E.g., in the DU/DE example (Figure 1),
events are naturally owned by either DU or DE as indicated
at the top of each event. The event Propose - DU is owned
by DU and so can only be executed by DU; however, exe-
cuting this event includes the event Accept - DE, and so DU
must notify DE whenever it executes Propose - DU, in order
that DE may toggle the state of Accept - DE to included.

Similarly, before executing an event, the owner must verify
that the event is enabled (see Definition 3). Whether an
event is enabled is a function of the marking of other events
via condition or milestone relations, hence the owner may
have to query owners of such other events. E.g., in the
DU/DE example, DE cannot execute Propose - DE before
querying DU about the state of Propose - DU because of the
condition relation from the latter to the former.

As queries for enabledness may interleave with effects of
an execution, distributed implementations of DCR Graphs
generally need some form of concurrency control [9].

4. DISTRIBUTED DCR GRAPHS AS
ETHEREUM SMART CONTRACTS

In this section, we consider in the abstract an implemen-
tation of distributed DCR Graphs as Ethereum smart con-
tracts. We shall see how such an implementation achieves
the goals (I) and (II) of Section 1 provided an adversary has
no feasible attack on the Ethereum blockchain.

The naive implementation of DCR Graphs as Ethereum
smart contracts is to simply implement a contract compris-
ing a DCR Graph (Definition 1) represented as an Ethereum
data structure, and calls for computing execution and en-
abled events (Definitions 2 and 3). Only the owner of an
event has access rights to execute that event. This appeal-
ingly simple idea turns out to mask considerable pitfalls, in
particular regarding who bears the cost of executing that
call. In this section, we analyse this situation.

4.1 Cost of Relations
Previous treatments of distributed DCR graphs [9, 22]

do not emphasise ownership of relations. Adding a rela-
tion to a DCR Graph induces additional computation in
either enabledness (condition, milestone) or effect of execu-

tion (inclusion, exclusion, response). On Ethereum, addi-
tional computation translates directly to additional cost, so
an adversary can inflict cost on honest parties if he can add
new relations. For example, adding 100 distinct conditions
Ai →• X to some event X would increase the cost of com-
puting enabledness of X by 100 additional checks whether
each Ai is executed or excluded.

Figure 2: Inter-workflow relations

For conditions and milestones, each such relation induces
computational cost at the owner of the target event. For
example, in Figure 2, Workflow 2 must consult Workflow 1 to
learn the state of A before it can execute event C. In general,
adding an incoming relation such as A →• C increases the
cost of computing enabledness of its target C. To avoid cost-
inflicting attacks, only the owner of the target C should be
allowed to add incoming relations to it.

However, because executing D requires an update of the
state of B, if that update is to be performed by the owner of
B, there is again an opportunity for an adversary to inflict
cost. In that case, we must again require that only the owner
of B and D jointly may add relations.

We summarise where adding relations incurs cost Table 1.

Added relation cost on A cost on B

A→• B X
A→� B X
A→+ B X
A→% B X
A •→ B X

Table 1: Incurred cost of added relations

4.2 Correctness
In general, adding relations to a workflow can make that

workflow both more and less restrictive [8, 10]. For example,
in Figure 2, the condition relation (top) means that Work-
flow 2 must wait for Workflow 1 to execute A before it can
execute activity C. If we imagine we have just added that
condition, the new combined workflow has less behaviour
than the old one, but no new behaviour. Thus, an adver-
sary who can add relations can mount a potential denial-of-
service attack by adding enough relations that the resulting
combined workflow has no behaviour left.

Conversely, adding inclusions and exclusions can make a
workflow less restrictive [8]. Without the inclusion relation
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(bottom) in Figure 2, Workflow 1 can never execute activ-
ity B. If we imagine we have just added that inclusion, the
new combined workflow has more behaviour than the orig-
inal one, since the new one admits the sequence DB which
the old one did not. This means that an adversary who can
add relations can violate correctness of the original work-
flow. E.g. if the activity B were “pay out lump sum”, the
adversary has succesfully orchestrated a payout in violation
of the original workflow policy.

Assume a correct implementation of (1) the computation
of enabled events and (2) the effect of executing event in So-
lidity. Assume moreover that this implementation is used for
implementing the distributed workflow in such a way that
each party to the workflow can execute only the events they
own, and only when these events are enabled. In this case,
running this implementation on Ethereum, we get an imple-
mentation of the workflow which automatically achieves the
goals of workflow correctness (I) and consensus on history
(II) provided the adversary cannot produce valid blocks fast
enough to outpace the Ethereum miner network.

Note that in workflows with more than two participants,
we do not preclude colluding actors within the bounds of
concurrent workflow semantics. In such a workflow, two
or more participants could mount a denial-of-service attack
against other participants by coordinating executions of ac-
tivities on the same block, thereby skipping states in which
specific activities were enabled. This is an inherent con-
sequence of allowing concurrent executions of activities in
DCR-graphs, and not a violation workflow correctness (I).

5. COST REDUCTIONS
Our practical experiments have revealed two major in-

sights about executing DCR Graphs on Ethereum:

1. It is indeed feasible to implement distributed workflows
in an adversarial setting on the Ethereum blockchain.

2. However, to keep costs manageable, our implementa-
tion must take some counter-intuitive design decisions,
including implementing only one contract and imple-
menting set operations as bitvectors.

DCR Graphs as presented in Section 3 are simple enough
that the core data structures (relations and markings, Def-
inition 1) as well as operations on them (execution and en-
abledness, Definitions 2 and 3) are straightforward to imple-
ment in contemporary programming languages.

A naive implementation implements DCR Graphs straight-
forwardly as an Ethereum contract for each workflow in-
stance, representing marking and relations straightforwardly
using standard data structures. This naive implementation
has two shortcomings:

1. The Gas costs of Ethereum are dominated by the price
of creating a smart contract, which is an order of mag-
nitude more expensive than other operations [42].

2. The cost of computing enabledness respectively exe-
cution grows linearly with the number of incoming re-
spectively outgoing relations.

5.1 Relations
To reduce the impact of additional relations on the cost

of computing enabledness and execution, we exploit that
the core EVM datatype is a 256-bit value, noting that the

core operations of DCR Graphs (Definitions 3 and 2) are all
simple set-manipulations and can be implemented efficiently
as bit vectors.

Our prototype for this reason assumes at most 256 events
in a DCR Graph, an assumption that is both practically rea-
sonable [29, 34], and straightforward to remove if necessary.

For such fixed-size bit vectors, we get an upper bound of
the cost of executing an activity: execution is implemented
as a static check of the legality of the execution, followed by
3 bitwise-operations between bit vectors representing rela-
tions. We give the implementation of the enabledness com-
putation in Listing 1; we encourage the reader to compare
that listing, in particular lines 16, 20–21, and 25–27 to the
clauses (a)-(c) in Definition 3.

1 function canExecute(uint256 wfId, uint256 activity)

2 public constant returns (bool)

3 {

4 var workflow = workflows[wfId];

5 uint32 i;

6

7 // sender address must have execute rights

8 for (i = 0; i < workflow.authAccounts.length; i++)

9 if (workflow.authAccounts[i] == msg.sender)

10 break; // sender authorised

11

12 if (i == workflow.authAccounts.length)

13 return false; // sender not authorised

14

15 // activity must be included --- Def. 3(a)

16 if ((workflow.included & (1<<activity)) == 0)

17 return false;

18

19 // all included conditions executed --- Def. 3(b)

20 if(workflow.conditionsFrom[activity] &

21 (~workflow.executed & workflow.included) != 0)

22 return false;

23

24 // no included milestones pending --- Def. 3(c)

25 if(workflow.milestonesFrom[activity]

26 & (workflow.pending & workflow.included) != 0)

27 return false;

28

29 return true;

30 }

Listing 1: Enabled computation

Besides the optimisations we have mentioned so far, our
prototype implementation uses additional tricks to minimise
Gas costs, notably packaging call data to conserve storage
space. We refer the interested reader to [17], which contains
additional implementation detail.

As mentioned in Section 2, execution of Ethereum smart
contracts is paid for by setting an exchange rate between
Gas, the cost of execution instructions, and the crypto-
currency Ether. We compare the cost of the naive and op-
timised implementations in Table 2.

Note that the cost of executing some activities actually
increases from naive the to the optimised implementation:
the bit vector implementation give lower Gas cost on exe-
cution only when events have many relations. The DU/DE
example is too small to exhibit this effect; however, practical
workflows tend to have many more relations [21].
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Event Naive Optimised
gas usd? gas usd?

1. Initialisation?? 2,185,061 14.582 717,709 4.790
2. Propose - DU 61,126 0.408 66,293 0.442
3. Propose - DE 62,592 0.418 52,615 0.351
4. Accept - DU 46,126 0.308 51,293 0.342
5. Accept - DE 46,226 0.308 52,615 0.351
6. Hold Meeting 37,353 0.249 49,665 0.331

Sum 2,392,258 16.273 990.190 6.608

? Prices in USD are computed from average Gas- and Ether
prices at the time of writing [13, 14].
?? Prices for the naive implementation includes contract cre-
ation and workflow creation; prices for the optimised imple-
mentation only workflow creation.

Table 2: Cost comparison, naive and optimised im-
plementation.

5.2 Contract Creation & Access Control
The cost of creating an instance of the DU/DE example

workflow is given in Table 2, column “Naive”. Notice that
creating the contract, “initialisation” is two orders of mag-
nitude more expensive than subsequent event executions.

To reduce this cost, we propose a mono-contract imple-
mentation, that is, a single contract which hosts all work-
flows, and new workflows can be added at any point af-
ter contract creation. In this mono-contract implementation
methods each take an index of the workflow to work on. In
such a setting, the cost overhead for creating a contract is
incurred only once2: As subsequent workflows are hosted by
this single contract, the cost of creating a contract does not
reoccur. The cost of constructing a new workflow is reduced
substantially, see the column “optimised” in Table 2.

The mono-contract provides access control by accepting,
on workflow creation, a list of public keys/addresses that are
authorised to subsequently execute events; the implemen-
tation manually checks that the caller is authorised before
executing an event. Because state in Ethereum can only
be changed through contract calls, this mechanism provides
complete mediation: there is no way to alter the state of
running workflows without going through the contract op-
erations. Returning to the code for the enabledness compu-
tation in Listing 1, we see access control computed in line
7–10, using the Ethereum provided msg.sender constant.

As mentioned, workflow creation is an order of magnitude
cheaper in the optimised implementation. Moreover, in the
naive implementation, workflow creation is two orders of
magnitudes more expensive than event executions; in the
optimised implementation only one.

6. IMPLEMENTATION
We have implemented a software tool which converts a

DCR Graph to a Solidity smart contract. To show that
our DCR engine can be used in practice, we have imple-
mented a graphical user interface (GUI), where users can
create workflows and execute activities on a deployed Ethe-
reum contract. We host the source code of the contracts at

2This contract was created in the transaction [12] at a cost
of 2,976,162 Gas/USD 8.73.

https://github.com/DCReum/dcreum.github.io for perusal,
and the GUI for anyone to use at https://dcreum.github.io.
An Ethereum node and client are required to view and use
the GUI. We recommend Parity alongside the Google Chrome
extension Parity Ethereum Integration.

Multiple high-level languages compiling to EVM bytecode
exist; our implementation was done in the statically typed
object-oriented language Solidity. However, compared to
main-stream programming languages, in EVM/Solidity we
have to contend additionally with quirks of the Solidity in-
terpreter. For example, Solidity limits the number of vari-
ables allowed in scope at one time, as these are always kept
on the stack, and the EVM only allows access to the 16 top-
most items [42]. Other limitations include externally avail-
able functions not being allowed structs or nested arrays as
arguments or return type.

Ethereum execution causes a delay in event execution, as
the network has to process and accept such an execution.
We can have the acceptance of a transaction (event execu-
tion) prioritised by offering above-market Gas prices. Unless
we send the request at almost exactly the time of new block
propagation, in experiments run late spring 2017, our re-
quests have been included in the next mined block when
paying market Gas prices. However, even though a block
is accepted, it may still find itself on a less difficult chain,
and thus eventually discarded. In general, like in Bitcoin
and other blockchain-based transactional systems, one must
wait some number of blocks before one can reasonably as-
sume that the transaction is permanently included.

The frequency of event executions is bounded by the (dy-
namic) Gas limit [42]. This limit is currently at 6,718,941,
which for the DU/DE example (Figure 1) in theory would al-
low between 101 and 135 executions, depending on the exact
activity executed. If we consider instead single-participant,
non-concurrent executions, the limit is the mining time,
which should average 12 seconds, although at the time of
writing, the average for the last 5000 blocks is ca. 30 sec-
onds. In general, it has been our experience that mining time
varies between a few seconds and several minutes. We esti-
mate we have seen an average of 1-2 executions per minute
at market Gas prices.

7. CONCLUSION
We have demonstrated how to implement distributed de-

clarative workflow execution in an adversarial setting, with-
out the assistance of a trusted third party, by implementing
DCR Graph declarative process models as Solidity contracts
running on the Ethereum blockchain. Within the the secu-
rity guarantees given by this blockchain, this implementa-
tion guarantees that the execution does follow the agreed-
upon workflow—the DCR Graph—(I) and that the sequence
of executions recorded on the blockchain is incontrovertibly
the actual recorded history (II).

Cost is an issue, both because an adversary must be pre-
vented from inflicting cost on an honest party, and because
cost of contract execution is high enough that we must op-
timise. Particularly helpful optimisations are the mono-
contract and bitvector representation of sets and relations.

We have demonstrated the economic feasibility of the im-
plementation: see actual costs in Table 2. Moreover, we have
discussed bounds on delay and frequency of event executions
in Section 6, estimating that the Ethereum blockchain can
likely sustain 1-2 execution per minute at market prices.
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