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Abstract. Protoplanetary disks (PPDs) accrete onto their central T Tauri star via magnetic
stresses. When the effect of ambipolar diffusion (AD) is included, and in the presence of a
vertical magnetic field, the disk remains laminar between 1-5 au, and a magnetocentrifugal
disk wind forms that provides an important mechanism for removing angular momentum. We
present global MHD simulations of PPDs that include Ohmic resistivity and AD, where the time-
dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization
with a simplified recombination chemistry. To investigate whether the mass loading of the wind
is potentially affected by the limited vertical extent of our existing simulations, we attempt to
develop a model of a realistic disk atmosphere. To this end, by accounting for stellar irradiation
and diffuse reprocessing of radiation, we aim at improving our models towards more realistic
thermodynamic properties.

1. Introduction

Interpreting observational properties of T Tauri systems [1] is closely tied to understanding
the complex dynamical evolution of gaseous protoplanetary disks (PPDs), both in terms of their
chemistry, and in terms of the microphysics that govern the evolution of the embedded magnetic
fields. Moreover, with PPDs being the birth sites for extrasolar planets, a sound physical picture
of the dust [2] and planetesimal [3] evolution is needed to ultimately provide the building blocks
for a comprehensive theory of planet formation.

The fundamental drivers of disk evolution are mass loss processes and redistribution of angular
momentum [4]. In sufficiently ionized parts of the disk, the latter can be achieved by turbulent
stresses. When accounting for the ionization structure of a typical PPD, large parts of the
disk, however, remain laminar owing to the effect of ambipolar diffusion (AD). In this situation,
angular momentum is primarily transported via a magnetocentrifugal disk wind [5, 6]. While
this picture is further complicated when accounting for the Hall effect [7, 8], it has nevertheless
become clear that the thermal structure of the disk plays an important role in setting the mass
loading of the disk wind [9], and hence the timescale on which the system evolves [10, 11].

2. Methods

As in our previous work [6], we are solving the single-fluid MHD equations including Ohmic
resistivity and ambipolar diffusion, that is, the electromotive force resulting from the mutual
collision of ions and neutrals. The diffusion coefficients, ηO, and ηAD are specified by means of a
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look-up table, which has been obtained by solving a simple chemical ionization/recombination
network. The resulting electromotive forces stemming from the Ohmic and ambipolar diffusion
terms are then given by

EO ≡ −ηO (∇×B) , and (1)

EAD ≡ ηAD

[
(∇×B)× b̂

]
× b̂ , (2)

with b̂ ≡ B/|B| being the unit vector along B, and where the double vector product results in
an additional minus sign, such that positive coefficients ηO and ηAD signify diffusion of magnetic
fields, with the latter only being sensitive to currents perpendicular to the field direction.

For the typical number densities in the context of PPDs, the frictional coupling between the
ions and neutrals happens so quickly (compared to dynamical timescales of interest) that we
assume the charged species move at their terminal velocity with respect to the neutrals, that is,
where the Lorentz force is balanced by the drag. Because of the low degree of ionization,
we formulate our continuity equation and momentum conservation in terms of the neutral
component, although it does experience the Lorentz force as mediated by particle collisions.

We use a modified version of the nirvana-iii finite volume Godunov code [12, 13]. The code
adopts a total-energy formulation1 with conserved variables ρ, ρv, and e ≡ ε + ρv2/2 + B2/2.
Together with the conservation of radiation energy, ER, and defining the total pressure, p?, as
the sum of the gas and magnetic pressures, the system of equations we solve reads

∂tρ+∇·(ρv) = 0 , (3)

∂t(ρv) +∇·
[
ρvv + p?I −BB

]
= −ρ∇Φ + ρκR/cFR , (4)

∂te+∇·
[
(e+ p?)v − (v·B)B

]
= ∇ ·

[
(EO+EAD)×B

]
− ρ(∇Φ)·v

+ c ρκP

(
ER − aR T

4
)

+ ρκR/cFR ·v +Q+
irr , (5)

∂tER +∇·(ERv) = − c ρκP

(
ER − aR T

4
)
−∇·FR − PR :∇v , (6)

∂tB−∇×
[
v×B + EO + EAD

]
= 0 , (7)

where FR is the radiation flux, PR is the radiation pressure tensor, κR and κP are the
Rosseland and Planck mean opacities, respectively, aR ≡ 4σ/c is the radiation density constant,
T ≡ µ̄mH/kB p/ρ is the gas temperature, and the gas pressure is p = (γ − 1)ε, where γ = 7/5
is chosen as appropriate for an ideal diatomic gas. The gravitational term Φ(r) ≡ −GM�/r
represents the point-mass potential of the solar-mass star at the center of our spherical-polar
coordinate system, and Q+

irr represents external irradiation heating due to the star.

2.1. Flux limited diffusion

The above equations can only be solved once the radiation flux and pressure tensor are specified.
An attractive method for obtaining the Eddington tensor that relates PR with ER is to solve
for the steady-state but angle-dependent radiation intensity and integrate the first (for FR) and
second (for PR) order moments directly [14]. In the interest of maintaining minimum algorithmic
complexity and computational expense, we instead adopt the classical ad hoc closure

FR = −λ(R)
c

ρκR
∇ER , (8)

1 Note that we do not include the radiation energy density, ER, in the total energy (as it is sub-dominant in the
problem we consider). We however retain the radiation flux in the momentum equation for consistency.
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that specifies FR in terms of a diffusive flux with diffusion coefficient D ≡ λ(R)c/ρκR, where

R ≡ |∇ER|
ρκR〈ER〉

(9)

is a dimensionless number specifying how abruptly the radiation energy density varies compared
to the length scale defined by the optical extinction coefficient ρκR, and where λ(R)→ 1/R (for
R � 1) is a limiter function [15] that guarantees |FR| < cER in regions of low optical depth,
that is, in regions where the diffusion approximation is not valid. In the optically thick limit,
λ(R)→ 1/3 (for R� 1), which corresponds to the Eddington approximation.

The described approach has its known shortcomings over characteristics-based methods [14],
but in combination with stellar irradiation heating (determined using a simplified ray tracing
algorithm) it has been deemed an acceptable compromise [16, 17, 18] in terms of being able to
incorporate radiation thermodynamics in fully dynamical 3D simulations, whereas more accurate
Monte Carlo methods are comparatively expensive and have to deal with statistical noise [19].

We currently treat both irradiation and diffuse redistribution in the gray approximation,
but multigroup approaches are straightforward [20], especially for the irradiation component
[17, 18], wherein computational expenditure scales with the number of frequency bins, and
where increased realism can be achieved for the thermal structure of the outer disk (R∼> 20 au).
For our PPD model, we precompute look-up tables for mean opacities, κR(ρ, T ) and κP(ρ, T ),
using D. Semenov’s opacity.f [21], where a fixed dust-to-gas mass ratio of 0.01395 is assumed.
To account for depletion of small dust by grain growth, we enable the reduction of the obtained
opacities by a scale factor. Since the opacity tables combine contributions from dust grains and
gas molecules, this is only valid for temperatures below the dust sublimation threshold.

2.2. Reduced speed of light approximation

The thermodynamic coupling of the gaseous matter with the radiation field is described by the
c ρκP

(
ER − aR T

4
)

terms in eqns. (5) and (6), respectively. Subsuming the −∇ · FR term in
eqn. (6) with the definition of the diffusive flux (8) amounts to a diffusion equation for the
redistribution of radiation energy. Both effects can be combined into the subsystem

∂tε = + c ρκP

(
ER − aR T

4
)
, (10)

c

ĉ
∂tER = − c ρκP

(
ER − aR T

4
)

+∇·
[
D∇ER

]
, (11)

which we solve by means of operator splitting. Unlike in ref. [18], we do not include the PR :∇v
term in this subsystem but instead treat it as a regular source term when updating the main
hyperbolic system of equations. Since, for a large diffusion coefficient D, the parabolic system
(11) becomes stiff, the most common approach is to use implicit methods to solve it. Especially
in view of applications employing adaptive mesh refinement, we have chosen to avoid an implicit
update for∇·(D∇ER), as it demands costly non-local communication patterns, and a potentially
expensive matrix inversion.

Instead, we integrate the diffusion part of (11) in a time-explicit fashion, and use the reduced
speed of light approach [22] to ameliorate the strict time-step constraints. This method has
recently been employed in the context of simulations of the interstellar medium [23]. The
approximation is valid as long as the radiative timescales resulting from the adopted artificial
value of ĉ = φ c (with φ = const.< 1) are still short compared to any relevant dynamical
timescales. In the context of PPDs, we are mainly interested in the role of radiative effects
in setting the consistent temperature structure of the disk, and true radiation hydrodynamic
effects are believed to only be of minor importance during the T Tauri phase [24].
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The approximation is introduced by amplifying the left-hand-side of (11) by a factor of c/ĉ >1.
It is crucial that, because all other terms remain unaffected, this implies the modification does
not alter the late-time steady-state solution, where ∂t → 0, but only changes the timescale on
which this solution is achieved. On practical grounds, we multiply (11) by ĉ/c, which implies
replacing c for ĉ in the radiation matter coupling, and attenuating the diffusion term by a factor
of φ. This illustrates how the method works to weaken the stiffness of the diffusion term. To
explicitly integrate (11), we employ the second-order accurate Runge-Kutta-Legendre (RKL2)
super-time-stepping scheme [25], that is already used for the updates of the other parabolic
terms (such as, viscosity, thermal conduction, resistive and ambipolar diffusion) in the code.

2.3. Radiation matter coupling

Even with the reduced speed, ĉ = φ c, the radiation-matter-coupling term ĉ ρκP

(
ER − aR T

4
)

can itself contribute a severe timestep constraint in regions of high opacity, where the coupling
becomes stiff. Ignoring, for the moment, the diffusion term in (11), the coupling amounts to an
ordinary differential equation, similar to production/destruction equations that are common in
other fields of science. While these are typically solved by explicit Runge-Kutta (RK) methods,
higher order predictor/corrector schemes do not typically guarantee positivity or conservation
of, in our case, the energy ē ≡ (φ ε+ ER).

There however exists a class of modified RK methods [26] that employ the so-called Patankar
trick – an implicit weighting of the production/destruction terms with the ratio of the evolved
quantity before and after the update. It can be shown that for a single-step update, such a
weighting precludes that negative values are obtained. Moreover, since the weighting factors
are overall symmetric, conservation is guaranteed. Specifically, we use the MPRK scheme given
by eqn. (27) in ref. [26]. The resulting update is formally implicit, but can algebraically be
manipulated into fully explicit form, that is,

∆e ≡ ε(n+1) − ε(n)

≡
(
E

(n)
R − E(n+1)

R

)
φ−1 =

E
(n)
R −

(
aR T

4
)(n)

φ+ (aR T 4)(n) /ε(n) + (cρκP∆t)−1
, (12)

for the predictor step, and

∆e =
E?R ε

†E
(n)
R −

(
aR T

4
)?
E†Rε

(n)

φE?Rε
† + (aR T 4)?E†R + E†Rε

† (cρκP∆t)−1
, (13)

for the corrector step, where ε† ≡ ε(n) + ∆e is the forward-Euler predictor value of ε(n+1), and
ε? ≡ 0.5 (ε(n) + ε†) is the time-averaged state.2 Compared to implicit methods, that demand
iterative root-finding, or so-called θ-schemes (see, e.g., section 3.4 in ref. [23]) the method
presented here offers a relatively inexpensive, parameter-free non-iterative alternative.

2.4. Irradiation heating

Our existing global disk models [27, 28] have either assumed a locally-isothermal temperature
T = T (R), with R being the cylindrical radius from the star, or have used an adiabatic equation
of state with a Newtonian cooling term in the energy equation that reinstated the T (R) profile
on a specified timescale (typically a short fraction of the local orbital period).

Compared to this, even relatively basic models [29] of dust absorption and re-radiation of star
light in the disk surface, obtain a much more complex temperature structure within the PPD

2 The same conventions, of course, apply for the terms (aR T 4), and ER.
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– with superheated surface layers and cool interiors. To account for such effects, we include a
frequency-integrated radially attenuated irradiation flux

FR,irr(r) = F (r?)
(r?
r

)2
exp (−τP(r)) r̂ (14)

from the central star with effective temperature T? = 5780 K, and r? = r�, and where the optical
depth, τP(r) ≡

∫ r
r?
ρ(r′)κP(ρ, T?) dr′ is obtained by integrating along radial rays. Following

previous work [16, 17, 18], we obtain the irradiation energy source term Q+
irr by computing the

negative divergence of (14) over each grid cell. In regions of low optical depth, we use the integral
formulation

Q+
irr(ri) =

ρκP

∆Vr

∫ ri+1/2

ri−1/2

r̂·FR,irr(r
′) r′2dr′ , (15)

with ∆Vr = 1/3 (r3
i+1/2− r

3
i−1/2) instead, as this formulation has been found to produce a more

accurate solution on the discretized mesh, when differences across cells are small [30].

3. Results

3.1. Radiative transfer test problems

To verify our implementation of the radiation-matter-coupling term, we have performed a simple
one-zone model [31], where the thermal energy density, ε, is initially out of balance with the
radiation energy density ER = 1012 erg cm−3. In Fig. 1, we show three cases with ε0 = 102, 106,
and 1010 erg cm−3, which all converge to the same final equilibrium state. For the purpose of
plotting the curves, we have limited the timestep artificially to sample timescales shorter than
the radiative equilibration timescale. We have, however, tested that even for numerical time
steps somewhat larger than the coupling timescale the scheme remains stable, as expected from
the implicit-like integration scheme (see sect. 2.3) that we use.

Figure 1. A simple sin-
gle zone radiation matter
coupling test, with κP =
0.4 cm2 g−1, µ̄ = 0.6, γ =
5/3, and ρ = 10−7 g cm−3.

A standard test case for assessing the interplay of the radiation-matter-coupling with the
radiation diffusion are radiative shocks, for which there exist semi-analytic solutions in simplified
situations [32]. In Fig. 2, we plot the solution of the Ma = 2 case from ref. [32], using n = 128
grid cells in the x direction, as well as two levels of adaptive mesh refinement (triggered by
gradients in the thermal energy, ε), which are shown as gray shaded areas in the plot. As seen in



6

1234567890

ASTRONUM 2016  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 837 (2017) 012008  doi :10.1088/1742-6596/837/1/012008

the lower panel of Fig. 2, apart from the shock location (which has been shifted by xoffs = 22.5 cm
with respect to the semi-analytic solution), all quantities agree to within h accuracy. We have
also successfully performed the harder Ma = 5 test, which we omit here for brevity. An excellent
description of the radiative shock test, including the precise values used for initial conditions,
can be found in sect. 4.4 of ref. [18].

Figure 2. Radiative
shock with Ma = 2 and
resolution n = 128 +2
levels of adaptive mesh
refinement (shaded ar-
eas). Upper panel: Pro-
files of ρgas (blue), Tgas

(red), and Trad (yellow).
Lower panel: deviation
from the semi-analytic
solution (black).

3.2. Preliminary global MHD simulations with irradiation

Returning to the original motivation for implementing radiative physics in our modified
version of the nirvana-iii code, we conclude by presenting a preliminary snapshot of a global
axisymmetric protoplanetary disk simulation including Ohmic resistivity, ambipolar diffusion,
radiation diffusion, and stellar irradiation. The ultimate goal of these simulations is to study
how the mass-loading of the magnetocentrifugal wind depends on the disk thermal structure.

As a simple proof-of-concept, we present a close-up of the inner disk in a simulation covering
seven (initial) pressure scale heights in latitude (see Fig. 3). The basic disk setup is very
similar to the one used in ref. [6], and we have additionally used opacities that correspond to
a dust-depletion of a factor of ten compared to the typical interstellar abundance. Similar to
our previous simulations, the magnetic field lines (white) bend outward, and in the upper disk
layers, where the matter is sufficiently coupled to the magnetic field, a magnetocentrifugal disk
wind ensues (black vectors).

Iso-contour lines (gray) of the radiation temperature Trad ≡ E
1/4
R a

−1/4
R illustrate the disk’s

thermal structure that deviates noticeably from the constant-on-cylinders radial temperature
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Figure 3. Detail from a proof-of-concept global MHD simulation of a PPD with ambipolar
diffusion, radiative transfer and stellar irradiation, showing B̄φ (colour), poloidal velocity (black)
and magnetic field lines (white), and iso-contours of the radiation temperature (grey).

profile T = T (R), that we have assumed previously. The presented preliminary run used a
reduced-speed-of-light factor φ = 10−4. Further tests will show whether the chosen time-explicit
framework is powerful and efficient enough to be of use in realistic situations.
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