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CROSSTALK
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shuttle coupling neuronal
activity to glucose utilisation
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In 1993, Dringen et al. concluded that
‘glycogen in astrocytes can be considered
as a store for lactate rather than for
glucose’, and suggested that lactate derived
from the breakdown of glycogen in
astrocytes may serve the energetic needs
of neighbouring cells. The following year,
Pellerin and Magistretti (1994) published
their now famed astrocyte-to-neuron lactate
shuttle hypothesis in which the trans-
fer of lactate from astrocytes to neurons,
in this case derived from extracellular
glucose rather than glycogen, is coupled
to uptake of neurotransmitter glutamate
(i.e. neuronal activity). According to this
hypothesis, glycolysis and lactate pro-
duction are astrocytic phenomena while
oxidative metabolism of lactate takes
place in neurons. The astrocyte-to-neuron
lactate shuttle hypothesis as proposed by
Pellerin and Magistretti (1994) has gained
widespread acceptance, and its popularity is
not surprising due to its conceptually simple
and compelling idea of an activity-based
coupling between neuronal synaptic activity
and astrocyte metabolism. We will argue
that the biochemical and physiological

evidence for the existence of a unidirectional
flow of lactate from astrocytes to neurons,
as proposed, is lacking. However, before we
get to that, let us briefly explore why this
subject is even interesting to physiologists.

Why is this issue worth a CrossTalk debate?

First of all, the extensive acceptance of the
astrocyte-to-neuron lactate shutte means
that many researchers use this hypothesis
as a master template on which they inter-
pret their data, thus ignoring alternative
explanations and hence creating a bias in
the literature. Besides this, and of course
the pure scientific desire to know how the
brain operates, the cellular site of glucose
metabolism in the brain is important
for interpreting fluorodeoxyglucose (FDG)
positron emission tomography (PET)
results, a method extensively used for
both research and diagnostic purposes.
In the following, we will focus on two
key issues that we believe severely contest
the existence of a lactate shuttle from
astrocytes to neurons, as proposed: (1)
neurons express glucose transporters and
metabolise glucose in an activity-dependent
manner; and (2) the distinct cellular isoform
expression of lactate transporters and lactate
dehydrogenase, the enzyme forming lactate
from pyruvate, cannot be employed as an
argument for a directional flow of lactate.

Neurons metabolise glucose in an
activity-dependent manner suggesting that
glucose is an important neuronal energy
substrate during activation

In support of the lactate shuttle hypothesis,
it has been proposed that neurons do not
metabolise glucose in an activity-dependent
manner and that lactate is their preferred
substrate (e.g. Bouzier-Sore et al. 2003).
Contesting this view, we know that neurons
express transport systems for glucose both in

Lasse K. Bak is an associate professor at the Department of Drug Design and Pharmacology at
University of Copenhagen, Denmark. His research focuses on understanding compartmentalised
cAMP and Ca®* signals, and signalling—metabolism coupling in brain cells in search of novel
drug targets for brain pathologies such as dementias and epilepsy. Anne B. Walls is an associate
professor at the Department of Drug Design and Pharmacology at University of Copenhagen,
Denmark. Her research focuses on understanding energy and amino acid metabolism in brain
cells and its coupling to cerebral activity in pathologies such as hepatic encephalopathy and

epilepsy.

© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society

351

vitro and in situ (Simpson et al. 2007), and
others and we have repeatedly shown that
both cultured neurons and synaptosomes
(an ex wvivo preparation of presynaptic
neuronal terminals typically obtained from
rodent brain) avidly take up and metabolise
glucose in an activity-dependent manner
(e.g. Bak et al. 2006; Patel et al. 2014).
Further, Lundgaard et al (2015) and
Diaz-Garcia et al. (2017), employing a
near-infrared 2-deoxyglucose probe and
redox biosensors, respectively, showed that
glucose is metabolised by neurons in an
activity-dependent manner in situ in awake
mice. As discussed further below there are
no good biochemical reasons why neurons
should primarily consume lactate during
activation; indeed, neurons in vitro are,
not surprisingly, able to produce lactate
upon activation and thus neurons may
contribute to the extracellular surge in
lactate associated with brain activation
(Prichard et al. 1991; Hu & Wilson, 1997;
Bak et al. 2009; Contreras & Satrustegui,
2009). To be fair, it is important to note
that neurons do metabolise lactate if pre-
sent (Bak et al. 2009), and in the words
of a long-time opponent of the lactate
shuttle hypothesis, Gerry Dienel, lactate is
an ‘opportunistic’ substrate that, if pre-
sent, indeed will serve to support energy
metabolism (Dienel, 2012).

Distinct isoform expression of lactate
transporters and lactate dehydrogenase in
neurons and astrocytes does not predict
directionality of any shuttling of lactate

Monocarboxylate transport (MCT) sys-
tems, facilitative transporters allowing
lactate or pyruvate to cross the plasma
membrane, are present on both neurons
and astrocytes and they differ in their
kinetic profiles, i.e. their transport capacity
and binding affinities for lactate (Simpson
et al. 2007). These differences have been
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employed as arguments for a unidirectional
flow of lactate from astrocytes to neurons
(e.g. Bittar et al. 1996). However, regard-
less of the kinetic parameters of a facilitative
transport system, the flow of substrate in
either direction is governed by the pre-
vailing intra- to extracellular concentration
gradient, i.e. in this case the production vs.
disappearance or consumption of lactate.
Thus, an extensive, activity-dependent
astrocyte-to-neuron gradient of lactate
needs to be established for the lactate
shuttle to work as suggested. Michler et al.
(2016) recently investigated this and we
will get to that shortly. First, the pre-
ferential synthesis of lactate in astrocytes
and consumption in neurons have been
argued to be possible due to distinct
cellular expression of isozymes of lactate
dehydrogenase (LDH) having dissimilar
kinetic parameters, e.g. in terms of binding
constants for lactate (e.g. Laughton et al.
2000). However, regardless of their kinetic
parameters, enzymes influence the speed at
which the thermodynamic equilibrium is
obtained but do not change the equilibrium
of a chemical reaction. Thus, a distinct
cellular distribution of LDH isozymes
with different kinetic parameters does not
predict which cells are producing and
which are consuming lactate (please see
Bak & Schousboe, 2017 for a detailed
discussion). Further, Quistorff & Grunnet
(20114, b) argue that the differences in
kinetic parameters determined for LDH
at room temperature are not present
at body temperature. Thus, the distinct
kinetic parameters of LDH employed as
an argument in favour of the shuttle may
not be real. So, how can an extensive
lactate gradient be formed? The only
way that is possible is if astrocytes are
relentlessly outpacing neurons in terms
of glycolytic flux and lactate production
during activation. As alluded to above,
Michler et al. have investigated if there is
such a lactate gradient between astrocytes
and neurons. Employing anaesthetised mice
expressing a lactate biosensor specifically in
neurons or astrocytes they show that both
neurons and astrocytes take up lactate when
present in the blood in excessive amounts
consistent with the concept of lactate being
an ‘opportunistic’ substrate. By measuring
the rate of biosensor saturation in the pre-
sence of ammonium chloride to inhibit
mitochondrial ATP production, and thus
boost glycolysis and lactate production, they
estimate that neurons have a lower baseline
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level of lactate than do astrocytes. While this
an interesting observation, it does not tell
us if astrocytes outpace neurons in lactate
production during activation.

Final thoughts

In our minds, the current literature and
the biochemical design of neurons and
astrocytes are largely consistent with a
situation according to which both neurons
and astrocytes contribute to the surge in
extracellular lactate during brain activation;
either cell type may then consume lactate
when available or the lactate may be
dispersed and metabolised elsewhere or
even leave the brain (Madsen et al. 1999;
Hertz et al. 2014; Satrustegui & Bak, 2015).
The cellular location and timing of lactate
synthesis and consumption in the brain in
health and disease largely remains an open
question that deserves to be investigated
with an open mind.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘LastWord’. Please
email your comment, including a title and a
declaration of interest, to jphysiol@physoc.org.
Comments will be moderated and accepted
comments will be published online only as
‘supporting information’ to the original debate
articles once discussion has closed.
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