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Abstract
In this paperwe present a newnear-IR emitting silver nanocluster (NIR-DNA-AgNC)with an
unusually large Stokes shift between absorption and emissionmaximum (211 nmor 5600 cm−1).We
studied the effect of viscosity and temperature on the steady state and time-resolved emission. The
time-resolved results onNIR-DNA-AgNC show that the relaxation dynamics slow down significantly
with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well
into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a
multi-exponential fluorescence decay time behavior is observed, in contrast to themoremono-
exponential decay in low viscosity solution.

1. Introduction

Due to its sensitivity and versatility, fluorescence
spectroscopy has found many applications in both
materials and life science imaging [1, 2]. As a result, a
myriad of different emitters have been developed over
the years [1]. Among these, DNA-stabilized silver
nanoclusters (DNA-AgNCs) are a new class of emitters
that were introduced in 2004 [3]. DNA-AgNCs exhibit
a wide range of emission properties that can be tuned
by changing the stabilizing DNA sequence [4–8]. The
DNA-AgNCs usually contain below 25 silver atoms [9]
and in some cases form bright and photo-stable
emitters, though dark clusters are often formed as well
[10–12]. Despite numerous applications in sensing
[13–18], relating the photophysical properties to
compositional and structural properties is still an
active and ongoing research topic [17, 19–24]. For
most fluorescence imaging applications, bright emit-
ters with high photo-stability and a reasonable Stokes
shift are used to create contrast. The Stokes shift in
particular is useful for spectrally separating the excita-
tion light from the probe emission [25].

The DNA-AgNC that we introduce here has an
unusually large Stokes shift, which to the best of our
knowledge is the largest reported Stokes shift (211 nm
or 5600 cm−1) for anyDNA-AgNC. For comparison, a
recent review on fluorescent dyes with large Stokes
shift did not present any fluorophores with a Stokes
shift above 160 nm in the emission region above
600 nm [26]. Besides the large Stokes shift, another
remarkable property is the emission of the DNA-
AgNC in the near-infrared (NIR) part of the electro-
magnetic spectrum, a region that is of particular inter-
est for tissue imaging since biological material and
tissue have a window of high transparency in the
650–900 nm range [27]. The use of DNA-AgNCs in
bioimaging has already been demonstrated in several
studies [28–32].

The particular DNA sequence that stabilizes this
DNA-AgNC, 5′-CACCTAGCGA-3′, was discovered
as part of a larger study of the relation between silver
cluster color and the properties of the host DNA
strand [33]. The photophysical characterization of the
NIR emitting DNA-AgNC (NIR-DNA-AgNC) pre-
sented here provides insight into the temporal and
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spectral relaxation of the excited state, which could
facilitate the future use of NIR-DNA-AgNC and other
DNA-AgNC emitters in amultitude of applications.

2.Materials andmethods

2.1. Sample preparation
The NIR-DNA-AgNC was synthesized by mixing
hydrated DNA (5′-CACCTAGCGA-3′, IDT DNA
Technologies) with AgNO3 (�99.998%, Sigma
Aldrich) in a 10 mM ammonium acetate (NH4OAc)
buffer (pH 7.0) prepared in nuclease free water (IDT
DNA Technologies). 15 min after mixing DNA and
AgNO3, the sample was reduced by 0.5 equivalents
NaBH4 (99.99%, Sigma Aldrich) per silver cation. The
final ratio of [DNA]:[Ag+]:[ -BH4 ]was [1]:[7.5]:[3.75],
and the concentration of DNA in the synthesis was
found to be optimal at 25 μM. The sample was kept in
the fridge for three days prior to HPLC purification.
After purification, the solvent was exchanged to
10 mM NH4OAc since DNA-AgNCs have a high
stability in this buffer. The remarkable stability of
NIR-DNA-AgNC in 10 mM NH4OAc is illustrated in
figure S5 is available online at stacks.iop.org/MAF/6/
024004/mmedia, which shows negligible change in
absorbance for theNIR-DNA-AgNC twomonths after
purification.

2.2.HPLCpurification
The HPLC purification was performed using a pre-
parativeHPLC system fromAgilent Technologies with
an Agilent Technologies 1260 infinity fluorescence
detector and a Kinetex C18 column (5 μm, 100 Å,
50×4.6 mm). The mobile phase was a gradient
mixture of methanol and water with 35 mM triethy-
lammonium acetate (TEAA). The gradient was varied
from 15% to 95%TEAA inmethanol in 24 min. In the
time range 2–22 min the gradient flow was increased
linearly from 20% to 40% TEAA in methanol. The
fraction collected at ∼35% TEAA in MeOH (17 min
elution time) contained the NIR-DNA-AgNC, which
was identified using the absorbance signal at 530 nm.
The flow rate was 1.3 ml min−1. The run was followed
by 6 min of washing with 95% TEAA in methanol to
remove any remaining sample from the column.

2.3. Steady-state absorption and emission
spectroscopy
All absorption measurements were carried out on a
Lambda 1050 instrument from Perkin Elmer using a
deuterium lamp for ultraviolet radiation and a halogen
lamp for visible and near infrared radiation. Steady-
state fluorescence measurements were done using
either a Fluotime 300 instrument from PicoQuant
with a 532 nm laser as excitation source, or using a
QuantaMaster 400 from PTI with a xenon arc lamp as
excitation source. For all fluorescence measurements
the absorption was kept below 0.1 to avoid inner filter

effects. All fluorescence spectra were corrected for the
wavelength dependency of the detector system.

2.4. Time-correlated single photon counting
TCSPC measurements were conducted using a Fluo-
time 300 instrument from PicoQuant with a 532 nm
pulsed laser (PicoQuant) as excitation source for all
experiments. The data was analyzed using Fluofit v.4.6
software fromPicoQuant.

3. Results and discussion

3.1. Steady-state results
The stabilizing single stranded DNA scaffold used in
this study consists of the 10 base sequence 5′-
CACCTAGCGA-3′ [33]. The formation kinetics of the
NIR-DNA-AgNC is slow: to obtain a good synthesis
yield, it is best to perform the HPLC purification at
least three days after synthesis (see figure S1). Figure S2
shows the HPLC traces of the synthesized NIR-DNA-
AgNC sample. The NIR-DNA-AgNC studied in this
paper was collected in the fraction that eluted around
17 min after injection. As depicted in figure 1(A), the
NIR-DNA-AgNC in a solution of 10 mM NH4OAc
has an absorption maximum in the visible region at
525 nm and an emission maximum at 736 nm at
25 °C. Even though this is a significantly large Stokes
shift (211 nm or 5600 cm−1) and the emission spec-
trum is very broad when plotted as a function of
wavelength, the plot of 2D excitation versus emission
in figure 1(B) shows only a single feature. Excitation
spectra measured at different emission wavelengths
(650–800 nm) all give nearly identical spectra, similar
to the shape of the absorption spectrum,which implies
that only one emissive species is present (figure S3) [1].
By plotting the absorption and emission spectra on a
wavenumber scale (figure S4), it is clear that the widths
of the absorbance and the emission peaks are similar
(the broad emission spectrum on a wavelength scale is
due to the smaller energy step size between each nm at
higher wavelengths; see figures 1(A) and S4). One note
of caution is that the tail of the emission is approaching
the sensitivity edge of the detector so, despite careful
correction for the variation in the detector sensitivity
at this wavelength range, some error on the deter-
mined intensity could be present (see SI). The large
Stokes shift and emission ranging from 600 nm to
more than 850 nmmake determination of the fluores-
cence quantum yield challenging. Nevertheless, we
calculate a quantum yield value of 0.26 using Cresyl
Violet in absolute ethanol as a reference (see SI for
more details).

In a previous study, we investigated a red emitting
DNA-AgNC (red-DNA-AgNC) that exhibits a red-
shift in the emission maximum as temperature is
increased. This temperature-dependent spectral shift
of red-DNA-AgNC was attributed to a faster relaxa-
tion to an energetically more relaxed excited state, at
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higher temperature [34]. However, it was unclear whe-
ther the increased thermal energy, decreased viscosity,
or a combination of both caused this effect. Here, we
performed temperature dependent fluorescence mea-
surements for the NIR-DNA-AgNC to investigate if a

spectral shift is present. The emission spectra in
figure 2(A) reveal minor spectral shifts of the NIR-
DNA-AgNC in 10 mM NH4OAc as a function of
temperature at 5, 25 and 40 °C. If temperature con-
trols the magnitude of energy relaxation after

Figure 1.NIR-DNA-AgNC in 10 mMNH4OAc at room temperature. (A)Normalized absorption (black line) and normalized
emission (red line) spectra exciting at 532 nm. (B) Steady-state 2D excitation versus emission plot.

Figure 2. (A)Normalized emission spectra at different temperatures forNIR-DNA-AgNC in 10 mMNH4OAc. (B)Normalized
emission spectra at different temperatures forNIR-DNA-AgNC in 90%glycerol and 10%10 mMNH4OAc. All spectra have been
normalized to highlight the shift of the emissionmaximum. It should be noted that the fluorescence intensity does changewith
temperature aswell.
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excitation, as hypothesized for the previously studied
red-DNA-AgNC, one might expect that due to the
large Stokes shift of NIR-DNA-AgNC in 10 mM
NH4OAc, NIR-DNA-AgNC would show even larger
temperature dependent shift. However, the minor
temperature-dependent spectral shift of NIR-DNA-
AgNC leads us to speculate that the spectral relaxation
could be much faster for NIR-DNA-AgNC than the
relaxation we measured for red-DNA-AgNC. If the
relaxation time is much faster than the excited state
decay time, we suspected that increasing the viscosity
could change the rate of the spectral relaxation for
NIR-DNA-AgNC. To test this hypothesis, we
increased the viscosity in an attempt to slow down the
excited state spectral relaxation, studying the steady-
state emission properties of NIR-DNA-AgNC in a
mixture of 90% glycerol (volume percent) and 10%
10mM NH4OAc in water. Changing the viscosity by
addition of glycerol will also change other solvent
properties, e.g. polarity, which also play a role in the
differences in the absorption and emission maxima
[35, 36] (see table 1), but here we keep the amount of
glycerol in the high viscosity solution constant and
only look at the effect of temperature on the emission
spectra. The effect of changing the dielectric constant
of the solvent was investigated previously by Copp et al
and it was shown that dielectric-dependent spectral
changes did not follow a Lippert–Mataga basedmodel.
Specific solvent interaction with the DNA scaffold
might play a more important role on the spectral shift
[36]. As shown in figure 2(B), we observe a clear temp-
erature-dependent spectral shift.

The large shift between absorption and emission
maxima points to a significant relaxation between the
initial Frank Condon state and the emission from the
S1 state of the fluorophore [34]. This spectral relaxa-
tion seems to happen (figure 2(A)) on a time-scale that
is faster than the S1 decay time in 10 mM NH4OAc,
resulting in a minimal temperature dependent shift in
the emissionmaximum. Increasing the viscosity of the
solvent seems to slow down this spectral relaxation

process (figure 2(B)), resulting in a shift of emission
maximum with temperature. To investigate the
hypothesis that viscosity determines the extent and
temperature dependence of the spectral relaxation, we
performed time-resolved fluorescence measurements
on theNIR-DNA-AgNC in both the low and high visc-
osity solutions.

3.2. Time-resolved results
Previously we have shown that for red-DNA-AgNCs, a
spectral relaxation that extends into the nanosecond
time scale is present [34]. This results in an apparent
multi-exponential decay behavior and complicated
decay associated spectra. However, analyzing the data
by creating time-resolved emission spectra (TRES) is a
more convenient and clearer way to represent the
temporal and spectral relaxation of the excited state.
Figure 3 shows the results of NIR-DNA-AgNC in low
viscosity (10 mM NH4OAc) and high viscosity (90%
glycerol, 10%10 mMNH4OAc) solutions at 25 °C.

The TRES in figure 3(A) and average decay time
spectrum in figure 3(B) show that only a minimal
spectral shift is present for varying time points for
NIR-DNA-AgNC in low viscosity solution. This indi-
cates that most of the spectral relaxation for the low
viscosity casemust take place on a time scale below the
IRF resolution of the equipment used here (∼150 ps).
From our steady state hypothesis, we expected that as
viscosity increases, the spectral relaxation would slow
down. Figures 3(C) and (D) show the TRES and aver-
age decay time spectrum in high viscosity solution.
The average fluorescence decay time spectrum con-
currently rises from around 2.7 ns at 600 nm emission
to 4.2 ns at 860 nm emission, which one would expect
for a slow spectral relaxation on the time scale of the
excited state decay time [1]. Now that we have been
able to show that our viscosity hypothesis holds (that
the viscosity of the solvent can kinetically hinder the
excited state to reach its fully relaxed state) and is ver-
ified by the time-resolved results, one intriguing ques-
tion remains: what is the mechanism causing the

Table 1.Absorptionλabs(max) and emissionλem(max)maxima, fluorescence quantum yieldQY,
weighted average fluorescence decay time 〈τw〉 and average fluorescence lifetime 〈τ〉 (excitation at
532 nm), forNIR-DNA-AgNC at different temperatures and in low (10 mMNH4OAc) and high
viscosity (90%glycerol, 10%10 mMNH4OAc) solutions.

T (°C) λabs(max) λem(max) QYa 〈τw〉
b 〈τ〉c

Low viscosity 5 525 nm 735 nm 3.70 ns

25 525 nm 736 nm 0.26 3.27 ns 3.26 ns

40 524 nm 737 nm 2.99 ns

High viscosity 5 521 nm 715 nm 3.99 ns

25 522 nm 720 nm 0.27 3.58 ns 3.69 ns

40 524 nm 728 nm 3.50 ns

a The fluorescence quantum yield was measured using Cresyl Violet in absolute ethanol

(QY=0.56) as reference compound [37].
b Average decay time, weighted by the intensity over thewhole emission range.
c Average decay time of NIR-DNA-AgNC at 730 nm detection for 10% 10 mM NH4OAc and

720 nm for 90%glycerol, 10%10 mMNH4OAc.
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different spectral relaxation speed for NIR-DNA-
AgNC and red-DNA-AgNC? The previously studied
red-DNA-AgNC, which has much slower spectral
relaxation in the low viscosity case, is stabilized by a
much longer DNA oligomer (19 bases; 5′-
TTCCCACCCACCCCGGCCC-3′) than the NIR-
DNA-AgNC studied here, which is stabilized by an oli-
gomer of 10 bases. Earlier studies suggest that it is unli-
kely that a near-IR emitting silver clusters would be
stabilized by one single DNA strand of 10 bases [6],
and studies of visibly emitting silver clusters stabilized
by 10-base DNA strands have found that even for
green and red silver clusters, two copies of a 10-base
DNA strand are required [6, 16]. It is thus likely that
the NIR-DNA-AgNC is stabilized by at least two DNA
strands, and it could be that stabilization by two or
more DNA strands instead of one longer DNA strand
enables faster spectral relaxation. Such a hypothesis is
only speculative at this point, and future studies corre-
lating number of bases with spectral relaxation would
be interesting. Additionally, it is also interesting to
point out that the observed decay time behavior of
purified NIR-DNA-AgNC can either be mono-expo-
nential or multi-exponential, depending on the spec-
tral relaxation speed [10]. This is demonstrated in
table S1 and commented on more below. To get an

idea about the hydrodynamic volume of NIR-DNA-
AgNC in 10 mM NH4OAc, we performed time-
resolved anisotropy measurements (see figure S8).
Tail-fitting the data with a single exponential rota-
tional correlation time, we obtain a hydrodynamic
volume of∼10.5 nm3 forNIR-DNA-AgNC [1].

Finally, we investigated the effect of temperature
on the average decay time for NIR-DNA-AgNC in low
and high viscosity solutions. Figure S9 shows that the
temperature can reversibly cycle between 5, 25 and
40 °C, with no impact on the stability of the NIR-
DNA-AgNC. It is also seen that the NIR-DNA-AgNC
emission intensity is temperature-dependent as was
also observed for red-DNA-AgNC and other DNA-
AgNCs [34, 38]. Examining the fluorescence decay
curves for NIR-DNA-AgNC in figures 4(A) and (B)we
observe a decreasing trend of average decay time, 〈τ〉,
with increasing temperatures. These results are in line
with the previous red-DNA-AgNC results, where we
showed that the decay time is temperature-dependent
and can be used as a thermometer [34].

In figure 4(C), where three 〈τ〉 values of NIR-
DNA-AgNC are plotted as a function of temperature,
we see linear trends in both 10 mM NH4OAc (dots)
and 90% glycerol, 10% 10mM NH4OAc (squares).
The changes in 〈τ〉 with temperature are similar in

Figure 3. (A)Time-resolved emission spectra ofNIR-DNA-AgNCs at 25 °C in 10 mMNH4OAc. (B)Average fluorescence decay time
as a function of emissionwavelength in 10 mMNH4OAc. (C)Time-resolved emission spectra ofNIR-DNA-AgNCs at 25 °C in 90%
glycerol, 10%10 mMNH4OAc. (D)Average fluorescence decay time as a function of emissionwavelength in 90%glycerol, 10%
10 mMNH4OAc.
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high and low viscosity solutions (though the values of
〈τ〉 vary), indicating that the change in decay time is
mainly due to the temperature and not to temper-
ature-induced changes in viscosity (see SI for further
details). To illustrate this, we plotted the approxi-
mated viscosities of the solutions at different tempera-
tures versus the emission maxima (in wavenumber
scale). This data (figure S10) shows a monotonic
dependence on these six data points we measured
here. Further follow-up studies with more viscosity
data points would be interesting to investigate this
dependence inmore detail.

As discussed previously, the multi-exponential
character of the decay curves is greatly influenced by
the speed of the spectral relaxation process. In the case
of low viscosity solution, the spectral relaxation is too
fast to be clearly resolved in the TCSPC resolution of
the equipment; thus, the decay curve (λexc=532 nm,
λem=730 nm) can be satisfactorilyfittedwith a single
exponential decay (see table S1). However, in order to
fit the decay curve of the NIR-DNA-AgNC in high
viscosity solution (λexc=532 nm, λem=720 nm), a
single exponential model is clearly not satisfactory.
Instead, a two or three exponential model is required

to get a good fit due to the spectral shift of the emission
maximum in the nanosecond time scale (table S1).

4. Conclusions

We present a new near-IR emitting DNA-AgNC with
an unusually large Stokes shift (211 nmor 5600 cm−1).
The steady-state properties of NIR-DNA-AgNC show
that there is only a minimal spectral shift with
changing temperature in 10 mM NH4OAc. However,
in a solution with much higher viscosity, a clear
temperature dependent spectral shift in the emission
spectrum is apparent. The same trend is evident from
time-resolved measurements of NIR-DNA-AgNC in
high viscosity solution, where time-resolved spectral
relaxation is now stretched to the nanosecond time
scale. At low viscosity, most of the spectral relaxation
happens on a time scale faster than our TCSPC
equipment can resolve (∼150 ps). Fast spectral relaxa-
tion makes time-resolved TCSPC data less compli-
cated to analyze and could therefore be an advantage
in potential sensing or imaging applications. It can also
help explain why some purified DNA-AgNCs exhibit
mono-exponential decay while others decay multi-

Figure 4. (A) Fluorescence decay curves forNIR-DNA-AgNC at different temperatures in 10 mMNH4OAc. (B) Fluorescence decay
curves forNIR-DNA-AgNC at different temperatures in 90%glycerol, 10%10 mMNH4OAc. (C)Average fluorescence decay times as
a function of temperature in 10 mMNH4OAc (dots) or in 90%glycerol, 10%10 mMNH4OAc (squares). The fluorescence decays
weremeasured at emissionwavelengths of 720 nmand 730 nm for 90%glycerol, 10%10 mMNH4OAc and 10 mMNH4OAc,
respectively, and the excitationwavelengthwas 532 nm in both cases.
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exponentially. We speculate that the length of the
DNA sequence and/or flexibly could be a determining
factor in the spectral relaxation speed. Future studies
should address this question.
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