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Abstract: The performance of X-ray and neutron grating interferometers is characterised by
their visibility, which is a measure for the maximum achievable contrast. In this study we
show how the real grating geometry in a grating interferometer with three gratings impacts the
interference and self projection that leads to visibility in the first place. We quantify the individual
contributions of wavelength distributions and grating shapes in terms of visibility reduction by
determining the absolute as well as relative effect of each contribution. The understanding of the
impact of changed geometry and wavelength distributions on the interference of neutrons/X-rays
allows us to present the first fully quantitative model of a grating interferometer setup. We
demonstrate the capability of the simulation framework by building a model of the neutron
grating interferometer at the ICON beamline and directly comparing simulated and measured
visibility values. The general nature of the model makes it possible to extend it to any given
grating interferometer for both X-rays and neutrons.

c© 2017 Optical Society of America

OCIS codes: (050.1950) Diffraction gratings; (100.3175) Interferometric imaging; (070.7345) Wave propagation.
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1. Introduction

The multimodal imaging technique grating interferometry is an increasingly popular method
for both X-rays and neutrons. It provides images based on the wavelike nature of the particle
beam used to conduct the measurement. For X-ray grating interferometry (xGI) the particles are
photons and in case of neutron grating interferometry (nGI) neutrons are used to generate images.
In any case grating interferometry provides three images with different information content. One
is the transmission image (TI), which holds information on attenuation. The second one is the
differential phase contrast image (DPCI). It images the phase shift gradient which acts on the
particle wave while passing through the sample. The third signal is the so called dark-field image
(DFI), which results from the scattering properties of the sample for very small angles [1]. The
feasability as well as numerous applications have been presented, both with X-rays [2, 3] and
with neutrons [4–7].

Any of the resulting signals are a consequence of interference of the incoming beam, after
traversing a phase grating. The periodic structure of the diffraction grating creates an interference
pattern which projects the structure of the grating at the so called Talbot distance. These effects
are a direct result of interference. This means that to understand the behaviour of grating
interferometers the beam has to be treated as a wave no matter if the beam is made of photons or
massive particles, such as neutrons, which are often simulated as particles [8, 9]. The particle
wave duality has been proposed a long time ago [10] and manifests itself in the deBroglie
equation that assigns a wavelength to massive particles. Thus neutrons can be considered a wave
and wave optical descriptions of interference effects can be used to understand the nGI [11] as
well as the xGI.

Previous work on simulating grating interferometers was driven by its application for syn-
chrotrons and X-ray tube sources. The key feature that most work was concerned with is the
spectral distribution of the X-ray tube source and its impact on the performance of the grating
interferometer [12–14] or even the actual simulation of images [15]. Tube sources emit a large
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range of energies and the understanding of the impact of spectral distributions on the visibility
is often driven by increasing the setup performance and thus lowering the dose for patients in
medical applications. However no study included the real geometry of the gratings and it was
thus not possible to simulate the absolute value of the visibility for a specific setup [16, 17]. The
microfabrication process for the gratings leaves imperfect grating geometries, which is most
important when it comes to gratings with fairly small pitches, such as the G2 grating in nGIs,
which has a typical period of around 4 µm.

We present a simulation framework that includes, besides the spectral distribution of the
incoming beam, the real geometry of the gratings used in a grating interferometer. Unlike Haas
et al. [18] we also consider the imperfect height distribution and trench shape of the gratings
and are thus able to get results that are directly comparable to measured values without the need
to fit any initial values, thus indicating a physically feasible model of the setup. We present the
first simulation of a neutron grating interferometer by building a model of the nGI at the ICON
beamline at the Paul Scherrer Institut (PSI) to show the potential of the simulation framework.
Furthermore we compare different imaging procedures, as well as sets of gratings and use
the fully quantitative model to extract the individual contributions that are responsible for the
performance of the nGI at ICON.

2. Experimental setup and simulation parameters

The experiments presented in this work were conducted at the Swiss Spallation Neutron Source
(SINQ) at the Paul-Scherrer-Institut (PSI) using the ICON [19] facility for imaging with cold
neutrons. It consists of three gratings G0, G1 and G2, as indicated in the inlet of Fig. 1a. The
absorption grating G0 is made of gadolinium (Gd) and acts as a source grating by introducing
the required spatial coherence to the beam. The second grating (G1) is a so called phase grating
made of silicon (Si) and is designed such that it introduces a periodic π-phase modulation to the
beam and thus creates the interference patterns required for grating interferometer measurements.
The desired phase shift (Φ) is defined by the structure height of the grating, which is described
by

Φ = nSLD · λ · h, (1)

with the neutron scattering length density of the material nSLD the wavelength λ and the height
of the structure h.

The third grating (G2) is another absorption grating made of gadolinium, which represents the
period of the self-projection of G1 as a consequence of the Talbot effect. This grating is needed
because the period of the self projection is below the detector resolution and by introducing a
G2 grating a spatial stepping of one grating can be used to transfer the self projection into an
intensity oscillation in each pixel of the detector. The ideal grating parameters are determined
using the equations in [20] leading to a set of gratings with following specifications:

• G0: Period p0 = 1076µm, duty cycle DC = 0.4, material Gd, height 20µm

• G1: Period p1 = 7.97µm, duty cycle DC = 0.5, material Si, height 37µm

• G2: Period p1 = 4µm, duty cycle DC = 0.5, material Gd, height 8µm

and a distance of 5.23 m between G0 and G1 and 19.4 mm between G1 and G2.
The neutrons were detected using a standard 6LiF/ZnS scintillator with a thickness of 200 µm

coupled to an Andor Neo sCMOS camera with 2160 x 2560 pixels and a pixel size of 6.5 µm.
In order to retrieve the visibility values we stepped the G0 grating in 17 steps over one period
with an exposure time of 30s per step and recorded the images with a 4x4 binning. In order to
compensate for detector noise we applied a dark-current correction.
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Fig. 1. Grating geometries and spectral distributions for neutron grating interferometry.
a) Examples of neutron energy distributions considered in the presented work. The inlet
shows the setup with the three gratings (G0, G1, G2) and the position of the wavelength
selecting device between G0 and G1, indicated with λ. b) Optical image of the G0 grating
(top view) made of gadolinium (Gd). The arrows indicate gadolinium trenches (Gd) and the
gaps between them (air). The plot below the image shows how its properties are considered
in the presented simulation. c), d) Scanning electron microscopy images of G1 and G2 and
the according representation in the simulation, including the parameters needed to define
the structures.

The model we developed in this work takes a variety of different aspects of real grating
interferometers into account to describe the real geometry of the fabricated gratings as close as
possible. Fig. 1 shows an overview of the experimental setup, as well as the multitude of input
parameters that is given to the simulation. Fig. 1a depicts a schematic representation of the three
grating setup, including G0, G1 and G2. In our setup we place the velocity selector, indicated by
λ, between G0 and G1. Fig. 1a also shows three normalised neutron wavelength spectra used

                                                                                               Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1022 



during the simulations and measurements:

• White beam: Full ICON spectrum

• Be-filter: Beryllium filtered ICON spectrum, cut-off ≥ 4Å

• Velocity selector: Monochromatic beam with ∆λλ = 15%.

These are a representative subset of the spectra being used for both simulation and experiment.
Fig. 1b shows an optical image of the G0 grating, Fig. 1c a scanning electron microscopy (SEM)
image of G1 and Fig. 1d an SEM image of G2. It can be seen directly, that the real geometries
deviate from the ideally proposed grating parameters. In the following section we will show how
the grating properties as well as their real geometry are defined in our simulation.

Defining G0

G0 is an absorption grating made of gadolinium (Gd), for highest possible neutron absorption.
The absorption properties are calculated from the thickness of the Gd layers with

T (λ) =
1

e
d
al

. (2)

The wavelength (λ) dependent transmission is a consequence of the thickness (d) and the
attenuation length (al ), which is defined as λd

λ · ald with ald being the penetration depth of Gd
at a neutron wavelength of 4.1Å (ald = 2.92 µm). The absorption is defined relative to the design
wavelength (λd) of the setup, which allows us to incorporate the strongly wavelength dependent
neutron absorption over the whole spectrum used to record images.

The geometry of G0 is assumed to be perfect, because the large period of the grating makes it
possible to use laser ablation with high precision for manufacturing. Thus the parameters that
describe the G0 geometry as indicated in Fig. 1b are hG0 = 20 µm and DCG0 = 0.4.

Defining G1

G1 is a phase grating that is used to introduce well defined phase shifts into the beam. The
realistic geometry of G1 can be described by specifying the grating width on top and on the
bottom and then interpolate between them. This truncated shape is chosen to represent the
under-etching which is a classical artefact when it comes to the production of high aspect ratio
structures using chemical wet etching [20]. As shown in Fig. 1c the top part of the trenches of the
G1 are 3.644 µm wide and the bottom part 4.032 µm. In the simulation software we represented
this as a step wise approximation of over 100 steps from the top of the structure (duty cycle 0.45)
down to the bottom of the structure with the design duty cycle of 0.5.

We defined the grating with the relative phase shift (Φ) the neutrons get by passing through
the structure. The desired π-shift at the design wavelength of 4.1Å is achieved at a height of
37 µm. In analogy to the absorption properties of G0 we defined the phase shift of G1 relative to
the phase shift at the design wavelength:

Φl =
λd
λ
· Φideal . (3)

Φideal is the designed phase shift, λd the design wavelength and λ the evaluated wavelength.
That way the G1 grating is defined by the energy dependent phase shift (Φl ) it introduces on the
incoming beam.

Despite the relatively small imperfections of G1 its impact on the emerging interference pattern
is quite severe, as we show in Fig. 2. The top left shows the parameters used for the geometry
variation and the top right indicates the values used for a perfect geometry representation and
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a real geometry representation. One can see that the only difference is the duty cycle at the
top of the structure (DC t

G1) that varies slightly. However looking at the bottom of Fig. 2 it is
clearly visible how this slight imperfection changes the Talbot carpet from the perfect to the
real geometry. Especially the line scans present extra features that are not existent in the perfect
geometry. We will later quantify the influence of this effect on the visibility.

Defining G2

The last grating is G2 with the relatively small period of 4 µm which makes its fabrication very
challenging and thus leads to a quite imperfect shape, which we approximated with a four-step
structure.

The bottom right of Fig. 1d shows both the real G2 structure and the model. The model
is defined by four different heights (h1

G2 = 8.4 µm, h2
G2 = 3.5 µm, h3

G2 = 6.25 µm and h4
G2 =

2.3 µm), which represent the Gd height in the real structure reasonably well. Each height has a
different duty cycle assigned: DC t

G2 = 0.94, DCm1
G2 = 0.89, DCm2

G2 = 0.89 and DCb
G2 = 0.78. A

comparison of real and modelled structure height is indicated with the red area. The left part of
each trench in the grating has a higher structure due to the fabrication process which deposits Gd
sideways [20]. This behaviour is modelled with a step-wise approximation.

Defining spectral distribution

The last thing that is left to be described by the simulation framework is the realistic representation
of the incoming neutron spectrum. We achieved this by using the real measured spectrum and
spline interpolate between the measured points. While this is directly achievable for white beam
and beryllium filtered spectra it is challenging to describe the effect of the velocity selector
for varying wavelengths. We implemented the velocity selector via its relative behaviour to
the spectrum at 4.1Å and shifted the spectrum to the desired wavelength while keeping the
wavelength resolution of ∆λλ = 15% constant. This way we were able to extrapolate a measured
spectrum at 4.1 Å to spectra at 3, 3.5, 4.5, 5 and 6 Å with the real behaviour of the velocity
selector according to its specifications.

3. Simulation

The simulation results of the setup presented in this work are based on a well established wave-
optics simulation approach that is commonly used in qualitatively simulating X-ray grating
interferometers [12–15] and was adapted to simulate the nGI setup at ICON. Its fundamental
idea is to define an incoming wave front at G1 (DG1(y)) and propagate it using a free space
propagator (Preal (y, d , λ)) based on Fresnel interference to the fractional Talbot distance. This
can be written as a convolution of both:

D@dt (y, d , λ) = DG1(y) ∗ Preal (y, d , λ). (4)

The result is a wave function (D@dt (y, d , λ)) at the fractional Talbot distance (dt ). The convolu-
tion in eq. 4 is done in Fourier space, thus applying the free-space propagator in Fourier space
(P(Y, d , λ)) to the Fourier transform of DG1(y):

F (D@dt (y, d , λ)) = F (DG1(y)) · P(Y, d , λ). (5)

P(Y, d , λ) is defined as:
P(Y, d , λ) = e−iπλdY

2
, (6)

with λ being the wavelength, d the distance and y the spatial coordinate. Y is the representation
of y in Fourier space. After this operation an inverse Fourier transform brings the wavefunction
back to real space.

                                                                                               Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1024 



Fig. 2. The impact of slight imperfections in G1 on the Talbot carpet. a): Schematic of the
geometrical parameters. b): Geometrical parameters for perfect and real geometry. c),d):
Calculated Talbot carpets for both geometries up to the fifth fractional Talbot distance at 4.1
Å. The linescans show the intensity distribution at the first fractional Talbot distance and are
plotted as a function of multiple of the G1 period (p1).

For the evaluation of the visibility D@dt (y, d , λ) is convoluted with the absorption properties
of the grating G2 (G2(y))

Deval
G2 (y, d , λ) = D@dt (y, d , λ) ∗ G2(y), (7)

resulting in Deval
G2 (y, d , λ) which represents the intensity distribution at the detector in case of a

perfectly uniform and parallel beam. In reality we use a G0 absorption grating to create an array
of line sources. To simulate this effect we convolute Deval

G2 (y, d , λ) with the projection of the
absorption properties of G0 (G0(y)),

Deval (y, d , λ) = Deval
G2 (y, d , λ) ∗ G0(y), (8)

to simulate the real intensity distribution at the detector (Deval (y, d , λ)).
Deval (y, d , λ) can then be analysed to retrieve the visibility (contrast) of the grating setup.

This is done by determining the amplitude of the sinusoidal shaped Deval (y, d , λ) function such
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that the visibility (V ) can be retrieved:

V (y, d , λ) =
max(Deval (y, d , λ)) − min(Deval (y, d , λ))
max(Deval (y, d , λ)) + min(Deval (y, d , λ))

. (9)

The visibility is a direct indication for the performance of a grating interferometer and is
usually highest at the design wavelength of the system. However a variety of different spectral
distributions are possible, such as velocity selector, Be-filter or white beam. We can only create
a fully quantitative model description of the nGI when the spectral distribution is considered
together with geometrical imperfections due to the grating fabrication.

As one can see in eq. 6 P(Y, d , λ) depends on the selected wavelength. In order to incorporate
wavelength distributions we weight the wavelength according to the relative intensity in the
spectrum. This way we can include any spectrum, such as white beam, or energy selected
wavelength distributions. The desired wavelengths were experimentally selected with a turbine
velocity selector between G0 and G1. The wavelength resolution of ∆λλ ∼ 15% is a good
compromise between flux and energy resolution.

4. Results

The complete simulation model, including the grating geometry and the spectral distribution, can
be used to directly simulate the performance of the nGI at ICON and compare the absolute values
as well as the behaviour with varying setup parameters directly to experimentally determined
visibilities. Fig. 3 shows the direct comparison of measurement and simulation. The error bars
for the measured values are the standard deviation of extracted visibility within the field of view.
The field of view from which the data were extracted in each measurement is indicated by the red
box on the visibility map in the inlet of Fig.3. The whole grating area was used for the visibility
extraction, leaving only area without gratings outside of the red box.

Visibility simulation for different measurement conditions

A total of nine comparisons between experiment and simulation have been performed, as can be
seen in Fig. 3. The setup for the first eight comparisons has a design wavelength of 4.1 Å. The
simulation validation for this configuration is indicated by the green box. As mentioned before
the wavelength selection was accomplished with a velocity selector with a wavelength resolution
of ∆λλ ∼ 15%. For the other wavelength selections the velocity selector was set to the according
wavelength. In terms of simulating the visibility for wavelength variations we kept the simulation
model the same except for the varying spectrum that we shifted towards the desired wavelength
while keeping the velocity selector performance constant. The comparison of experiments and
simulation for the velocity selector measurements indicate that we can describe the wavelength
behaviour of the visibility quantitatively and can also predict the visibility with high accuracy
for wavelengths other than the design wavelength of the setup.

Grating interferometers are sometimes used with broader spectra, such as white beam or
Be-filtered neutron beams. In order to check if the simulation framework can handle wide ranges
of energy distribution accurately we compared measurements and simulation for the complete
white beam spectrum of ICON as well as the Be-filtered spectrum. The simulation is capable
of describing the effect of broad wavelength distributions as can be seen in Fig. 3. The reason
for the increased visibility of the Be-filtered spectrum over the white beam is that the Be-filter
removes neutrons with wavelengths below 4 Å. As can be seen in eq. 2 the transmission is highly
wavelength dependent and smaller wavelengths are less absorbed and thus do not contribute as
much to the visibility as longer wavelengths neutrons.

Besides the variation in wavelength distribution we also checked the robustness of the simula-
tion for changes in hardware. For that a setup in the third fractional Talbot distance was used that
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Fig. 3. Comparison of experimental and simulated visibility values for varying measurement
conditions. The top six values are monochromatically recorded visibilities, including the
design wavelength of the setup 4.1 Å. A velocity selector is used to vary the neutron
wavelength. The white beam and Be-filtered spectra are the full spectrum of the beamline
and the full spectrum with a cut-off at 4 Å keeping only the larger wavelengths. The inlet
shows a visibility map with the area of extracted visibility indicated as a red box. The
measured as well as the simulated values can be found in the table on the bottom of the
figure.

has different grating characteristics. It includes G0 and G1 gratings with different periods than
for the first fractional Talbot distance. We also varied the duty cycle of G0 and measured with a
duty cycle of 0.5. This impacts the coherence of the beam, which is determined by the G0 size.
As can be seen in Fig. 3 the simulation framework handles the changes in beam coherence very
well and is capable of describing the third fractional Talbot distance setup accurately.

All in all the simulation is capable of describing the visibility changes for both spectral
and geometrical variation. Most notably the variation in setup geometry is remarkably well
represented, which gives us confidence in the physically correct implementation of the real
setup. The quantitative nature of the simulation model presented here is purely based on the
real geometry of the gratings and the measured spectra of the beamline. It makes it possible to
separate the individual contributions to reduced visibility and to quantify the individual impact
on the performance.

Individual contribution to reduced visibility

Three individual contributions to reduced visibility are identified, which are spectral distribution,
geometry of G1 and geometry of G2. All of those contribute to the reduced visibility differently,
as illustrated in Fig. 4. The theoretical limit for the maximum possible visibility with the setup
designed for ICON is 0.6, represented by the green colour. The maximum possible visibility of
0.6 is a consequence of the beam coherence that is dominated by the G0 duty cycle of 0.4. This
behaviour is visible in the simulation with perfect grating geometries, as well as by calculating
the maximum possible visibility using the equations in [13].

We quantify the individual contributions to a reduced visibility by following the matrix on the
top right in Fig. 4. First we determine the visibility for an ideal setup, then we include the real
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Fig. 4. Step wise consideration of different real effects to decreased visibility. The impact
of real geometries of G1 and G2 as well as the energy resolution of the velocity selector
can be judged individually by the relative decrease in visibility attributed to each feature.
The bar plot visualises the different contributions for white beam measurements as well as
measurements at the design wavelength of 4.1 Å, selected with a velocity selector. The table
on the bottom shows the absolute and relative contributions of the individual simulation
setups as indicated in the simulation scheme on the top right.

geometry of G1, then the real wavelength distribution and then the real geometry of G2. This
procedure was done for a white beam (WB) simulation, as well as for the design wavelength
selected with the velocity selector (VS). The individual contributions vary depending on the
spectrum used.

Both simulations show the same behaviour for an ideal setup and result in a simulated visibility
of 0.6. Also the inclusion of the ideal G1 geometry shows the same behaviour, as the spectrum is
not considered yet. The simulated visibility drops by 1% to 0.594. Once we take the real spectral
distribution into account the behaviours of WB and VS measurements vary significantly with
a relative decrease of -71% for the WB simulation and -2% for the VS simulation. Thus after
the consideration of the real G1 geometry and the real spectral distribution we get a simulated
visibility of 0.17 for WB and 0.581 for VS. The last contributor to decreased visibility is the real
geometry of G2 which introduces another 15% drop for WB and a 39% drop for VS. Thus the
major contributors to a decrease in visibility is either the spectrum (WB) or the geometry of G2
(VS).

This shows, that if the performance of nGIs was to be improved there are two things to consider.
If the main application of the setup is to measure with white beam, then the geometry of the
gratings is sufficient as the energy distribution is the main contribution to a reduced visibility. The
setup at ICON is close to the best possible performance it can reach with white beam. However
if mostly images with a velocity selector are recorded, then the geometry of G2 is the major
contributor to a reduced visibility and the influence of the velocity selector is relatively small.
Thus grating fabrication has to be improved to increase visibility. Surprisingly the imperfection
of G1 is not contributing much to the decrease of visibility, despite its strong impact on the
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Talbot carpet, as shown in Fig. 2.

5. Conclusion

The approach presented in this work does not only hold for the nGI at ICON, but is a framework
for all grating interferometer setups, including X-ray experiments as well as other neutron beam-
lines. We can use the simulation framework to evaluate the feasibility to do grating interferometry
at different beamlines and predict the expected performance. One example is the BOA beamline
at PSI [21], which has a colder spectrum than ICON. Our simulation predicts excellent perfor-
mance of the nGI at BOA with a visibility of around 22 % with a white beam, compared to 14.5
% at ICON. Thermal beamlines however are putting different requirements on the gratings, as the
higher neutron energy demands a greater thickness of Gd for absorption, otherwise the visibility
is decreased. Our simulation predicts a visibility of merely 5.3 % if we would put the ICON
nGI setup simulated here to the thermal beamline NEUTRA. This is comparable to high energy
X-ray grating interferometers [17, 22]. The visibility could potentially be improved by designing
dedicated grating interferometers for thermal neutron beamlines. The completely quantitative
modelling approach we used in this work does not only allow the performance evaluation for
different beamlines, but can also be used to design new grating interferometers at higher Talbot
orders or varying phase shift. Also the performance of X-ray grating interferometers could be
included. Here the identification of the contributions to the loss in visibility can be important
to further increase the contrast. Finally, the generality of the modelling framework allows us to
quantify performances before building actual devices, thus making it possible to dream up new
designs and test them right away without depending on a real experimental setup.
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