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Abstract9

Geostatistical simulation methods have been used to quantify spatial vari-
ability of reservoir models since the 80s. In the last two decades, state of the
art simulation methods have changed from being based on covariance-based
2-point statistics to multiple-point statistics (MPS), that allow simulation
of more realistic Earth-structures. In addition, increasing amounts of geo-
information (geophysical, geological, etc.) from multiple sources are being
collected. This pose the problem of integration of these different sources of
information, such that decisions related to reservoir models can be taken on
an as informed base as possible. In principle, though difficult in practice,
this can be achieved using computationally expensive Monte Carlo methods.
Here we investigate the use of sequential simulation based MPS simulation
methods conditional to uncertain (soft) data, as a computational efficient
alternative. First, it is demonstrated that current implementations of se-
quential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sam-
pling) do not account properly for uncertain conditional information, due
to a combination of using only co-located information, and a random sim-
ulation path. Then, we suggest two approaches that better account for the
available uncertain information. The first make use of a preferential simula-
tion path, where more informed model parameters are visited preferentially
to less informed ones. The second approach involves using non co-located
uncertain information. For different types of available data, these approaches
are demonstrated to produce simulation results similar to those obtained by
the general Monte Carlo based approach. These methods allow MPS simu-
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lation to condition properly to uncertain (soft) data, and hence provides a
computationally attractive approach for integration of information about a
reservoir model.

Keywords: Multiple point statstics, Uncertain data, Data integration10

1. Introduction11

During the last 30 years a number of probabilistic based methods and12

algorithms have been developed in the geostatistical community, that allow13

quantification and simulation of increasingly geologically complex structural14

variability, see e.g. Deutsch and Journel (1992); Guardiano and Srivastava15

(1993); Strebelle (2000); Remy et al. (2008); Mariethoz et al. (2010); Straub-16

haar et al. (2011); Mariethoz and Kelly (2011); Toftaker and Tjelmeland17

(2013); Tahmasebi et al. (2014); Mariethoz and Caers (2014).18

State of the art simulation methods have changed from being based19

on 2-point statistics (covariance-based statistics) to multiple-point statistics20

(MPS), that allow simulation of more realistic Earth-structures. MPS is es-21

pecially important used as a base for flow modeling, as traditional 2-point22

statistics cannot adequately describe for example realistic connectivity of ge-23

ological structures, that may have significant effect on flow properties and24

transport, see e.g. Zinn and Harvey (2003); Renard et al. (2011). The infor-25

mation about the expected spatial variability of the properties in a reservoir26

model can be conveniently provided in form of a ‘training image’/’sample27

model’ when using MPS. Using such a training image, several methods exist28

for simulation of multiple realizations of reservoir models that are consis-29

tent with the spatial statistics of the training image, e.g. Guardiano and30

Srivastava (1993); Strebelle (2000); Mariethoz et al. (2010).31

Additional information is often available from e.g. boreholes and geophys-32

ical surveys (seismic, electromagnetic,..). Ideally, this information should be33

combined with the geostatistical information in order to obtain a stochastic34

reservoir model, or realizations of such a model that are consistent with all35

available data/information.36

Several methods have been proposed to deal with this problem of integra-37

tion of information. Probabilistic inverse problem theory allow combining the38

available information by characterizing (or sampling from) a posterior prob-39

ability function that combines the information form the geostatistical model40

that describes realistic earth models (in form of a prior probability density),41
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with information from data (in form of a likelihood function) (Tarantola,42

2005). Using Monte Carlo sampling the posterior of any posterior proba-43

bility can be sampled, as long as the prior model can be sampled, and the44

likelihood can be evaluated (Mosegaard and Tarantola, 1995; Hansen et al.,45

2008; Irving and Singha, 2010; Hansen et al., 2012; Cordua et al., 2012;46

Hansen et al., 2013). While such a Monte Carlo based approach can in prin-47

ciple deal with a large variety of very complex systems, its practical use is48

hampered by its very high computational demands.49

Another approach is typically used in geostatistics, where available (geo-50

physical) data are converted into ‘soft data’ about each individual model51

parameter. Soft data is a loosely defined term that typically refer to un-52

certainty and inequality constraints about about specific model parameters53

(Journel, 1986). Most all geostatistical simulation algorithms can make use54

of such ‘soft’ data (Remy et al., 2008; Mariethoz and Caers, 2014). How-55

ever, challenges related to using current state of the art MPS simulation56

algorithms conditional to other geo-information has been considered widely57

in the literature with respect to ground water models He et al. (2014); Koch58

et al. (2014); Jørgensen et al. (2015); Biver et al. (2014); Høyer et al. (2015,59

2017).60

In the following the use of sequential simulation based MPS sampling61

methods will be considered for probabilistic data integration with indepen-62

dent uncertain conditional data, that may be available from other sources.63

First, using notation from probabilistic data integration, we formulate64

precisely what is implicitly assumed about ‘soft data’ in most any MPS al-65

gorithm.66

Through analysis of 3 reference models, with varying density of condi-67

tional/soft data, we demonstrate that a conventional implementation of se-68

quential simulation based MPS simulation leads to simulations that fail to69

generate realizations (reservoir models) consistent with the available uncer-70

tain information (soft data).71

Then, we suggest two novel approaches that allow considering the infor-72

mation in a more correct way using direct sampling (DS, Mariethoz et al.,73

2010), ENESIM (Guardiano and Srivastava, 1993), and SNESIM (Strebelle,74

2000). The first use as preferential simulation path, where more informed75

model parameters are visited preferentially to less informed ones. The second76

approach involves using more than only co-located uncertain data, wihich is77

typically not done for most implementations of MPS. All examples are com-78

pared to those obtained by a general Monte Carlo based approach.79

3



2. Data integration using conditional geostatistical simulation -80

Theory81

Consider that a model of the subsurface is parameterized into M model
parameters m = [m1,m2,m3, ...,mM ]. Say information is available about the
model parameters m from N independent sources I = [I11, I2, ..., IN ] through
the probability densities fI1(m), fI2(m), ..., fIN (m). Each probability distri-
bution then represents a specific state of information. Tarantola and Valette
(1982) and Tarantola (2005) demonstrate how these states of information can
be combined through the conjunction of the states of information through

fI(m) = fI1(m) ∧ fI2(m) ∧ ... ∧ fIN(m)

= ν µ(m)(1−N)
N∏
i

fIi(m), (1)

where ν represents a normalizing constant, µ(m) represents the homogeneous82

probability distribution or the ‘state of total ignorance’ (Jaynes, 1968), and83

∧ is the operator for ‘conjunction’. Conjunction of information, as expressed84

through (1), is derived from axioms similar to the axioms of formal logic on85

conjunction of propositions, and the Radon-Nikodym theorem from measure86

theory (Tarantola and Valette, 1982).87

If a Cartesian coordinate system is used to parameterize m, then the88

homogeneous probability density function becomes a constant µ(m) = k89

(Mosegaard and Tarantola, 2002), which is the case we will consider here.90

Then the problem of integrating information from independent sources into91

to one probability density fI(m) is given by92

fI(m) ∝
N∏
i

fIi(m). (2)

In the present context m reflects model parameters describing a reservoir93

model, and I1, I2,.. reflect different sources of information available (e.g. from94

expert information, well log data, training image and geophysical data).95

Here, the special case is considered where all information available refers96

directly to the model parameters. The reason for this is two-fold: First,97

most (any) geostatistical simulation algorithms allow, in principle, to take98

such information into account as “soft” information (Mariethoz and Caers,99

2014). Second, working with reservoir models, a lot of information about the100
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model parameters of interest can be available in form of direct measurements101

from well logs, inverted well logs parameters, or indirectly from geophysical102

data inverted into information about the model parameters m. Barfod et al.103

(2016) present a recent example of how to do this, by establishing an at-104

las (applicable in Denmark) that can be used to translate resistivity values105

(found through inversion of airborne EM data) into lithological/hydrological106

units with associated uncertainty.107

Three types of information are available in a typical MPS based geosta-108

tistical data integration problem:109

ITI Information from a training image. This can be information from out-110

crops, previous analysis, well log analysis, expert information which111

is quantified through a geostatistical model describing (spatial) co-112

dependence between model parameters.113

Ihard Hard data. Direct observation of one or more model parameters, with-114

out any associated uncertainty.115

Isoft Soft data. Direct observation of one or more model parameters, with116

an associated uncertainty.117

In case the information has been obtained independently, such a geostatistical118

problem is equivalent to the problem of inferring information about fI(m)119

given by120

fI(m) ∝ fITI
(m)fIhard(m)fIsoft(m). (3)

Høyer et al. (2017) present one example of combining these three types of121

information into one stochastic model.122

In principle there is no need to distinguish between hard and soft data, as123

both are simply data that provide information about the model parameters.124

So, a general geostatistical data integration problem can be formulated as125

fI(m) ∝ fITI
(m)fIdata(m). (4)

Spatially independent ’data’. For many geostatistical data integration prob-126

lems, the information about each model parameter is assumed spatially in-127

dependent, such that128

fIdata(m) =
M∏
i=1

fIdata(mi). (5)
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From hereon, the term ‘soft information’ about the model parameters is de-129

fined through equation (5). The general data integration problem of equation130

(4) is then reduced to131

fI(m) ∝ fTI(m) fdata(m) = fTI(m)
M∏
i=1

fdata(mi). (6)

Equation (6) represent the probability distribution that most sequential sim-132

ulation based MPS methods suggest to sample from, by combining informa-133

tion from a geostatistical model with ‘hard’ (certain) and ‘soft’ (uncertain)134

data. From hereon different methods, existing and new, will be discussed135

that allow sampling from equation (6).136

2.1. Markov chain Monte Carlo sampling of fI(m) ∝ fTI(m) fdata(m)137

Sampling methods such as the extended Metropolis sampler provides a138

general, but computationally expensive, approach for sampling the product of139

two (or more) probability densities, both in form of equation (4) (accounting140

for spatially dependent information on the model parameters) and (6) (as-141

suming spatially independent information on the model parameters) Hansen142

et al. (2016a). Running the extended Metropolis algorithm consists of, in143

this case, sampling fTI(m) through a random walk, and accepting moving144

between proposed models based on acceptance criteria computed from the145

relative change in fdata(m). Details on how to use the extended Metropolis146

sampler to sample from equation (4) and (6) can be found in e.g. Hansen147

et al. (2008, 2013, 2016a).148

2.2. Sequential simulation of fI(m) ∝ fTI(m) fdata(m)149

Sequential simulation (Alabert et al., 1989), also known as the conditional150

distribution method (Devroye, 1986), is commonly used in geostatistics to151

sample from fITI
(m) and (conditional to data) fI(m) ∝ fITI

(m)fIdata(m)152

as in equation (6). In brief, sequential simulation consists of sequentially153

visiting and simulating all model parameters, possibly in random order. At154

the location of each model parameter mi, the value of mi is simulated (as155

m∗i ) conditional to all known information and all previously simulated model156

parameters, mc, as a realization from157

fI(mi|m∗1, ...,m∗i−1) = fI(mi|mc) = fTI(mi|mc) fdata(m). (7)
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In case the available data are spatially independent, as in equation (6), the
conditional distribution in equation (7) becomes

fI(mi|mc) ≈ fTI(mi|mc)
M∏
i=1

fdata(mi) (8)

Numerous methods based on sequential simulation has been developed158

in the geostatistical community that allow sampling from a wide variety of159

multiple-point statistical models inferred from a training image such as given160

by fTI(m) (Guardiano and Srivastava, 1993; Strebelle, 2000; Mariethoz et al.,161

2010; Straubhaar et al., 2011; Hansen et al., 2016b)) These methods differ162

in how the realization m∗i of the conditional distribution in equation (7)163

is generated. Most of these methods allow, to some degree, to take into164

account direct information about the model parameters, hard and soft. In165

the following the ENESIM, SNESIM and Direct Sampling (DS) methods will166

be considered.167

3. A synthetic example168

In order to analyze the use of conditional information with sequential sim-169

ulation algorithms based on MPS, a synthetic case study is designed. Figure170

1a shows a training image (from Strebelle (2000), used to define fITI
(m)),171

consisting of pixels within (black) and outside (red) a channel structure,172

from which a reference model is generated as a realization in a 30x30 pixel173

grid, Figure 1b, using the ENESIM algorithm (Guardiano and Srivastava,174

1993; Hansen et al., 2016b). The 25 closest previously simulated data are175

used to compute the conditional distribution at each step of the sequential176

simulation.177

Simple smoothing of the reference realization in Figure 1b is performed178

in order to obtain an exhaustive map of ’soft’ data that quantifies the local179

probability of each pixel belonging to a channel structure through fId1(m),180

Figure 2a. From this exhaustive set of soft data, a subset of 10 and 3 ran-181

domly chosen soft data points are considered as fId2(m) and fId3(m) and182

shown in Figures 2b-c.183

The dense data set, Id1, mimic an exhaustive set of information, as ob-184

tained from for example inversion of a densely sampled electromagnetic data185

set, as considered extensively by Barfod et al. (2016). The two sparse data186

sets, Id2 and Id3, mimic information from well logs at different spatial density,187
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as considered by for example Høyer et al. (2017). Note that the two sparse188

sets of soft data, quantified by fId2(m) and fId3(m), can both be regarded as189

an exhaustive set of soft data with a uniform distribution everywhere a soft190

data is not explicitly defined.191

In the following existing and new methods for sampling fITI ,Id1(m), fITI ,Id2(m),192

and fITI ,Id3(m), will be analyzed and compared.193

[Figure 1 about here.]194

[Figure 2 about here.]195

4. A ‘reference’ solution - sampling from fITI ,Id(m) = fITI
(m)fIdata

(m)196

The extended Metropolis algorithm is used to sample from fI(m) con-197

sidering the three soft data sets defined above. This provides a reference198

solution (in form of a sample from f(m|ITI , Idata)), to which other solutions199

can be compared. In practice, the ENESIM algorithm is used to gener-200

ate realizations from f(m|ITI) that are then accepted using the Metropolis201

acceptance criterion based on the soft data. In this way, 600 independent202

realizations have been obtained from fITI ,Id1(m), fITI ,Id2(m), and fITI ,Id3(m),203

using the SIPPI Matlab toolbox (Hansen et al., 2013). The corresponding204

probability of locating a channel, obtained using the above described algo-205

rithm are shown in Figure 3a-c. These results will be used as a reference for206

comparison.207

[Figure 3 about here.]208

5. Existing sequential simulation methods, using the Markov prop-209

erty210

Well known MPS algorithms such as ENESIM and SNESIM allow con-
ditioning to uncertain data (Strebelle, 2000; Remy et al., 2008). In practice,
most all MPS based sequential simulation algorithms use only co-located soft
data (i.e. soft data located at the same position in space as the model pa-
rameter mi being simulated) when evaluating equation (8). The rest of the
soft data are being ignored (see e.g.Strebelle (2000); Liu (2006); Remy et al.
(2008)). In this case the marginal conditional probability being sampled
during sequential simulation is reduced from equation (8) to

fI(mi|mc) ∝ fTI(mi|mc) fdata(mi) (9)
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This assumption is similar to the Markov property assumed for sequential211

Gaussian co-simulation, as proposed by Almeida and Journel (1994). There-212

fore the approximation in equation (9) is referred to as using a Markov prop-213

erty to handle the soft data. Equation ((9)) assumes that the source of214

the information from the training image, fTI(mi|mc), and the ‘soft’ data,215

fdata(mi), are independent. If this is not the case, one can use e.g. the tau-216

model to explicitly model the dependence between the two types of available217

information (Journel, 2002; Krishnan, 2008). The amount of dependency is218

controlled by the tau factor. Estimation of a proper value of the tau factor,219

can in itself be a challenging task, and is not considered further here.220

The complexity related to implementing an algorithm that samples from221

equation (9) depends on the choice of MPS algorithm. Below we briefly222

describe these differences for a number of widely used methods. We refer to223

Mariethoz and Caers (2014) for a general description of MPS algorithms.224

5.1. ENESIM and the Markov property225

Using ENESIM the full conditional distribution fTI(mi|mc) is explicitly226

computed at each iteration by scanning the whole training image. Therefore227

evaluation of equation (9) is straightforward to implement.228

5.2. SNESIM type algorithms and the Markov property229

SNESIM (Strebelle, 2000), and related IMPALA (Straubhaar et al., 2011),230

type simulation algorithms scans the training image only once, for a number231

of predefined sets of conditional point patterns. The frequency of occurrence232

for each pattern is then stored in memory. At each iteration in the sequential233

simulation fTI(mi|mc) is then obtained from memory, and hence evaluation234

of equation (9) straightforward.235

However, SNESIM also makes use of so-called multiple-grids, that is236

needed to allow reproducing correlations over long distances, while at the237

same time reducing the memory requirements (Tran, 1994). This introduces238

a challenge when conditioning hard and soft data are available, as condi-239

tional data may not be available on a specific coarse grid being simulated.240

To remedy this, so-called re-location of hard data has been suggested. When241

simulating on a coarse grid, the closest hard data at finer grids are re-located242

to the coarse simulation grid as a hard data. Then conditional simulation243

is performed in the coarse grid. Finally after, simulation of the coarse grid244

the hard data values at the notes of the re-located data, are removed, and245

set as un-sampled. See details in Strebelle (2000); Remy et al. (2008). Here,246
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re-location of the soft data has been implemented in the SNESIM implemen-247

tation in MPSlib (Hansen et al., 2016b), in a manner similar to the approach248

used for hard data. Note that in case the uncertain/soft data are exhaus-249

tively available, no relocation is needed. Straubhaar and Malinverni (2014)250

propose an alternative approach for handling conditional data with multiple251

grids, that can lead to less artifacts.252

5.3. Handling co-located soft data using DS253

Using the DS algorithm fTI(mi|mc) is never explicitly computed, instead254

a realization from fTI(mi|mc) is obtained directly from the training image.255

This means the DS algorithm cannot take co-located soft data into account256

simply by evaluating equation (9).257

Biver et al. (2014) and Straubhaar et al. (2016) suggest an approach258

that aims to reproduce the local proportions within a data neighborhood,259

as provided by Isoft (for data of both point and volume support). In their260

approach uncertainty of the soft data is not taken into account explicitly261

as defined in equation (9). Instead we propose to use a simple application262

of the extended rejection sampler that allows the direct sampling algorithm263

to generate a realization of fI(mi|mc) = fTI(mi|mc) fdata(mi), using the264

exact same conditions as ENESIM and SNESIM. Numerical implementation265

consists of replacing the step of scanning the training image for the first266

matching conditional data event mc, with the following algorithm267

• Start loop268

1. Obtain a realization, m∗i , of fTI(mi|mc) (by scanning the training269

image).270

2. Accept m∗i as a realization of fTI(mi|mc)fdata(mi) with probability271

Pacc =
fdata(mi=m∗

i )

max(fdata(mi))
.272

• End loop (when m∗i is accepted) .273

max(fdata(mi)) is the maximum probability of any possible value of mi. This274

will ensure that m∗i will be a realization of f(mi|mc)fdata(mi) as given in275

equation (9). This rejection step has been implemented in the GENESIM276

algorithm in MPSlib (Hansen et al., 2016b), which is a generalized imple-277

mentation of the ENESIM algorithm, in which the conditional distribution278

is based on any number Nc of observed matches. If Nc = 1, the GENESIM279

algorithm will in practice perform similar to the DS algorithm (Hansen et al.,280
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2016b). In the remainder, when we refer to the DS algorithm we use use the281

GENESIM algorithm with Nc = 1.282

5.4. Conditional ENESIM/SNESIM/DS simulation using the Markov prop-283

erty284

Using the ENESIM algorithm and the Markov property for conditioning285

to ’soft’ data, 600 independent realizations are generated and the correspond-286

ing probability of locating a channel computed. The results are shown in287

Figure 4 in case using a ’unilateral’ (i.e., raster scan) path (top, a)-c)), and288

in case using a random path (bottom, d)-f)). Similar results obtained using289

SNESIM are shown in Figure 5. No results are shown using DS as they are290

essentially identical to those obtained using ENESIM in Figure 4.291

[Figure 4 about here.]292

[Figure 5 about here.]293

Figure 4 reveals that the simulation results lack information as compared294

to the full solution (Figure 3). This is most severe in case soft data are sparse295

in which case little to no information from the soft data seems to have been296

taken into account (Figure 4b-c and 4e-f). So, while it is rather straight-297

forward to account for uncertain information about the model parameters298

using the Markov property (as also stated by Straubhaar et al., 2016), it299

may not be a viable approach using either a sequential or random simulation300

path. Below we propose two alternative approaches to better account for the301

available uncertain/soft data.302

6. Suggestion 1: preferential simulation path303

It has long been known that the choice of simulation path affects the
realizations generated using sequential simulation (Strebelle, 2000; Liu and
Journel, 2004; Daly, 2005; Mariethoz and Renard, 2010; Daly, 2005). One
problem of using either the unilateral or random path with the Markov prop-
erty as considered above, is that information from highly informed model pa-
rameters located very close to a model parameter, for which the conditional
distribution is computed, is disregarded. Consider two direct observations
f(mi = 1) = 0.999 and f(mj = 1) = 1 (which implies f(mi = 0) = 0.001 and
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f(mj = 0) = 0, as the training image only allows k=2 possible outcomes).
The entropy

E(f(m)) = −
∑
k

f(m = mk) log2(f(m = mk)), (10)

is a measure of uncertainty of the information provided by f(m) (Reza,304

1961). With k=2 possible outcomes, the maximum entropy is given by305

Emax(f(m)) = 1. A base of 2 is used for the logarithm in equation (10),306

which is a natural choice with k=2 possible outcomes. A base of k, would307

be a natural choice for a training images with k possible outcomes. A simple308

measure of the ‘certainty’ of the information provided by f(m) can then be309

formulated as310

C(f(m)) = 1 − E(f(m))

Emax

(11)

This leads to C(f(mi)) = 0.99 and C(f(mj)) = 1. Thus, these two types311

of information provide almost the same information. However, in a typical312

implementation of an MPS algorithm (as discussed above) f(mj = 1) = 1313

is treated as hard data, and the value of mj is fixed at m∗j = 1 prior to314

simulation. This means that m∗j = 1 will be used as conditional data in any315

subsequent step of the sequential simulation algorithm.316

The information provided by f(mi = 1) = 0.99 will however be treated as317

uncertain/soft data, and will (using the Markov property) only come into use318

when the simulation algorithm visits mi, when a realization of f(mi|mc) has319

to be generated. Depending on the choice of random path this can happen320

early or late in the simulation process. If it happens early, then the informa-321

tion in f(mi = 1) = 0.99 will affect the simulated value of relatively many322

model parameters. If it happens late in the process the information will only323

affect relatively few model parameters. Due to the use of the Markov prop-324

erty, the amount of information used for a given model parameter is closely325

related to the choice of random path. This is the reason for the relatively326

poor conditioning to the soft data obtained using sequential simulation with327

the Markov Property, using both a unilateral and random path as seen in328

Figures 4-5.329

To remedy some of these problems the use of a preferential random path330

is suggested, where model parameters with soft data with high information331

content is visited preferentially to soft data with lower information content.332

In practice the preferential path can be computed prior to running the333

sequential simulation algorithm. First, the entropy E(fdata(mi)) is computed334
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for all soft data. Then, a pseudo random path is given by ordering all the335

model parameters in ascending order by orderi given by336

orderi = ri − 1 + Ifac C(f(m)), (12)

where ri is a random number between 0 and 1. Ifac is a factor that controls337

the ’randomness’ associated to the information content. If Ifac = 0 all model338

parameters with soft data are visited at random (in no specific order), before339

model parameters with no soft data are visited. When Ifac is high then340

locations with soft data are visited in order of decreasing information content.341

In the following Ifac = 4 is used.342

6.1. Conditional ENESIM/SNESIM/DS simulation using the Markov prop-343

erty and the preferential path344

Figures 6, 7, and 8 show the probability of locating a channel conditional345

to the three data sets, based on 600 realizations generated by ENESIM, DS,346

and SNESIM using a preferential path. If Pmcmc(channel) and P (channel)347

refer to the posterior probability of locating a channel in each pixel using the348

reference MCMC approach and a specific choice of simulation, then Tables349

3-1 summarize the relative difference in L2-norm as L2(Pmcmc(channel) −350

P (channel))/L2(Pmcmc(channel)), for different simulation choices and choice351

of simulation algorithm. A number close to 0 suggests that simulation results352

(in form of the posterior probability of locating a channel) is very close to353

the results obtained using the reference McMC approach, Figure 3, while354

a higher number will refer to less similarity. From hereon we refer to this355

quantity as the ‘relative L2 norm’.356

6.1.1. ENESIM357

Using ENESIM with a preferential path conditional to Id1, it is clear that358

not as much information is extracted from the uncertain data, Figure 6a, as359

is the case using full Monte Carlo sampling, Figure 3a. This difference is due360

the fact that the Markov property is not used as part of the Monte Carlo361

sampling, which will lead to better resolved channel structures. However,362

significantly more information is extracted than when using an unilateral363

or random simulation path, see Figures 4a and 4d. Table 1 also shows a364

significant drop in the relative L2-norm using the preferential path (0.43 vs365

0.69 using a random path).366

In the case of sparse data (Id2 and Id3) the use of a preferential path367

provides results, Figure 6b-c, that are close to indistinguishable from the full368
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non-Markov solution, obtained using Monte Carlo sampling, Figure 3b-c.,369

with a corresponding small L2 norm, Table 1.370

[Figure 6 about here.]371

6.1.2. DS372

The results obtained using DS, Figure 7, are similar to the results ob-373

tained using the ENESIM algorithm, Figure 6, and quantified in Table 2,374

illustrating that the use of the rejection sampler with DS works as intended.375

[Figure 7 about here.]376

6.1.3. SNESIM377

Comparing Figure 5 to 8 it is evident that the use of a soft data relocation378

and a preferential path with SNESIM allow much better reproduction of379

uncertain data. However, some effects of using multiple grids and re-location380

persist, which is the reason of the relative high relative L2 norm of 0.23 using381

SNESIM compared to 0.09 using ENESIM and DS in case conditioning to382

Id3, see Tables 1-3.383

One simple approach to remedy some of the effects of re-location of soft384

(and hard) data, is to make use of ENESIM type algorithms to perform the385

simulation on coarser grids, as suggested by Strebelle (2000) to avoid prob-386

lems related to hard-data relocation. Another approach could be to consider387

applying the approach proposed by Straubhaar and Malinverni (2014) also388

to soft/uncertain data, to avoid artifacts caused by the use of multiple grids.389

[Figure 8 about here.]390

Tables 1-3 highlights that in general the use of the preferential path, with391

the Markov assumption considering only colocated data, significantly reduces392

the relative L2 norm. Further Tables 1-3 suggest the difference in simulation393

time using the preferential path compared to using the random path is small.394

The preferential path emulates what has been done in practice since the395

first simulation algorithms were developed. If ‘hard’ information is available,396

i.e. certain information about the model parameters, then these model pa-397

rameters will be visited before other model parameters using the preferential398

path. This is equivalent to simply assigning the hard data to the correspond-399

ing model parameters prior to starting the simulation. It is also related to400
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simulating model parameters with soft information prior to other data, as401

proposed by Soares et al. (2016) in case using Gaussian direct sequential402

simulation.403

Liu and Journel (2004) also suggest to choose the random path guided404

by the information content. Unlike the present work, where the path is405

guided by the information content of the soft data, they suggest to guide the406

path based on the conditional information from the training image, i.e. from407

fTI(mi|mc). They demonstrate that such a path better reproduces large408

scale connected structures, compared to using a random simulation path.409

7. Suggestion 2: Avoiding the Markov property410

The Markov property can in principle be avoided entirely, to allow con-411

sidering more than just co-located soft information, while still using the se-412

quential simulation approach, and using a fully random path.413

7.1. DS conditional to non-colocated soft data414

The extended rejection sampler used above to allow the DS algorithm to415

condition to co-located uncertain/soft data, can be generalized to account416

for, in principle, all soft data, without the need for the Markov property. A417

sample of equation (6) can be obtained at each iteration of the sequential418

simulation algorithm using the extended rejection sampler as follows:419

• Start loop420

1. Obtain a realization, m∗i , of fTI(mi|mc).421

2. Acceptm∗i as a realization of fTI(mi|mc)
∏M

i=1 fdata(mi) with prob-
ability

Pacc =

∏NS

i=1 fdata(mi = m∗i )∏Ns

i=1max(fdata(mi))
(13)

• Continue loop (until m∗i is accepted).422

Ns refers to the closest Ns soft/uncertain data. In case Ns = ∞, the above423

will sample from full probability density given in equation (6), without the424

Markov assumption. Hence, results should be comparable to using the Monte425

Carlo based sampling approach.426

In practice, due to both CPU requirements and the limited size of the427

training image, Ns can be chosen to use limited set of conditional soft data,428

while providing simulation results similar to using a full neighborhood, using429

much less computational power.430
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Conditional simulation to soft data, without the preferential path. When con-431

ditioning to non-colocated soft data, the use of the preferential path should,432

in principle, no longer be needed in order to condition to soft/uncertain data.433

Figure 9 shows the probability of locating a channel in case using a random434

path, and the 3 closest soft/uncertain data using DS type simulation using435

the rejection sampling approach described above.436

In general the resolution is better than using a unilateral or random437

with the Markov property, but worse than using a preferential path and438

the Markov property (see e.g. Table 2)439

This is due to conditioning to soft data becoming more difficult if a lot440

of model parameters are visited, and hence simulated, prior to visiting the441

location of the soft data. In this case the ’hard’ simulated data will take442

precedence over the soft data, unless a non-perfect match to the hard data443

is allowed. This is one reason why the use of the preferential path may be444

useful even when conditioning to non-colocated soft data.445

Conditional simulation to soft data, with the preferential path.. Another rea-446

son to use the preferential path in this case is that it can lead to a com-447

putationally more efficient simulation algorithm. Using a random path, one448

will have to evaluate the rejection sampler described above, at all iterations449

until all model parameters with soft data have been simulated. If using a450

preferential random path, one need only evaluate the rejection sampling step451

above, until all soft data has been evaluated. Thus, only for the first 3 and452

11 iterations considering Id3 and Id2.453

Figure 10 shows results obtained running the DS algorithm to generate454

600 independent realizations, using Ns = 1 (top), Ns = 3 (middle), and455

Ns = 11 without the Markov property, with a preferential path. Table 2456

shows the corresponding relative L2-norm and simulation time.457

For the most sparse data set, Id3, a subtle difference can be identified458

comparing figure 10c) (Ns = 1) and 10f) (Ns = 3), leading to a slightly459

smaller relative L2 norm. Considering Ns = 3, the probability of locating a460

channel is slightly larger than when using Ns = 1. In general, there is little461

to no difference using Ns = 3 or Ns = 11 conditioning to sparse soft data,462

Id2 and Id3.463

It is also clear that when conditioning to the exhaustive soft data set,464

Id1, the amount of information extracted from the soft data (as quantified in465

Table 2), increases as the number of conditioning soft data increases, Figure466

10a,d,g. For this conditional data set, the best result (i.e. that best resemble467
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the reference solution) is obtained using 11 conditional data, Figure 10g.468

This algorithm, as any rejection algorithm, will only be feasible if the469

number of conditioning soft data is small. Alternatively one can make use470

of only a limited number of the closest soft data, to allow a better use of the471

soft data, while limiting the computational needs.472

Note in Table 2 that when using a random simulation path, and non-473

colocated soft data, results in a significant increase in simulation times (a474

factor of 1-8) when using more non-located soft data as compared to only475

one soft data. Using the preferential path the simulation times is only a few476

percent larger using 25 conditional soft data, as opposed to 1 conditional soft477

data, in the case of conditioning to e.g Id2.478

7.2. ENESIM/GENESIM conditional to non-colocated soft data479

The ENESIM/GENESIM algorithm can be also generalized to sample480

conditionally to non-colocated soft data. In this case the whole (using EN-481

ESIM) or a limited random part (using GENESIM) of the training image482

is scanned at each iteration. For each match of a hard data, the specific483

value of the centered node in the training image, is associated with the (soft)484

probability
∏Ns

i=1(fdata(mi|j)). j is the position in the training image and485

mi|j refer to the value of the location of the soft data relative to the current486

location in the training image. Conditioning to non-colocated soft data as487

described here have been implemented in the MPSlib codes in the GENESIM488

algorithm, Hansen et al. (2016b).489

Simulation times and relative L2 norms using GENESIM type simula-490

tion are, for reference, presented in Table 1, for the same conditional data491

sets considered by DS in Table 2. Even though the handling of soft data492

in DS and ENESIM type simulation is quite different, the main difference493

between the two algorithms are with respect to simulation times, which is494

expected. The GENESIM algorithm can be used to scan only a limited set495

conditional evenets, which is much faster than using ENESIM that scans the496

entire training image at each iteration.497

7.3. SNESIM conditional to non-colocated soft data498

While SNESIM can in principle also be generalized to account for non-499

colocated soft data, problems related to re-location persist, and search times500

scanning the search tree will become large. Therefore, we do no pursue this501

approach further, and leave this for potential future research.502
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[Figure 9 about here.]503

[Figure 10 about here.]504

8. Conclusion505

MPS based sequential simulation algorithms allow for a computationally506

efficient approach to the problem of integration of probabilistic information507

from different sources. However, the traditionally used Markov property,508

using only co-located uncertain soft data, leads to realizations that do not509

fully take into account the information of the soft data. The problem is510

most severe when sequential simulation is performed with soft information511

available at sparse locations. Two methods have been proposed that allow512

taking soft data properly into account.513

First, a simulation path preferential to 1D marginal entropy/information514

content of soft data has been proposed. This allows much better handling of515

especially scattered soft data. The preferential path is trivial to use with the516

ENESIM algorithm. Using a simple rejection step to account for soft data,517

it can be easily implemented with the DS algorithm. It is straightforward518

to use with the SNESIM algorithm, but re-location of soft data is suggested519

due to the use of multiple grids.520

Second, an approach is suggested that avoid the Markov-property, such521

that non co-located soft data can be considered, that can be used with any522

of the ENESIM and DS algorithms. Combined with using a preferential path523

this leads to a conditional simulation algorithm that properly conditions to524

the soft data, while at the same time being computationally much more525

viable than using McMC sampling methods.526
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Figure 1: a) Training image. b) Reference realization. Pixel color refer to inside (black)
and outside (red) a channel.
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Figure 2: Soft data. a) Exhaustive, 900 soft data fId1(m), b) 10 soft data, fId2(m), and
c) 3 soft data, fId3(m)
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Figure 3: Posterior probability of locating a channel, P (mi = 1|ITI , Id), obtained using
the extended Metropolis sampler, conditional to the three sets of soft data a) Exhaustive,
d1, b) 10 random soft data, d2, and c) 3 random soft data, d3.
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Figure 4: Posterior probability of locating a channel using the ENESIM algorithm with a
top) unilateral and bottom) random path, conditional to a),d) d1, b),e) d2, and c),f) d3.
Compare to Figure 3.
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Figure 5: Posterior probability of locating a channel using the SNESIM algorithm with a
top) unilateral, and bottom) random path, conditional to a),d) d1, b),e) d2, and c),f) d3.
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Figure 6: Posterior probability of locating a channel using the ENESIM algorithm with
a preferential path, conditional to a) d1, b) d2, and c) d3. Compare to Figure 4 and the
’full’ solution in Figure 3.
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Figure 7: Posterior probability of locating a channel using the DS algorithm with a pref-
erential path, conditional to a) d1, b) d2, and c) d3.
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Figure 8: Posterior probability of locating a channel using the SNESIM algorithm with a
preferential path, conditional to a) d1, b) d2, and c) d3.
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Figure 9: Posterior probability of locating a channel using the DS algorithm using the
3 closest ‘soft’ data and the 25 closest previously simulated data, with a random path,
conditional to a) d1, b) d2, and c) d3.
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Figure 10: Posterior probability of locating a channel using the DS algorithm using the
closest 1 (a,b,c), 3 (d,e,f), and 11 (g,h,i) ‘soft’/uncertain data and the 25 closest previously
simulated data, with a preferential path, conditional to d1 (a,d,f), d2 (b,e,g), and d3. (c,f,h)
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Markov Nsoft Unilateral Random Preferential
d1 0 0.78 (42.2 s) 0.77 (59.8 s) 0.77 (59.8 s)
d1 * 1 0.63 (40.6 s) 0.70 (59.7 s) 0.43 (39.5 s)
d1 1 0.63 (40.7 s) 0.70 (60.0 s) 0.43 (39.7 s)
d1 3 0.56 (44.2 s) 0.67 (60.9 s) 0.35 (40.4 s)
d1 11 0.47 (46.3 s) 0.65 (64.7 s) 0.25 (46.1 s)

d2 0 0.35 (42.3 s) 0.35 (60.4 s) 0.35 (60.6 s)

d2 * 1 0.33 (42.7 s) 0.36 (60.7 s) 0.11 (59.9 s)
d2 1 0.24 (87.9 s) 0.27 (109.7 s) 0.11 (188.3 s)
d2 3 0.19 (167.0 s) 0.25 (145.7 s) 0.11 (189.7 s)
d2 11 0.21 (284.4 s) 0.22 (189.6 s) 0.10 (191.1 s)

d3 0 0.35 (42.5 s) 0.35 (60.1 s) 0.35 (60.8 s)
d3 * 1 0.34 (42.7 s) 0.36 (60.4 s) 0.10 (60.9 s)
d3 1 0.24 (186.3 s) 0.26 (152.0 s) 0.10 (179.7 s)
d3 3 0.18 (273.7 s) 0.17 (180.7 s) 0.07 (178.6 s)
d3 11 0.18 (270.3 s) 0.18 (182.0 s) 0.07 (179.7 s)

Table 1: The relative L2 norm, L2(Pmcmc(channel) − P (channel)/L2(Pmcmc(channel)),
using the GENESIM algorithm and different choices of simulation paths. The left column
indicates the conditional data set considered. Note that the first row for each set of
conditional data, refer to unconditional simulation (Nsoft = 0), for reference. ‘Markov’ is
marked if the Markov property is assumed such that only co-located data are considered.
Nsoft indicate the number of closest soft/uncertain data taken into account. The numbers
in parentheses is the simulation time in seconds.
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Markov Nsoft Uni Random Preferential
d1 0 0.78 (20.8 s) 0.77 (37.3 s) 0.77 (37.4 s)
d1 * 1 0.61 (26.1 s) 0.67 (43.9 s) 0.42 (18.3 s)
d1 1 0.62 (26.2 s) 0.67 (43.7 s) 0.41 (18.5 s)
d1 3 0.52 (51.1 s) 0.65 (74.2 s) 0.34 (19.9 s)
d1 11 0.56 (44.2 s) 0.67 (60.9 s) 0.35 (40.4 s)

d2 0 0.36 (20.7 s) 0.35 (37.3 s) 0.35 (37.4 s)

d2 * 1 0.34 (21.7 s) 0.35 (37.3 s) 0.11 (36.7 s)
d2 1 0.20 (30.3 s) 0.28 (53.9 s) 0.10 (45.8 s)
d2 3 0.16 (78.5 s) 0.22 (104.2 s) 0.11 (47.4 s)
d2 11 0.25 (448.8 s) 0.20 (390.4 s) 0.11 (55.7 s)

d3 0 0.36 (19.6 s) 0.34 (38.8 s) 0.34 (37.9 s)

d3 * 1 0.33 (19.9 s) 0.36 (39.2 s) 0.09 (38.5 s)
d3 1 0.24 (40.0 s) 0.25 (62.8 s) 0.08 (46.9 s)
d3 3 0.16 (165.9 s) 0.16 (132.8 s) 0.07 (47.7 s)
d3 11 0.17 (163.0 s) 0.16 (135.1 s) 0.07 (47.4 s)

Table 2: The relative L2 norm, L2(Pmcmc(channel) − P (channel)/L2(Pmcmc(channel)),
using the DS algorithm and different choices of simulation paths. See Table 1 for descrip-
tion.
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Markov Nsoft Uni Random Preferential
d1 0 0.77 (36.0 s) 0.78 (62.6 s) 0.78 (63.2 s)
d1 * 1 0.64 (38.2 s) 0.54 (66.1 s) 0.43 (93.1 s)

d2 0 0.36 (35.7 s) 0.38 (63.0 s) 0.38 (62.6 s)
d2 * 1 0.37 (36.5 s) 0.34 (64.2 s) 0.20 (69.6 s)

d3 0 0.34 (36.1 s) 0.36 (63.3 s) 0.36 (63.4 s)
d3 * 1 0.36 (36.6 s) 0.35 (63.4 s) 0.16 (58.9 s)

Table 3: The relative L2 norm, L2(Pmcmc(channel) − P (channel)/L2(Pmcmc(channel)),
using the SNESIM algorithm and different choices of simulation paths. See Table 1 for
description.
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