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SHORT COMMUNICATION

Genomic diagnostics leading to the identification of
a TFG-ROS1 fusion in a child with possible atypical
meningioma
Maria Rossing a,*,1, Christina Westmose Yde a,1, Astrid Sehested b,
Olga Østrup a, David Scheie c, Volodia Dangouloff-Ros d, Birgit Geoerger e,
Gilles Vassal e, Karsten Nysom b

a Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; b Department of
Paediatrics and Adolescent Medicine, Neuroscience Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark; c Department of Pathology, Neuroscience Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark; d Pediatric Imaging Unit, Hôpital Necker-Enfants Malades, Paris, France; e Department of Paediatrics and
Adolescent Oncology, Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy,
Université Paris-Saclay, Villejuif, France

Meningiomas are rare in children. They are highly complex, harboring unique clinical and patho-
logical characteristics, and many occur in patients with neurofibromatosis type 2. Hereby, we present
a case of a two-year-old boy presented with a diagnostically challenging intraventricular tumor.
It was incompletely resected 6 times over 14 months but kept progressing and was ultimately
deemed unresectable. Histologically, the tumor was initially classified as schwannoma, but ex-
tensive international review concluded it was most likely an atypical meningioma, WHO grade II.
Comprehensive genomic profiling revealed a TFG-ROS1 fusion, suggesting that ROS1-
signaling pathway alterations were driving the tumor growth. In light of this new information, the
possibility of a diagnosis of inflammatory myofibroblastic tumor was considered; however the his-
topathological results were not conclusive. This specific molecular finding allowed the potential
use of precision medicine and the patient was enrolled in the AcSé phase 2 trial with crizotinib
(NCT02034981), leading to a prolonged partial tumor response which is persisting since 14 months.
This case highlights the value of precision cancer medicine in children.
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© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Meningiomas are rare neoplasms in children and adoles-
cents and accounts for <5% of all pediatric brain tumors (1,2).
Meningiomas in children differ from the meningioma in adults;
they have male predominance, variable locations, some-
times cystic components and a poorer prognosis (3–5).
Pediatric meningiomas are associated with genetic predis-

posing syndromes such as neurofibromatosis type 2 (NF-2)
(6,7). The World Health Organization (WHO) histopathologi-
cal classification of meningiomas is the same for children and
adults (8). However, unlike meningiomas in adults, pediatric
meningiomas are highly challenging to diagnose; up to one
third are classified as atypical, and meningeal-based neo-
plasms have a number of differential diagnoses, e.g. sarcoma,
chondroma, leukemic mass, neurocutaneous melanosis and
medulloblastoma (8–10).

Due to recent large-scale sequencing efforts, the biology
of adult meningiomas is currently being unraveled. The genomic
alterations comprise point mutations in NF2, TRAF7, KLF4,
AKT1, SOM, CDKN2A7C, SMARCE1 and TERT, as well
as structural variations, genomic rearrangements and
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epigenetic modifications (11,12). Identification of activating on-
cogenes and the subsequent activation of downstream signaling
pathways enable the use of targeted treatment. An early report
of the implications of specific oncogenic drivers in meningio-
mas revealed an overexpression of ROS1 (c-ros oncogene
1) in more than half of 31 tumors (13). ROS1 is an essential
transmembrane receptor protein tyrosine kinase, regulating
several cellular processes including proliferation, differentia-
tion, apoptosis and cell migration (14). Substantial evidence
supports ROS1 as a key player in many solid tumors, espe-
cially due to ROS1 rearrangements leading to constitutive
activation of the tyrosine kinase (15,16). Crizotinib, a protein
kinase inhibitor originally developed as an ALK inhibitor, is reg-
istered for both ALK and ROS1 gene rearrangements in non-
small cell lung cancer (17). ROS1 displays sequence homology
with the primary structure of ALK and crizotinib is inhibiting
ROS1 phosphorylation at a low nM range, thus supporting the
rationale for crizotinib treatment of tumors driven by ROS1.

Although ROS1 is overexpressed in half of the adult me-
ningiomas, the role of ROS1 in the pathogenesis of meningioma
is still controversial. Furthermore, the mode of action of ROS1
in intracranial tumorigenesis is still not clarified. Neverthe-
less, the finding of a ROS1-fusion in a presumptive pediatric
meningioma indicates the importance of ROS1 and substan-
tiates its role as a treatment target in the era of precision
medicine.

Patient and methods

Patient case

A 21-month-old boy presented with delayed motor develop-
ment since birth, loss of motor function for three months,
hypotonia and increasing head circumference. Magnetic res-
onance imaging (MRI) showed a large intraventricular tumor
measuring 5.5 × 6.5 × 5.5 cm with severe hydrocephalus
(Figure 1a). The tumor was solid and contrast-enhancing. The
tumor was partially resected and histology initially classified
it as cellular schwannoma, WHO grade I. A ventriculoperitoneal
shunt was inserted and the patient received substitution therapy
for pituitary insufficiency (vasopressin, thyroid hormone and
hydrocortisone). Eight and 16 months after the initial tumor
surgery, the tumor was again partially resected due to resid-
ual tumor progression. Six months after the third incomplete
resection, the tumor again progressed on MRI and the boy
started treatment with vinblastine weekly for approximately one
year. During this, the tumor kept progressing and was incom-
pletely resected twice more. Subsequent MRIs showed
continuous slow progression of residual tumors as well as new
lesions occurring within the tumor cavity. Radiotherapy was
considered but found inappropriate due to the very large cen-
trally located supratentorial field. Methylation array testing
suggested the tumor best resembled a subependymal giant
cell astrocytoma (SEGA), but the tumor kept progressing after
three months of everolimus therapy.

Histopathological diagnosis

The tumor was composed of compact sheets of spindled and
focally epithelioid cells (Figure 1b). Vague whorls were en-
countered. The nuclei had delicate chromatin and occasional

pseudo-inclusions. There were foci with lymphoplasmacytic
inflammation and infiltration of brain tissue. Mitoses were few,
although some foci with six mitoses per 10 high power fields
were demonstrated. Foci of tumor necrosis were encoun-
tered. Immunohistochemistry revealed positive staining for
vimentin and patchy staining for S-100 and EMA. Scattered
tumor cells also stained for GFAP and desmin. There was no
staining for cytokeratin, somatostatin receptor 2A, progester-
one receptor, sox10, olig2, map2, transthyretin, synaptophysin,
chromogranin, neu-n, neurofilament, collagen IV, myf4, actin,
SMMS1, IDH1, CD99 and HMB45, and INI1 was normal. Ki67
staining varied between 5 and 12% and electron microsco-
py revealed scattered desmosomes. The histology was similar
in all specimens from the consecutive resections. Several di-
agnoses were considered, including schwannoma and
ependymoma, but results from the 450k methylation analy-
sis were not compatible with meningioma, ependymoma or
schwannoma, suggesting a plausible relation to SEGA. Sub-
sequently, two external histopathological reviewers supported
the most likely diagnosis being atypical meningioma, WHO
grade II. However, recent histopathological revision raised the
possibility of a tentative diagnosis of inflammatory
myofibroblastic tumor (IMT), based on the inflammatory back-
ground, the partially spindled cells, as well as scattered desmin
positivity. Still the widespread S-100 staining was unusual and
not entirely supportive of IMT characteristics.

Genomic profiling of tumor biopsy

DNA and RNA were purified from tumor tissue from the third
resection preserved in RNALater (Life Technologies) using total
AllPrep DNA/RNA purification kit (Qiagen). For whole-exome-
sequencing (WES), DNA libraries were prepared by
fragmentation on Covaris S2 (Agilent) and adaptor ligation using
KAPA HTP Library Preparation Kit. Exomes were enriched with
SureSelectXT Clinical Research Exome kit (Agilent). WES was
performed as paired-end sequencing using the HiSeq2500 plat-
form from Illumina. RNA-sequencing was done using TruSeq
Stranded Total RNA Library Prep Kit, and RNA was se-
quenced on a NextSeq500 (Illumina). Raw sequencing data
from the Illumina sequencing platforms were processed with
CASAVA-1.8.2. Generated fastq files were analyzed in CLC
Biomedical Genomics Workbench (Qiagen) and Ingenuity
Variant Analysis (Qiagen). FusionMap bioinformatics tool (Array
Suite) was used for screening of fusion transcripts (18).

Microarray analysis

CytoScan assay (Affymetrix) was performed on DNA from
fresh-frozen specimen achieved by tumor biopsy, according
to the manufacturer’s instructions. CEL files from CytoScan
assay were imported into NEXUS (BioDiscovery) and used
for the analysis and visualization of copy number aberra-
tions (CNAs) and loss-of-heterogeneity (LOH). CNAs (loss,
gain, biallelic loss or high amplification) and LOH calls for each
sample were confirmed by visual inspection and followed by
manual interpretation of whole genome profiles. In general,
presence of numerical and segmental aberrations was as-
signed for each chromosome. CEL files are available at the
ArrayExpress database under accession numbers E-GEOD-
4780 and E-MTAB-1852. RNA isolated as described above
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was reverse transcribed and used for cRNA synthesis, label-
ing and hybridization with Human Genome U133 Plus 2.0 Array
(Affymetrix) according to the manufacturer standard proto-
col available at www.affymetrix.com. Briefly, the arrays were
washed and stained with phycoerythrin conjugated streptavidin
using the Affymetrix Fluidics Station 450, and the arrays were
scanned in the Affymetrix GeneArray 3000 7G scanner to gen-
erate fluorescent images. Cell intensity files (.CEL files) were
generated in the GeneChip Command Console Software
(AGCC; Affymetrix). Raw intensity .CEL files were prepro-
cessed by quantile normalization, and gene summaries were
extracted via robust multi-array average (19) within the Qlucore

Omics Explorer™ software. Expression values for the genes
were derived as an average of probe set for the particular gene.
Data were randomized using permutation. Difference in the
ROS1 gene expression between the patient sample and the
external data sets was determined by t-test.

Sanger sequencing/primers

The fusion breakpoint was verified by RT-PCR performed using
a forward primer located in exon 5 of TGF (5′-
GGTAGGGAAGAAAAGTCTGC-3′) and a reverse primer
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Figure 1 Diagnosis and comprehensive genomic profile of a pediatric meningioma patient. (a) Initial coronal MRI (T1 weighted se-
quence with intravenous contrast) demonstrating the tumor (5.5 × 6.5 × 5.5 cm) originating in the 3rd ventricle and extending into the
left lateral ventricle, causing hydrocephalus. (b) The tumor was composed of compact sheets of spindled cells. Scattered lympho-
cytes were encountered. (c) Schematic outline of clinical course and comprehensive genomic profiling of tumor sample. Types of
analysis performed on the tumor biopsy as part of the genomic profiling include expression array analysis, RNA-sequencing, 450k
methylation array and SNP analysis and whole-exome-sequencing. IMT*, inflammatory myofibroblastic tumor.
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Figure 2 Identification of TFG:ROS1 fusion. (a) RNA sequencing of a tumor biopsy from the patient revealed a fusion between TFG
(exon 5) and ROS1 (exon 35) resulting from a translocation at chromosomal regions 3p12.2 and 6q22.1. (b) The fusion breakpoint
was validated by RT-PCR using a forward primer located in TGF and a reverse primer located in ROS1 as described in the Patient
and methods section. (c) The resulting RT-PCR product was subjected to Sanger sequencing. (d) Scatter plot showing normalized
expression values of ROS1 transcript in patient sample (violet) and in two independent data sets comprising meningioma. E-GEOD-
4780 is marked yellow and E-MTAB-1852 is marked blue. KD, kinase domain; P, patient sample. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

TFG-ROS1 fusion in a pediatric meningioma 35



located in exon 35 of ROS1 (5′-TCCACTTCCCAGCAAGAGA
CG-3′). The RT-PCR product was sequenced by Sanger se-
quencing using an ABI 3730 DNA Analyzer according to the
manufacturer’s instructions (Applied Biosystems).

Results and discussion

Here we present the case of a 21-month-old boy with a large
intracranial tumor (Figure 1a), that was diagnostically chal-
lenging. Due to the fact that complete tumor resection was
not possible and standard treatment options were exhausted,
recurrent tumor biopsies were subjected to comprehensive
genomic profiling, consisting of exome-sequencing, SNP array,
expression array and RNA-sequencing (Figure 1c). It re-
vealed that the most likely oncogenic driver of this unique
pediatric tumor was a TFG:ROS1 fusion. Analysis of two dif-
ferent tumor specimens, obtained by surgeries two years apart,
identified the same TFG:ROS1 fusion in both samples (data
not shown). The chromosomal rearrangement was identified
between regions 3p12.2 and 6q22.1, causing fusion between
exon 5 of TFG and exon 35 of ROS1 (Figure 2a–c). This is
in line with previous reports on TFG:ROS1 fusions, where
breakpoints were located between exon 4 of TFG and exon
34 or 35 of ROS1, resulting in the expression of a constitu-
tively active ROS1 containing its complete kinase domain
(20,21). Notably, one of the cases described was an 8-year-
old boy diagnosed with treatment-refractory inflammatory
myofibroblastic tumor with a TFG:ROS1 fusion, showing a dra-
matic response to crizotinib (21). We compared ROS1
expression in our tumor sample with a series of online avail-
able expression profiles from adult meningiomas (Figure 2d).
As depicted in the scatter plot, ROS1 was overexpressed in
our tumor sample (p = 0.008; q = 0.08), supporting the as-
sumption that the fusion causes overexpression. This suggests
that ROS1 signaling pathways are activated and drive tumor
proliferation. The fusion identified in our patient does not seem
to be a frequent driver of adult meningiomas; none of the se-
quencing data on meningiomas available online showed a
similar level of overexpression. This leads us to speculate if
the tumor represented an unusual case of IMT and ques-
tioned if the diagnosis of atypical meningioma was correct for
our patient. Perhaps atypical meningiomas in children are a
distinct entity partially resembling histopathological features
of adult meningiomas. Results from WES did not reveal any
additional information regarding specific oncogenic drivers or
actionable target mutations. SNP-array analysis showed no
numeric or segmental alterations. In particular, ALK expres-
sion was not significantly altered, nor were there any mutations
or rearrangements in ALK.

The role of ROS1 in meningioma is complex and only one
report identified ROS1 as being overexpressed in half of a
series of adult meningiomas (13). Recent technical ad-
vances allow a broad comprehensive examination in order to
identify relevant treatment targets in this rare pediatric entity,
which can be crucial for the clinical course. In agreement with
this, a BRAF V600E mutation was identified in a rhabdoid me-
ningioma in a 6-year-old girl, who showed good clinical
response to the BRAF inhibitor dabrafenib (22).

Based on the identification of the fusion transcript in his
tumor, our patient was enrolled in the AcSé crizotinib trial
(NCT02034981) running in France. This is a phase II basket

trial exploring the activity of crizotinib in malignancies with ALK,
ROS or MET alterations, other than ALK+ non-small cell lung
cancer, in children, adolescents and adults with advanced re-
lapsed or refractory disease (23). He has now been treated
with oral—crizotinib (215 mg/m2 twice daily) for 14 months with
an excellent tolerance and one dose reduction after 4 cycles
due to non-symptomatic G3 QTc prolongation. Two months
after starting therapy, MRI showed a partial tumor response
with a residual lesion, which was confirmed on all subse-
quent scans. This case illustrates the rationale of extensive
molecular profiling of very high risk, relapsing or progress-
ing tumors in order to identify genetic alterations driving tumor
growth. Such precision cancer diagnostics enable clinicians
to access and use potentially potent targeted therapy for pa-
tients not cured by current standard therapies.
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