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Abstract
Aims/hypothesis Insulin-mediated signals and AMP-activated
protein kinase (AMPK)-mediated signals are activated in re-
sponse to physiological conditions that represent energy abun-
dance and shortage, respectively. Focal adhesion kinase
(FAK) is implicated in insulin signalling and cancer progres-
sion in various non-muscle cell types and plays a regulatory
role during skeletal muscle differentiation. The role of FAK in
skeletal muscle in relation to insulin stimulation or AMPK
activation is unknown. We examined the effects of insulin or
AMPK activation on FAK phosphorylation in human skeletal
muscle and the direct role of FAK on glucose and lipid me-
tabolism. We hypothesised that insulin treatment and AMPK
activation would have opposing effects on FAK phosphoryla-
tion and that gene silencing of FAK would alter metabolism.
Methods Human muscle was treated with insulin or the
AMPK-activating compound 5-aminoimadazole-4-
carboxamide ribonucleotide (AICAR) to determine FAK

phosphorylation and glucose transport. Primary human skele-
tal muscle cells were used to study the effects of insulin or
AICAR treatment on FAK signalling during serum starvation,
as well as to determine the metabolic consequences of silenc-
ing the FAK gene, PTK2.
Results AMPK activation reduced tyrosine phosphorylation
of FAK in skeletal muscle. AICAR reduced p-FAKY397 in
isolated human skeletal muscle and cultured myotubes.
Insulin stimulation did not alter FAK phosphorylation.
Serum starvation increased AMPK activation, as demonstrat-
ed by increased p-ACCS222, concomitant with reduced p-
FAKY397. FAK signalling was reduced owing to serum star-
vation and AICAR treatment as demonstrated by reduced p-
paxillinY118. Silencing PTK2 in primary human skeletal mus-
cle cells increased palmitate oxidation and reduced glycogen
synthesis.
Conclusions/interpretation AMPK regulates FAK signalling
in skeletal muscle. Moreover, siRNA-mediated FAK knock-
down enhances lipid oxidation while impairing glycogen syn-
thesis in skeletal muscle. Further exploration of the interaction
between AMPK and FAKmay lead to novel therapeutic strat-
egies for diabetes and other chronic conditions associated with
an altered metabolic homeostasis.

Keywords AICAR . AMPK . Focal adhesion kinase . Gene
silencing . Glycogen synthesis . Insulin . Lipid oxidation .

Metabolic flexibility . Open-muscle biopsy . Skeletal muscle

Abbreviations
ACC Acetyl-CoA carboxylase
AICAR 5-aminoimadazole-4-carboxamide ribonucleotide
AMPK AMP-activated protein kinase
FAK Focal adhesion kinase (also known as protein

kinase 2)
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
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PKB Protein kinase B (also known as Akt)
TBC1D1 TBC1 domain family member 1
TBC1D4 TBC1 domain family member 4 (also known

as Akt substrate of 160 kDa, AS160)
TBS TRIS-buffered saline
TBST TRIS-buffered saline with Tween-20

Introduction

Skeletal muscle is a highlymalleable tissue, capable of remod-
elling physical and biochemical properties to meet changes in
cellular and whole-body metabolic demands [1]. Type 2 dia-
betes is characterised by multiple defects in skeletal muscle
including insulin resistance, defective oxidative metabolism,
altered mitochondrial function and loss of muscle mass [2].
Defects in insulin action in skeletal muscle are also noted in
non-diabetic first-degree relatives of people with type 2 dia-
betes [3], indicating that insulin resistance is an early event in
the pathogenesis of type 2 diabetes. Delineation of signalling
pathways emanating from the insulin receptor and AMP-
activated protein kinase (AMPK), two major processes con-
trolling glucose and energy homeostasis [4], is central in the
efforts to resolve type 2 diabetes pathogenesis. How these
signalling networks are kept in homeostatic balance is not
completely clear.

Under physiological conditions, AMPK signalling is acti-
vated during intracellular energy deprivation, while insulin
signalling occurs during systemic energy surplus [5, 6].
Consequently, AMPK and insulin signalling can have oppos-
ing roles, with the former prioritising energy utilisation and
inhibiting growth and the latter prioritising energy storage and
promoting growth [7]. To achieve energy balance, AMPK and
insulin signalling can also converge at common nodes to co-
ordinate metabolic responses. Examples of common nodes
shared by these pathways include two Rab GTPase-
activating proteins, TBC1 domain family member 1
(TBC1D1) and TBC1 domain family member 4 (TBC1D4;
also known as Akt substrate of 160 kDa, AS160). These pro-
teins respond to AMPK activation and insulin stimulation and
are involved in the regulation of glucose transport [2].
Elucidation of other molecular points of crosstalk between
AMPK and insulin signalling may reveal how these pathways
are coordinated to meet the energy demands of the cell.

Focal adhesion kinase (FAK) may play a role in integrating
insulin signalling and energy-sensing signals within human
skeletal muscle. FAK is a mechanosensitive/exercise-
responsive protein that plays a role in skeletal muscle mor-
phology, metabolism and insulin sensitivity [8–12].
Activation of FAK is carried out first via autophosphorylation
at Y397 and subsequently via phosphorylation at Y576/Y577
[11]. The proper timing of FAK activation via autophosphor-
ylation at Y397 is essential for normal myoblast

differentiation [13] and skeletal muscle hypertrophy after
hindlimb suspension in rodents [14]. During ageing, impaired
FAK signalling is associated with functional decline in the
regenerative potential of skeletal muscle stem cells [15].
Several lines of evidence link AMPK and FAK signalling.
In immortalised vascular smooth muscle cells from rats,
AMPK and FAK are counter-regulated by an α-glucosidase
inhibitor [16]. In addition, in HepG2 cells (a human liver
cancer cell line), overexpression of the AMPK-related kinase
sucrose non-fermenting AMPK-related kinase (SNARK) re-
duces FAK phosphorylation [17]. Mutant forms of FAK im-
pair insulin signalling in HepG2 cells [18] and tail-vein injec-
tion of siRNA against the FAK gene (PTK2) leads to insulin
resistance, concomitant with reduced protein kinase B (PKB,
also known as Akt) phosphorylation in mouse models of dia-
betes [9]. Furthermore, FAK plays a central role in maintain-
ing cell survival and insulin sensitivity in mouse adipose tis-
sue [19]. Because FAK plays a role in contractile- and insulin-
responsive signals in rodent muscle, it is a candidate protein to
mediate energy balance due to AMPK and insulin signalling
in human skeletal muscle.

Here we determined the role of FAK in human skeletal
muscle as it relates to insulin stimulation and AMPK activa-
tion. We hypothesised that insulin treatment and AMPK acti-
vation would have opposing effects on FAK phosphorylation.
As a secondary objective, we used siRNA-mediated gene si-
lencing to test the hypothesis that FAK plays a role in glucose
and lipid metabolism in human skeletal muscle cells.

Methods

Ethics statement Informed consent was obtained from all
participants. The experimental procedures were approved un-
der the license number 2012/1955-31/1 by the local ethical
committee and were conducted according to the Declaration
of Helsinki.

Study participants Eleven healthy men from the Stockholm
area volunteered for this study. The clinical characteristics of
the study cohort are presented in Table 1. Participants reported
to Danderyd Hospital (Stockholm, Sweden) in the morning
following a 12 h fast and a 24 h abstention from physical
exercise.

Open-muscle biopsy procedure, glucose transport and in-
tracellular signalling Vastus lateralis muscle was obtained
using an open-muscle biopsy technique as described previous-
ly [20]. Skeletal muscle strips were dissected from the biopsy
specimen, mounted on Plexiglass clamps and incubated for
30 min in a recovery buffer (oxygenated Krebs–Henseleit
buffer containing 5 mmol/l HEPES, 0.1% wt/vol. bovine se-
rum albumin, 15 mmol/l mannitol, 5 mmol/l glucose). Muscle
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strips were subsequently incubated for 20 min in the absence
or presence of 120 nmol/l insulin (Actrapid, Novo Nordisk,
Bagsværd, Denmark) and/or 2 mmol/l 5-aminoimadazole-4-
carboxamide ribonucleotide (AICAR) (Toronto Research
Chemicals, Toronto, ON, Canada). Insulin and/or AICAR
were absent or present at the same concentrations in all sub-
sequent buffers. Muscle strips were incubated for 10 min in
glucose-free rinse buffer containing 20 mmol/l mannitol and
subsequently for 20 min in buffer containing 15 mmol/l man-
nitol, 5 mmol/l 3-O-methylglucose and 14,800 Bq/ml 14C-
labelled mannitol and 148,000 Bq/ml of 3H-labelled 3-O-
methylglucose. Thereafter, muscle strips were trimmed of
connective tissue and frozen with a clamp pre-cooled in liquid
nitrogen. Methanol or DMSOwas present at concentrations of
0.05% or 0.1% vol./vol., respectively, in all buffers except for
the first; no significant effects were detected due to these sol-
vents and data were pooled in all analyses.

Muscle strips were pulverised in a lysis buffer (10% vol./
vol. glycerol, 1% vol./vol. Triton X-100, 137 mmol/l NaCl,
20 mmol/l TRIS at pH 7.8, 10 mmol/l NaF, 2.7 mmol/l KCl,
1 mmol/l MgCl2, 1 mmol/l EDTA, 0.5 mmol/l NaVO3,
0.2 mmol/l phenylmethane sulfonyl fluoride, and 1:100 pro-
tease inhibitor cocktail set 1 [Merck Millipore, Billerica, MA,
USA]). Lysates were centrifuged and supernatants were sep-
arated from the insoluble component. The protein content of
the supernatants was assessed by a Pierce BCA protein assay
kit (Thermo Fisher Scientific,Waltham,MA, USA). A portion
of the lysates was used to determine 3-O-methylglucose trans-
port as described [21] and the rest of the sample was used to
analyse intracellular signalling by western blot as described
[22]. Protein lysates were diluted in Laemmli buffer, subjected
to SDS-PAGE, transferred to Immobilon-P polyvinylidene

fluoride membranes (Merck Millipore), washed in TRIS-
buffered saline (TBS) with Tween-20 (TBST), blocked in
7.5% wt/vol. non-fat dry milk and incubated overnight at
4°C with primary antibodies (1:1,000) in TBS containing
0.1% wt/vol. bovine serum albumin and 0.1% wt/vol. NaN3.
Membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies (Thermo Fisher Scientific,
1:25,000) in TBST with 4% wt/vol. non-fat dry milk and
subsequently with extended chemiluminescence reagents
(GE Healthcare, Little Chalfont, UK). Primary antibodies are
listed in ESM Table 1.

FAK signalling in primary human skeletal muscle cells
Primary skeletal muscle cell cultures were established, grown
and differentiated from satellite cells derived from vastus
lateralis skeletal muscle biopsies taken from people with nor-
mal glucose tolerance as described [22]. Cells were grown in
‘growth media’, differentiated for 4–8 days in ‘differentiation
media’ and differentiation was completed bymaintaining cells
in ‘post-differentiation media’ for 4–8 days prior to experi-
mental treatments. The exact formulations of thesemedia have
been described previously [22].

To examine the effects of serum starvation on FAK signal-
ling, myotubes were incubated for 3–6 h in media with or
without serum. To explore the effects of insulin and AICAR
treatment on FAK signalling, other myotubes were treated
with 120 nmol/l insulin or 2 mmol/l AICAR in serum-free
media. Cells were rinsed twice in ice-cold PBS and then fro-
zen at −20°C until subsequent western blot analysis. All re-
sults were compared with those obtained from untreated
myotubes harvested at 0 h.

PTK2 gene silencing, palmitate oxidation, glycogen synthe-
sis and intracellular signalling in primary human skeletal
muscle cells Differentiated cells were transfected twice, sep-
arated by 48 h, using Lipofectamine RNAiMAX Transfection
Reagent along with 10 nmol/l of a non-targeting negative
control siRNA or siRNA directed against PTK2 (silencer se-
lect Negative control No.2, no. 4390847, or validated silencer
select siRNA s11485, respectively; Thermo Fisher Scientific).
To determine gene-silencing efficiency, mRNAwas harvested
from cells using the E.Z.N.A. Total RNA Kit 1 (Omega Bio-
tek, Norcross, GA, USA). Reverse transcription and quantita-
tive PCR were carried out using MultiScribe Reverse
Transcriptase and Fast SYBR Green Master Mix, respectively
(Thermo Fisher Scientific). mRNA expression of PTK2 and
reference genes (PPIB, TBP, B2M and TFRC) was assessed
using self-designed oligonucleotides (Sigma-Aldrich, St
Louis, MO, USA). Oligonucleotide sequences are listed in
ESM Table 2.

To assess the effects of PTK2 on lipid oxidation, myotubes
were exposed to serum-free post-differentiation media con-
taining 0.025 mmol/l palmitate and incubated in the absence

Table 1 Characteristics of the study participants

Clinical feature Mean±SEM

Age, years 50.6 ± 2.4

Height, cm 179.9 ± 2.4

Weight, kg 81.4 ± 3.3

BMI, kg/m2 25.1 ± 0.6

Waist-to-hip ratio 0.89 ± 0.01

Systolic blood pressure, mmHg 125.0 ± 3.9

Diastolic blood pressure, mmHg 79.5 ± 1.8

Fasting plasma glucose, mmol/l 5.3 ± 0.1

Fasting insulin, pmol/l 49.9 ± 7.9

HbA1c, % 5.3 ± 0.1

HbA1c, mmol/mol 34.5 ± 0.9

HDL-cholesterol, mmol/l 1.3 ± 0.1

LDL-cholesterol, mmol/l 3.9 ± 0.1

Triacylglycerol, mmol/l 0.9 ± 0.2

Total cholesterol, mmol/l 5.7 ± 0.1

Data are for n = 11 men

426 Diabetologia (2018) 61:424–432



or presence of 2 mmol/l AICAR for 6 h. A fraction of the
palmitate (approximately 1:300) was radioactively labelled
(9,10-[3H]palmitate, NET043005MC; PerkinElmer,
Waltham, MA, USA). Thereafter, media was collected and
myotubes were lysed in 0.03% wt/vol. SDS. The protein con-
tent of the cellular lysate was assessed by a colorimetric assay
(Protein Assay Dye Reagent no. 5000006; Bio-Rad, Hercules,
CA, USA). The radioactivity of 3H-labelled water in the me-
dia was assessed by scintillation counting after isolation from
non-oxidised radioactive palmitate using centrifugation with
activated charcoal. Palmitate oxidation was normalised to pro-
tein content. To assess the effect of PTK2 silencing on intra-
cellular signalling, cells were incubated for 1 h in the absence
or presence of 120 nmol/l insulin or 2 mmol/l AICAR ~ 48 h
after the final transfection. Cells were rinsed twice in ice-cold
PBS and then frozen at −20°C until subsequent western blot
analysis.

To investigate the effect of FAK (PTK2) knockdown on
glycogen synthesis, the radioactivity of cell lysates was mea-
sured after the cells were exposed to a glucose tracer in the
presence or absence of insulin as previously described [23].
Briefly, cells were subjected to a 4 h serum starvation, then
treated with 0, 10 or 120 nmol/l insulin for 30 min. Cells were
then exposed to radioactive glucose (D-[U-14C]glucose,
NEC042B005MC; PerkinElmer) for 90 min before being
rinsed twice in ice-cold PBS and frozen at −20°C. Cells were
later lysed, glycogen was precipitated and washed, and sub-
sequently dissolved in scintillation fluid for analysis of radio-
active content.

Experimental outcomes FAK phosphorylation was the pri-
mary experimental outcome assessed in all models. Secondary
experimental outcomes included glucose transport in the
open-muscle biopsy samples, palmitate oxidation or glycogen
synthesis in the primary human skeletal muscle cell experi-
ment and phosphorylation status of other proteins in all
models.

Blinding and randomisation Samples in all experiments
were randomly assigned to the treatment conditions indicated.
Researchers processing sample lysates were blinded to the
group assignment and outcome assessment until the statistical
analysis was conducted.

Inclusion and exclusion criteriaDonors were excluded from
participating in the study if they were being treated for diabe-
tes. Primary human skeletal muscle cells were excluded from
analysis if they failed to form myotubes upon induction of
differentiation. Samples were excluded from analysis only if
they were lost or destroyed during sample processing, other-
wise all samples were included in the data analysis and inter-
pretation of results.

Statistical analysis R base v 3.3.3 (https://cran.r-project.org/
bin/windows/base/old/3.3.3/) and open-source packages were
used for inferential statistics, while Graphpad Prism v7.02 (La
Jolla, CA, USA) was used for generation of figures. When the
underlying assumptions were not violated, parametric tests
were used to make statistical inferences, otherwise we imple-
mented non-parametric alternatives. Specific omnibus tests
are indicated in figure legends. When significant effects were
indicated by omnibus testing, post hoc pairwise comparisons
were made and adjusted using the Benjamini–Hochberg false
discovery rate correction. The threshold for significance (α)
was set to 0.05.

Results

AMPK activation reduces p-FAKY397Human skeletal mus-
cle strips were incubated in the absence or presence of
120 nmol/l insulin or 2 mmol/l AICAR, or both, to assess
the effects on glucose transport and signal transduction (Fig.
1a–f). Insulin and AICAR increased glucose transport in iso-
lated skeletal muscle (Fig. 1a). Insulin increased p-PKBT308

and p-TBC1D4S318 (Fig. 1b,c), while AICAR increased phos-
phorylation of acetyl-CoA carboxylase (ACC), a marker of
AMPK activation, at S222 (Fig. 1d). AICAR reduced p-
FAKY397, whereas insulin had no effect (p > 0.89) (Fig. 1e).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as a loading control and was not affected by insulin or
AICAR.

Differentiated primary human skeletal muscle cells were
used for p-FAK determination in the absence or presence of
serum, and in response to AICAR or insulin stimulation.
AICAR treatment and serum starvation increased p-
ACCS222, while insulin increased p-PKBT308 (Fig. 2a,b). In
contrast, p-FAKY397 and the FAK target p-paxillinY118, was
lowest in serum-starved AICAR-treated myotubes (Fig. 2c,d).
Furthermore, an inverse relationship between p-ACCS222 and
p-FAKY397 was observed (Fig. 2e). Insulin stimulation did not
alter p-FAKY397 (p > 0.39) (Fig. 2c). The abundance of total
FAK, total ACC, total PKB and total paxillin was unaffected
by the length of serum starvation or the treatments given to the
cells (Fig. 2f). Even loading was verified by using GAPDH as
a control.

Silencing FAK increases lipid oxidation Transfection of pri-
mary humanmuscle cells with siRNA directed against the FAK
gene resulted in more than a 50% reduction of PTK2 mRNA
(Fig. 3a). Gene silencing led to a reduction in total FAK protein
and, consequently, p-FAKY397 (Fig. 3b). An increase in palmi-
tate oxidation (Fig. 3c) and a decrease in glycogen synthesis
(Fig. 3d) was detected after PTK2 silencing. AICAR treatment
increased p-ACCS222 (Fig. 3e). Insulin increased p-PKBT308

(Fig. 3f). Total abundance of ACC and PKB was

Diabetologia (2018) 61:424–432 427

https://cran.r-project.org/bin/windows/base/old/3.3.3/
https://cran.r-project.org/bin/windows/base/old/3.3.3/


not altered due to gene silencing or treatment with AICAR or
insulin (Fig. 3g). GAPDH was used as a loading control and
was not affected by insulin, AICAR or PTK2 silencing.

Discussion

The appropriate balance between insulin signalling and AMPK
activation is critical for maintaining metabolic health. Insulin
stimulation and AMPK activation can independently increase
GLUT4 translocation and glucose uptake via differential

phosphorylation of TBC1D1 and TBC1D4 Rab GTPase-
activating (GAP) proteins in skeletal muscle [2, 24, 25]. Here,
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duction. Human skeletal muscle strips were incubated in the absence
(Unt) or presence of 120 nmol/l insulin (Ins), 2 mmol/l AICAR (AIC),
or both (A+I), for 1 h. (a) Glucose transport. (b) p-PKBT308. (c) p-
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we confirm our earlier finding that insulin and AICAR increase
glucose transport in human skeletal muscle [26]. Using several
models to study human skeletal muscle, we provide new evi-
dence that AMPK activation reduces FAK tyrosine phosphory-
lation. Thus, FAK appears to integrate energy-sensing signals
within the cell. AICAR reduced p-FAKY397 in human skeletal
muscle. In AICAR-stimulated serum-starved primary human

skeletal muscle cells, p-ACCS222 is inversely correlated with p-
FAKY397. Because FAK activation depends on the sequential
phosphorylation of Y397 and Y576/Y577 [11], the reduction
in p-FAKY397 in human skeletal muscle, concomitant with the
increase in AMPK activity, implies that FAK activity is reduced.
Our findings that phosphorylation of paxillin at Y118, a FAK
target site, was reduced under conditions that also reduce FAK
phosphorylation, further indicate that FAK activity was damp-
ened.While the modulation of FAK activity is multifactorial, our
evidence from different paradigms collectively point to an in-
verse relationship between AMPK and FAK activation.

FAK acts as a sensor of mechanical load and is a constituent
of the anabolic signalling pathway in skeletal muscle. Resistance
exercise undertaken in the postprandial state increases FAK
phosphorylation in human skeletal muscle, concomitant with
anabolic signalling [10, 12]. As resistance training increases
AMPK signalling in human skeletal muscle [27, 28], particularly
if non-habitual resistance exercise is performed [29], our results
would predict a decrease in FAK phosphorylation after exercise
or AMPK activation. However, our studies were performed in a
controlled system whereby many of the myriad effects of exer-
cise are precluded, including hormonal perturbations, altered re-
dox state, force transduction and shifts in calcium signalling.
Thus, we propose that AMPK activation negatively regulates
FAK signalling.

FAK activation is implicated in insulin signalling and muscle
cell differentiation [9, 30]. Therefore, we investigated insulin-
mediated regulation of FAK in human skeletalmuscle. As insulin
increases FAK activity in rodent skeletal muscle [9, 30–32], we
expected insulin treatment to increase p-FAKY397. However,
FAK phosphorylation was unaltered in both insulin-stimulated
human skeletal muscle and primary cultured myotubes. In con-
trast, we report that silencing the FAK gene, PTK2, reduces
glycogen synthesis in primary human skeletal muscle cells.
Moreover, incubation of rat primary cardiomyocytes with a
FAK inhibitor reduces glucose transport [33]. Preliminary exper-
iments reveal counter-regulation of p-FAKY397 due to insulin and
AICAR treatment in HEK cells (data not shown). Since the role
of FAK inmurine neuronal cells is to attenuate insulin signalling,
a tissue-specific role for FAK has been proposed [34]. Our ob-
servation that FAK knockdown impairs glycogen synthesis de-
spite FAK phosphorylation being unchanged after insulin stimu-
lation indicates an insulin-independent role for FAK in glucose
handling. Collectively, these results suggest that insulin-mediated
phosphorylation of FAK is tissue and species specific. Our find-
ings are particularly relevant since we describe the impact of
AMPK activation and insulin on FAKphosphorylation in human
skeletal muscle for the first time.

We explored the metabolic consequences of silencing the
FAK gene, PTK2, in human skeletal muscle. Increased IL-8,
secreted from primary human skeletal myotubes derived from
individuals with type 2 diabetes into conditioned culture media,
upregulates FAK signalling in skeletal muscle, suggesting a role
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Fig. 3 Effect of PTK2 silencing on palmitate oxidation and glycogen
synthesis in skeletal muscle. Primary human skeletal muscle cells were
transfected with control siRNA (black bars) or siRNA directed against
PTK2, the FAK gene (white bars). Cells were harvested for mRNA anal-
ysis (a) or were untreated (Unt) or treated with 120 nmol/l insulin (Ins) (b,
e, f) or 2 mmol/l AICAR (AIC) (b, c, e, f). (a) PTK2 mRNA (n = 8 from
matched cultures). (b) p-FAKY397. (c) Palmitate oxidation. (d) Glycogen
synthesis in insulin-treated cells. (e) p-ACCS222. (f) p-PKBT308. (g)
Representative blots. In (a) individual responses from all samples are
shown. In (b–f), results are mean ± SEM for matched samples from
n = 6–8 cultures. The threshold for significance (α) was set to 0.05.
*Significant pairwise difference between indicated groups as detected
by paired t test (a) or pairwise post hoc tests after false discovery rate
correction (b–f), †Significant gene-silencing effect as detected by two-
way repeated measures ANOVA. ‡Significant pharmacological treatment
effect as detected by two-way repeated measures ANOVA. §Significant
differences among groups as detected by Friedman’s test (assumptions for
two-way repeated measures ANOVAwere not met)
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for FAK in insulin resistance [35]. Using siRNA against PTK2,
we show that reducing FAK protein abundance increases palmi-
tate oxidation in human skeletal muscle. In rat cardiomyocytes,
siRNA-mediated silencing ofPTK2 reduces oligomycin-induced
glucose transport [33]. Collectively, these data indicate that a
reduction in FAK protein abundance shifts the metabolic pro-
gramming of skeletal and cardiac muscle to favour lipid oxida-
tion. Though beyond the scope of this study, future research
could elucidate the mechanism by which FAK mediates lipid
oxidation by utilising FAK inhibitors or PTK2-silenced
myotubes treated specifically with malonyl-CoA or C75, a fatty
acid synthase inhibitor. Though it remains to be determined
whether FAK activation impairs lipid oxidation, our findings
imply that FAK has a role in the control of metabolic substrate
utilisation in human skeletal muscle.

Inhibition of FAK activity may have therapeutic benefits
for the treatment of various chronic disease states. Because
diabetes is characterised by impaired lipid oxidation in skele-
tal muscle [36], FAK inhibition may enhance metabolic flex-
ibility. FAK activity correlates with cancer progression by
promoting cell survival, proliferation and migration [37],
and FAK inhibitors are actively being investigated to treat
cancer [38]. Inhibition of FAKmay improve clinical outcomes
for metabolic disorders or cancer, since FAK is an effector of
insulin-like growth factor 1 [39, 40]. As cancer cells tend to
favour glycolytic metabolism (the ‘Warburg effect’) [41, 42],
and our data implicate FAK as a moderator of lipid oxidation,
the efficacy of FAK inhibitors in cancer may be attributed to
substrate shifts and increased lipid oxidation relative to glu-
cose oxidation. Importantly, the use of FAK inhibitors may not
be equally effective across the lifespan, since aged skeletal
muscle is characterised by nuclear localisation of the FAK
protein and reduced responsiveness to FAK inhibitors [15].
Skeletal muscle from lean and obese individuals differ by
approximately 30%when it comes to the percentage of energy
demands being met by lipid oxidation [43]. In this context, the
~ 10% increase in palmitate oxidation in primary skeletal
muscle cells due to PTK2 silencing is clinically relevant, es-
pecially if FAK impairs glucose uptake, as may be suggested
by our finding that glycogen synthesis is enhanced after PTK2
silencing. Further studies are warranted to validate FAK inhi-
bition as a strategy for the treatment of lipid metabolism
disorders.

Using AICAR-treated human skeletal muscle biopsies and
primary human skeletal muscle cells subjected to serum star-
vation or AICAR treatment, we provide evidence that AMPK
activity reduces FAK tyrosine phosphorylation. In primary
human skeletal muscle cells, PTK2 silencing increased palmi-
tate oxidation, indicating that FAK functions as an inhibitor of
lipid oxidation. AMPK activity may reduce FAK tyrosine
phosphorylation and FAK activity via several pathways.
AMPK may activate a phosphatase to remove tyrosine phos-
phorylation on FAK. Since both protein phosphatase 2A and

dual-specificity phosphatase (DUSP) are activated by AMPK,
they are natural candidates [44, 45]. The use of a FAK inhib-
itor in glioma cells increases expression of DUSP1 and
DUSP5, suggesting the existence of a negative feedback loop
[46]. Alternatively, AMPK activity may antagonise FAK sig-
nalling by potentiating FAK-related non-kinase competition
for FAK binding partners. AMPK may sequester FAK away
from the cell membrane, thereby preventing its autophosphor-
ylation and activation. This is supported by the fact that
resveratrol-induced AMPK activation leads to cytosolic
localisation of the four-point-one, ezrin, radixin, moesin
(FERM) domain of FAK, which inhibits Y397 autophosphor-
ylation [47]. An AMPK-mediated reduction in FAK activity
may increase lipid oxidation in skeletal muscle and effectively
attenuate cancerous phenotypes in non-muscle tissue.

In conclusion, AMPK activation suppresses FAK tyrosine
phosphorylation in human skeletal muscle. Silencing of the
FAK gene (PTK2) increases lipid oxidation in skeletal muscle.
Collectively, our results implicate an AMPK–FAK relation-
ship in skeletal muscle. While cell-specific differences in the
regulation of FAK due to AMPK activation and insulin sig-
nalling are likely to exist, treatment strategies for metabolic
disorders may be further validated through the study of the
AMPK–FAK relationship in skeletal muscle, hepatic tissue or
adipose tissue. Furthermore, a better understanding of the op-
posing influences of AMPK and insulin signalling on FAK in
other tissues may provide insight into oncogenic processes.
Elucidation of the interaction of AMPK and insulin signalling,
and their roles in FAK regulation, may lead to novel therapeu-
tic strategies for chronic diseases as seemingly disparate as
type 2 diabetes and cancer.
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