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Abstract. Biological nitrogen (N2) fixation is one of the main sources of available N for pristine ecosys-
tems such as subarctic and arctic tundra. Although this has been acknowledged more than a decade ago,
few attempts have been undertaken to identify the foremost driver of N2 fixation in the high Arctic. Here,
we report results from in situ measurements of N2 fixation throughout the main growing period (June–
August) in high arctic tundra, Greenland, in climate change treatments, shading and warming, and control.
Nitrogen fixation was also measured in cores that received additional water prior to the measurements.
The climate change field treatments did not lead to significant changes in any measured parameters; how-
ever, N2 fixation was promoted by adding water, and moisture was the most important factor influencing
N2 fixation in all climate change field treatments. Maximum N2 fixation rates were measured below 14°C
soil temperature, which is much lower than the theoretical and previously reported temperature optimum
for the nitrogenase enzyme. Diazotroph (N2 fixing bacteria) communities are adapted to low temperatures
in high arctic settings, and increased temperature in a future climate may lead to decreased N2 fixation
rates, or to a shift in diazotroph communities.
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INTRODUCTION

Nitrogen is usually the primary limiting nutri-
ent for plant growth in subarctic and arctic tun-
dra (Shaver and Chapin 1980, Michelsen et al.
2012). While atmospheric N deposition is one
major source of plant available N in many
ecosystems, N deposition in pristine ecosystems,
such as subarctic and arctic tundra, is low (<2 kg
N�ha�1�yr�1; Van Cleve and Alexander 1981,
Pe~nuelas et al. 2013) and is likely not sufficient to
cover plant-N demand. Here, fixation of atmo-
spheric N2 is a large source of plant available N
and is performed by free-living N2 fixing bacteria
(diazotrophs), and diazotrophs associated with
lichens and mosses (Hobara et al. 2006, Rousk
et al. 2016). In boreal forests, subarctic and arctic

tundra, moss-associated N2 fixation can exceed
N deposition rates, mostly due to the high cover-
age and biomass of mosses (Van Cleve et al.
1983, Turetsky 2003, Gavazov et al. 2010, Michel-
sen et al. 2012). However, N2 fixation is limited
by the availability of molybdenum and phospho-
rus (Rousk et al. 2017a), as well as by extreme
temperatures (Gundale et al. 2012, Stewart et al.
2014) and low moisture conditions (Rousk et al.
2014, Stewart et al. 2014). While it has been
shown in laboratory (Rousk et al. 2014, 2017b),
field (Rousk et al. 2015), and modeling (Rousk
and Michelsen 2017) approaches that moisture is
the major factor driving moss-associated N2 fixa-
tion, those studies have been conducted almost
exclusively in boreal forests and subarctic tun-
dra, and attempts to extend this observation to
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arctic ecosystems have been limited. Studies that
have been conducted in the high Arctic on free-
living- as well as on moss and lichen-associated
diazotrophs have shown a strong moisture
dependence of N2 fixation (Zielke et al. 2005, Ste-
wart et al. 2011, 2014). On the other hand,
Hobara et al. (2006) found an increase in N2 fixa-
tion in plant-soil cores in arctic tundra with tem-
perature up to 30°C, while a positive effect of
moisture was not found. Thus, the primary dri-
ver (temperature or moisture) of N2 fixation in
the high Arctic remains unspecified.

Arctic ecosystems are among the most sensi-
tive systems to changes in temperature (Seddon
et al. 2016, see also Schuur et al. 2015). Increased
temperatures resulting in drying-out of mosses
in a future climate will lead to limited moisture
availability for cyanobacteria within the moss
carpet. This will likely lead to reduced N2 fixa-
tion rates (Rousk et al. 2014) and, with that,
reduced N input via the N2 fixation pathway. On
the other hand, as a component of warming,
summer rainfall is likely to double in the high
Arctic by the end of this century (Bintanja and
Andry 2017), which could counteract surface
drying. In addition to direct temperature effects
on N2 fixation, a warmer climate will also lead to
increased thaw depth of permafrost in high arctic
settings (Schuur et al. 2015), freeing up N pools
(e.g., Keuper et al. 2012) that could inhibit N2 fix-
ation (e.g., Rousk et al. 2013).

A changing climate will enhance air and soil
temperatures on the one hand, but it will also lead
to increased shading of lichens, mosses, and free-
living diazotrophs from faster growing vegetation
and expanding shrubs (Hollister et al. 2005, Wah-
ren et al. 2005). Light is another notable driver of
N2 fixation and can limit diazotroph activity in
the tropics (Taylor et al. 2017) as well as in the
subarctic (e.g., Sorensen et al. 2012). Given that
few diazotroph-associated shrubs grow in the
high Arctic, and these are unlikely to expand their
range considerably also in the nearer future, the
loss of the main N2 fixing associations as a result
of shading and exclusive competition by shrubs
(Hartley et al. 2012) will decrease N2 fixation
potential in these systems. Yet, the effects of shad-
ing on N2 fixation in the Arctic have hardly been
addressed. Thus, to assess the effects of climate
change factors (warming, shading) on N2 fixation
in the Arctic, we utilized a field experiment in a

high arctic heath in which climate change was
simulated by increasing summer air and soil tem-
peratures using open top chambers as well as by
a shading treatment, reducing light input and
temperature. We hypothesized that (1) N2 fixation
is highest in the warming treatment if moisture is
not limiting, and (2) N2 fixation is lowest in the
shading treatment. To address these hypotheses,
we measured N2 fixation in situ in the climate
change field treatments at different times in the
growing season. We further divided plots into
treatments with added water and without added
water before the N2 fixation measurements to
assess how increased precipitation, in combina-
tion with shading and warming, in a future cli-
mate will affect N2 fixation. To further test
whether the climate change treatments lead to
changes in soil N availability via changes in N2

fixation, we also assessed the soil N pools.

MATERIALS AND METHODS

Field sites and experimental set-up
The field experiment was established in a

mesic-dry heath dominated by Salix arctica on
Zackenberg, Greenland, in 2004 and has been
maintained since. The experimental site is located
in the center of the valley of Zackenberg in North-
Eastern Greenland, near the Zackenberg Research
Station (74°300 N, 21°000 W). The climate is conti-
nental high Arctic. Average air temperature is
�20°, 7.0°, and �9.0°C in January, July, and whole
year, respectively, and total annual precipitation is
211 mm but ranging from 93 to 310 mm (data
1997–2014, Jensen et al. 2016), with the most
precipitation falling as snow (Fig. 1, see also
Appendix S1: Fig. S1). In June, July, and August
2010, the period in which we conducted our mea-
surements, air temperature was 1.9°, 5.3°, and
5.3°C (long-term average 2003–2014: 1.5°, 6.8°,
and 5.6°C), and precipitation was 13, 1, and 2 mm
(long-term average 2003–2014: 5, 13, and 20 mm).
The bedrock is characterized by non-calcareous
sandy fluvial sediments, and the soil is classified
as a Typic Psammoturbels (Turbic Cryosol) with a
pH between 5 and 7. The permafrost is continu-
ous, and the active layer is <1 m deep (60–70 cm
during the measuring campaigns, Jensen and
Rasch 2011, Elberling et al. 2013). The plots are
rather exposed (Appendix S1: Fig. S2A), with a
maximum snow cover of 80–95 cm. Besides the
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prostrate Salix arctica Pall., other low woody
plants are Vaccinium uliginosum L., Cassiope tetrag-
ona D. Don (L.), and Dryas spp. and a few herba-
ceous species such as Luzula arctica Blytt,
Polygonum viviparum L., and Arctagrostis latifolia
(R. Br.) Griseb. (Campioli et al. 2013).

The field experimental plots consist of five
replicate blocks each with the treatments (1) con-
trol, (2) shading with sackcloth, and (3) warming
by open top chambers. Warming was achieved
by small (1.2 9 1.2 m, 50 cm high) dome-shaped
open top chambers of 0.05-mm polyethylene
film, constructed with polyvinyl chloride (PVC)
tubes, with an opening of ~50 cm diameter at the
top. The chambers were in place each year from
late June to the end of August. Late summer
canopy temperature is enhanced by 1.3°C and
soil temperature at 2 cm depth by 0.3°C (Campi-
oli et al. 2013), a moderate increase simulating
surface temperature projections for high arctic
systems for the mid-21st century (IPCC 2013).

Shading with sackcloth in chambers of similar
constructions with PVC tubes reduces light with
50% and air and soil temperature by 1.5–2.0°C
(Fig. 2, see also Ellebjerg et al. 2008). The reduc-
tion in incoming light is similar to the reduction
caused by taller shrubs such as Betula nana and
simulates the expansion of canopy-forming
shrubs into high-latitude ecosystems.

Vegetation cover
The vegetation cover in each plot was esti-

mated with the pin-point intercept method 23
July 2010 (Jonasson 1983). For this, a pin was
passed vertically at 100 points (2 cm spaced) in a
0.5 9 0.5 m frame and every vascular plant spe-
cies, mosses, lichens, and litter touched by the
pin was recorded.

Dependence of N2 fixation on moisture
Nitrogen fixation was measured using the

acetylene reduction assay (ARA) in situ in 2010

Fig. 1. Daily mean air temperature (°C, gray symbols) at 2 m height, precipitation (accumulated mm/day, gray
bars), and daily mean photosynthetic active radiation (PAR, lmol�m�2�s�1, black circles) 1 June to 30 September
2010 at Zackenberg Research Station, NE Greenland.
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in the climate change field experiment described
above, in which diazotrophs associated with
mosses, and free-living diazotrophs are the dom-
inant N2 fixers (Fig. 3; Appendix S1: Fig. S2). The
ARA is a measure of the nitrogenase enzyme

reducing N2 to ammonia, as well as reducing acety-
lene to ethylene. To assess the effects of increased
precipitation on N2 fixation in the field, we estab-
lished two cores with a diameter of 5 cm and a
depth of 7 cm in each experimental field plot
(n = 5, Appendix S1: Fig. S2B). The top of the cores
were dominated by free-living diazotrophs (organic
crust), including lichens and mosses (Appendix S1:
Fig. S2B). We placed the cores in nylon mesh bags
(50 mm mesh size; Sintab, Oxie, Sweden) and set
them carefully back into the hole in the ground,
from where the core originated, whenever we were
not doing assays and ensured close contact
between the core and the surrounding substrate.
One core in each plot was with no further treat-
ment, and one core was watered with 10 mL deion-
ized water the day before each ARA measurement,
and again immediately before the ARA incuba-
tions. This is similar to incidents of 5 + 5 mm
precipitation and hence comparable to input in
observed precipitation events in mid-June and early
September, and the cumulative addition of 50 mm
makes up slightly more than a doubling of average
current June–September precipitation of 38 mm.
For the ARA, samples were placed in closed, trans-
parent PVC containers with a volume of 0.5 L
(Appendix S1: Fig. S2). A 20-mL vial containing cal-
cium carbide was placed in each container, and
water was added with a syringe through a rubber
septum to induce the development of 10% (vol.)

Fig. 2. (a) Soil moisture (%) and (b) soil temperature at 2 cm depth (°C) in the climate change field treatments
control, shading, and warming in high arctic tundra, NE Greenland, averaged across the five measuring cam-
paigns in 2010. Given are means � SE (n = 5) for the plots with water added (black bars) and the plots where no
water was added (white bars). Different lowercase letters indicate significant differences between the water treat-
ments and the climate change field treatments.

Fig. 3. Coverage of vegetation and litter in the cli-
mate change field treatments control, shading, and
warming in high arctic tundra, NE Greenland
(mean � SE, n = 5). Different lowercase letters indi-
cate significant differences between plant species.
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acetylene in the container. The containers were kept
in the field plots during the ARAs. Ten milliliters of
gas samples was taken 1 min and 2 h after incuba-
tion with acetylene and analyzed for acetylene and
ethylene on a gas chromatograph (Shimadzu GC-
14B, Tokyo, Japan). Acetylene reduction was mea-
sured five times during the growing season from
mid-July to August 2010 in control, shaded, and
warmed plots. Soil temperature at 2 cm depth was
measured just before the ARA incubations. Soil
moisture was determined gravimetrically. The tem-
perature in the containers during the ARA incuba-
tions was not different between the three field
treatments and between the water addition treat-
ments (no water addition: 18.4 � 1.9, 15.6 � 1.8,
17.9 � 1.6°C for the control, shading, and warming
treatment, respectively; water addition: 18.6 � 1.7,
15.5 � 1.6, 17.9 � 1.6°C for the control, shading,
and warming treatment, respectively). After the last
measuring campaign in August, the top 2 cm (in-
cluding organic crust) and the lower part (2–7 cm
depth, including roots) of the cores were dried and
analyzed for total N and carbon (C) content on an
Isoprime isotope ratio mass spectrometer (Elemen-
tar UK Ltd., Cheadle Hulme, Stockport, UK)
coupled to an Eurovector CN analyzer.

Soil sampling and analyses
Soil was sampled (two cores per plot) with a

4 cm diameter auger to a depth of 5 cm. The soil
was homogenized and subjected to chloroform
fumigation–extraction and analyzed as in Soren-
sen et al. (2008). In brief, 10 g of the sorted, fresh
soil was fumigated with chloroform for 24 h to
release the N and C in the soil microbial biomass,
after which the soil was extracted for 1 h in
50 mL demineralized H2O. The extracts were fil-
tered through Whatman GF-D filters and frozen
until analysis. Another 10 g fresh soil was
extracted with 50 mL demineralized H2O to
recover soil inorganic N with a Fiastar 5000 Flow
Analyzer and dissolved organic carbon (DOC)
with a Shimadzu Total Organic Carbon Ana-
lyzer. To obtain microbial N, 5 mL of fumigated
and unfumigated, demineralized H2O-extracts
was digested in persulfate and analyzed with a
Fiastar 5000 Flow Analyzer. Microbial N and C
contents were calculated by subtracting the N
and C in digested, unfumigated extracts from
that in the digested, fumigated extracts. The
microbial N and C contents were calculated by

assuming an extractability of 0.4 (for N) and 0.45
(for C). Ten grams of fresh soil was dried at 70°C
to constant weight to determine the soil moisture
content.

Statistical analyses
To test for significant differences in vegetation

ground cover, soil temperature, soil moisture,
and other soil and soil microbial measures
between the climate change field treatments, we
ran one-way ANOVAs followed by Tukey’s post
hoc test. Differences in ARA between measuring
campaigns and the climate change field treat-
ments were tested with repeated-measures
ANOVA, with water and field treatment as
factors, followed by Tukey’s post hoc test.
ANCOVAs were run to test for the effects of the
added water on the relationship between ARA
and soil moisture and soil temperature. Finally,
to assess the importance of soil moisture, soil
temperature, and the water addition treatment
on ARA, we performed backwards stepwise
multiple regression analyses. All statistical analy-
ses were performed in R 3.0.3 (R Developmental
Core Team 2014).

RESULTS

Vegetation ground cover
No differences in ground cover of different

functional plant groups between the climate
change field treatments were found. However,
vascular plants taken together and litter made up
most of the ground cover in all treatments
(F7,32 > 16 for all treatments, P < 0.0001, Fig. 3).

Nitrogen fixation during the growing season and
the effects of water addition
Acetylene reduction was higher in the first two

measurements in July (17 July, 21 July) than later
in the season (30 July, 3 August). The highest
activity was found at the first measuring cam-
paign (F4,120 = 13.55, P < 0.0001, Fig. 4). The
plots receiving water before the ARA measure-
ments had higher N2 fixation rates than the plots
without any water added in the control and
warming treatments throughout the measuring
campaigns and in the shading treatment only at
the last measuring date (F1, 120 = 7.64, P = 0.007,
Fig. 4). No differences in ARA between the cli-
mate change field treatments were found.
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The moisture and temperature dependence
of N2 fixation

Moisture content in the field did not change
throughout the season, and soil moisture was
higher in the shading plots when no water was
added compared to the other plots (F2,11 = 1.44,
P = 0.007, Fig. 2a; Appendix S1: Fig. S3A). The
water additions lead to increased moisture con-
tent in all treatments (F2,11 = 1.90, P < 0.0001,
Fig. 2a). Nitrogen fixation (ARA) increased with
increasing moisture content in all climate change
field treatments (R2 = 0.31, P < 0.0001 for all
measuring campaigns and treatments, Fig. 5). In
the warming treatment, the added water and the
moisture content further interacted to influence
N2 fixation (P = 0.002, t = �2.2, Fig. 5).

The climate change field treatments lead to dif-
ferences in the soil temperature: The lowest soil
temperatures were recorded in the shading treat-
ment and the highest in the warming treatment
(averaged across the season and water treat-
ments: 12.3 � 0.02°, 11.0 � 0.1°, 14.0 � 0.5°C
for the control, shading, and warming plots,
respectively, F2, 118 = 37.52, P < 0.0001, Fig. 2b;
Appendix S1: Fig. S3B). The water additions did
not lead to changes in soil temperature between
the field treatments (Fig. 2b). The lowest temper-
atures were recorded at the first two sampling
time points in July (F4, 118 = 30.15, P < 0.001,
Appendix S1: Fig. S3B).
Acetylene reduction decreased with increasing

temperature in all treatments (control, R2 = 0.27,

Fig. 4. Acetylene reduction (lmol�m�2�h�1) in three field treatments (control, shading, and warming) from July
to August in high arctic tundra, NE Greenland. Shown are mean rates � SE (n = 5) in cores that received water
(black bars) and in cores that did not receive water prior to measurements (white bars). Asterisks indicate signifi-
cant differences between the treatments with and without added water. Capital letters indicate significant differ-
ences in acetylene reduction between dates.
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P = 0.0005; shading, R2 = 0.11, P = 0.03; warming,
R2 = 0.40, P < 0.0001), and no differences in the
temperature relationship were found between the
treatments with added water and without added
water, except in the warming plots (P = 0.007,
t = �2.9, Fig. 6).

In the control plots, soil moisture was the most
important factor affecting ARA, irrespective of
adding water or not (P < 0.0001, R2 = 0.41). In the
shading plots, the added water seems to be the
most important driver for ARA, followed by
the interactive effects of the added water and soil
moisture and soil temperature, and the interactive
effects of all three factors (P = 0.007, R2 = 0.23). In
the warming plots, the pattern was similar. The
most important factor influencing ARA was the
added water, followed by the interactive effect of
the added water and soil moisture, and the added
water and soil temperature. When the model was

run without the added water as factor, soil mois-
ture was the most important factor controlling
ARA in all treatments (Pcontrol < 0.0001, R2 = 0.41,
Pshading = 0.008, R2 = 0.15, Pwarming = 0.0001,
R2 = 0.34). In addition, in the warming treat-
ment, the interaction between soil temperature
and soil moisture was also significantly affecting
ARA (P = 0.0001, t = �4.29).

Soil microbial and chemical characteristics
The soil had low total C and N concentration,

and low amounts of available N and P. The high
microbial C/N ratio pointed toward fungal domi-
nance of the microbial community. No significant
differences were found between the climate
change field treatments (control, shading, warm-
ing) and between the water additions and no
water addition treatments in any of the measured
soil parameters (Table 1). Total C and N were
higher in the top part of the ARA-cores that
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included organic crust and plant material (mean
across all field and water treatments: (C:
7.21 � 1.0% and N: 0.40 � 0.04%) than in the
lower part that included roots (C: 3.21 � 0.3%
and N: 0.20 � 0.03%), F1,58 = 15.3, P = 0.0002,
F1,58 = 16.6, P = 0.0001 for C and N, respectively).

DISCUSSION

Nitrogen fixation increased with moisture con-
tent in all climate change field treatments and was
even higher in the warming treatment when water
was added. Our analyses also reveal that moisture
is more important than temperature for N2 fixation
activity in our study system. Hence, also in the
high Arctic, biological N2 fixation is controlled in a
hierarchical way, with moisture being the most
important factor for nitrogenase activity, followed
by temperature. This confirms previous findings
for free-living (Belnap 2001) and moss-associated
diazotrophs in the Subarctic (Rousk and Michelsen
2017) and high Arctic (also reviewed in Stewart
et al. 2014). For instance, in Sphagnum moss-
dominated habitats in the Arctic, moisture content
explained at least 50% of the variation in N2 fixa-
tion rates in the field (Stewart et al. 2011).
Nonetheless, moisture content is an indirect effect
of temperature, lichens, mosses and free-living dia-
zotrophs dry out quickly when temperatures
increase. Thus, temperature and moisture interact
strongly to affect N2 fixation (Stewart et al. 2011,
Rousk et al. 2017b). Further, while moisture affects

the immediate activity of diazotrophs, temperature
shapes the bacterial community composition over
long time periods (see, e.g., Rinnan et al. 2009),
thereby driving N2 fixation rates.
In our study, the highest N2 fixation activity

was found at temperatures below 14°C. This
stands in sharp contrast to previous findings on
the temperature dependence of N2 fixation, with a
temperature optimum around 25°C for symbiotic
as well as moss-associated N2 fixation (Smith
1984, Houlton et al. 2008). Then again, most pre-
vious findings are from ecosystems outside the
Arctic. Abiotic conditions, such as air temperature
can be extreme in arctic habitats, and plant and
microbial communities are adapted to those con-
ditions (Billings and Mooney 1968, Bliss 1971,
Robinson 2001, Rinnan et al. 2009). Organisms
adapted to low temperatures, as found in the
Arctic, are also more tolerant to still colder tem-
peratures and can maintain high activity at tem-
peratures that are too low for warm-adapted
organisms (Rinnan et al. 2009, Birgander et al.
2013). Free-living cyanobacteria fix N2 and photo-
synthesize at low temperatures in Antarctic and
Arctic settings (�4°C, Davey 1983, Liengen 1999),
and achieve light saturation at low light levels and
can fix C (and N2) when shaded by clouds and
potentially by vegetation (Zielke et al. 2002).
Our results further show that, although higher

moisture content promoted N2 fixation, if the soil
is already very moist, additional moisture does
not necessarily increase N2 fixation more, as seen

Table 1. Soil microbial and chemical characteristics in the climate change field treatments control, shading, and
warming in high arctic tundra, NE Greenland.

Soil characteristics Control Shading Warming

Microbial C (mg g/dw) 0.32 � 0.11 0.26 � 0.16 0.17 � 0.04
Microbial N (mg g/dw) 0.03 � 0.009 0.02 � 0.01 0.01 � 0.004
Microbial C:N 16.39 � 2.4 10.10 � 2.2 13.83 � 0.8
TDN (lg g/dw) 1.9 � 0.5 2.1 � 0.4 1.6 � 0.4
DON (lg g/dw) 1.7 � 0.5 1.9 � 0.4 1.3 � 0.4
DOC (lg g/dw) 34.2 � 4.4 33.1 � 4.5 28.3 � 3.1
Soil C (%) 0.88 � 0.26 1.09 � 0.15 0.77 � 0.22
Soil N (%) 0.06 � 0.02 0.07 � 0.01 0.06 � 0.01
Soil C:N 15.57 � 0.66 16.11 � 1.33 14.96 � 0.50
Total soil d15N (&) 3.29 � 1.4 6.12 � 0.24 4.97 � 0.65
Total soil d13C (&) �24.83 � 0.18 �25.38 � 0.57 �25.43 � 0.51
NH4

+ (lg g/dw) 0.13 � 0.02 0.14 � 0.05 0.2 � 0.08
NO3

� (lg g/dw) 0.13 � 0.02 0.12 � 0.02 0.10 � 0.008
PO4 (lg g/dw) 0.17 � 0.04 0.15 � 0.03 0.10 � 0.01

Note: Given are means (n = 5) � SE.
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in the shading treatments (Fig. 5). Soil tempera-
tures in the shaded plots were lower than in the
other treatments, and more moisture did not
increase N2 fixation in these plots. This indicates
that the long-term exposure to lower temperatures
might have shifted the diazotroph communities in
these plots, adapted to decreased temperatures.
This suggests that the long-term exposure to
(lower) temperatures drives N2 fixation. Further,
N2 fixation activity was highest in the warming
plots, hinting to a shift in the diazotroph commu-
nity adapted to higher temperatures (Rousk and
Michelsen 2017). This is also reflected in the maxi-
mum N2 fixation activity found above 12°C in the
warming, around 12°C in the control, and below
10°C in the shaded plots. These temperature
optima are much lower than previously reported.
For instance, Hobara et al. (2006) report increasing
N2 fixation rates by free-living and lichen-
associated diazotrophs in high arctic tundra up to
30°C, and maximum temperature for N2 fixation
in mosses from the Antarctic have been found
between 25° and 27°C (Smith 1984). On the other
hand, N2 fixation rates in different legume species
in the high Arctic differ in their temperature opti-
mum ranging between 10° and 25°C (Schulman
et al. 1988). In mosses from boreal forests, temper-
ature optima of 13° and 22°C have been reported
(Gentili et al. 2005), which was attributed to differ-
ent cyanobacterial communities with different
temperature optima, thereby occupying separate
niches on mosses. However, we cannot rule out
that N2 fixation in our study system might be even
higher at higher temperatures.

A negative relationship between N2 fixation
and air temperature has been reported previously
for lichens and mosses (Rousk et al. 2015). This
was ascribed to the drying-out effect of the dia-
zotroph associations by increased temperature.
The large range in temperature optimum reported
previously (e.g., Smith 1984, Hobara et al. 2006)
might have been recorded while the N2 fixer
associations have been optimally moist. Further,
mosses differ in their capacity to hold water
(Elumeeva et al. 2011), which might also explain
differences in N2 fixation activity between studies
investigating different moss species.

Our study further highlights the large differ-
ences between measured N2 fixation rates in situ,
and potential N2 fixation under optimal (mois-
ture) conditions (Fig. 4). Field measurements

likely underestimate N2 fixation rates and should
take into account the abiotic conditions prevail-
ing during and shortly before measurements.
Most laboratory studies assess N2 fixation under
optimal conditions, making direct comparisons
between field and laboratory based measure-
ments ambiguous.
The climate change field treatments did not

translate into differences in vegetation cover and
plant community composition. This could explain
the lack of a treatment effect on N2 fixation rates,
which stands in contrast to our hypotheses. If
mosses and other N2 fixing associations (lichens,
free-living diazotrophs) are not outcompeted by
faster growing vascular plants, then N2 fixation
rates may remain similar. The absence of a treat-
ment effect on plant coverage is consistent with a
recent synthesis showing that some plant commu-
nities in high arctic ecosystems respond little to
moderate warming (1–3°C, Elmendorf et al. 2012).
It is also consistent with unchanged relative growth
rate and gross ecosystem production in warmed
plots compared to controls in the willow heath at
Zackenberg investigated in the current study
(Campioli et al. 2013) and with the unchanged nor-
malized differential vegetation index in the same
warmed or shaded plots (data from mid-August
2012, not shown). Along those lines, the climate
change field treatments did not result in differences
in a range of soil measures after 6 yr of initiation of
the treatments (Table 1). While small additions of
N (0.5 g�m�2�yr�1) can lead to significant and
rapid (2 yr after N application) shifts in vegetation
composition in the high Arctic (Arens et al. 2008),
our climate change field treatments did not alter
soil N pools. Changes in vegetation composition,
N2 fixation rates, soil N pools, etc., might emerge
after a longer period of initiation of field treat-
ments. For instance, an increase in shrub cover at
the expense of mosses and lichens has been
observed in longer term warming experiments
(5–10 yr, Graglia et al. 2001, Hollister et al. 2005,
Wahren et al. 2005), and a reduction in moss-
associated N2 fixation has been found in shaded
plots in the Subarctic 21 yr after initiation of the
field treatments (Sorensen et al. 2012).

CONCLUSIONS

Biological N2 fixation in the high Arctic is
strongly affected by moisture conditions. Thus, the
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consequences of changing precipitation patterns in
a future climate will depend on the prevailing
moisture conditions. Further, the diazotroph com-
munities in arctic habitats are adapted to the his-
torically low temperatures and will likely shift in a
warmer, future climate. Increasing temperatures
will have direct effects on N2 fixation as well as
indirect, long-term effects via shrub expansion into
high arctic ecosystems at the expense of lichens,
mosses, and free-living diazotrophs. Indirect
effects of increased temperatures will likely reduce
ecosystem N input via associative N2 fixation in
the long term. However, the net effects of climate
change on N2 fixation are ambiguous and will
depend strongly on the degree and interactive
effects of temperature, precipitation, and shrub
expansion.
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