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Abstract
Quantum information protected by the topology of the storagemedium is expected to exhibit long
coherence times. Another feature is topologically protected gates generated through braiding of
Majorana bound states (MBSs). However, braiding requires structures with branched topological
segments which have inherent difficulties in the semiconductor–superconductor heterostructures
nowbelieved to hostMBSs. In this paper, we construct quantumbits taking advantage of the
topological protection and non-local properties ofMBSs in a network of parallel wires, but without
relying on braiding for quantum gates. The elementary unit ismade from three topological wires, two
wires coupled by a trivial superconductor and the third acting as an interference arm. Coulomb
blockade of the combinedwires spawns a fractionalized spin, non-locally addressable by quantum
dots used for single-qubit readout, initialization, andmanipulation.We describe how the same tools
allow formeasurement-based implementation of the Clifford gates, in totalmaking the architecture
universal. Proof-of-principle demonstration of topologically protected qubits using existing
techniques is therefore within reach.

Majorana bound states (MBSs) in topological superconductors (TSs) have been identified as promising
candidates for topological carriers of quantum information [1–4]. Theymay be realized as end states of
proximitized semiconductor nanowires, and experimental evidence for their existence is rapidlymounting [5–
8]. The topological nature ofMBS systems gives rise to quantum information being stored in a non-local state,
notmeasurable by local operators. This property is intimately connected to non-Abelian braiding ofMBSs,
meaning that readout results depend on the order inwhichMBSs are brought together andmeasured [1, 9–12].
Experimentally, however, the required branching of topological wires (T-junctions) is challenging. The question
how topological qubits could otherwise be verified naturally arises. Here our purpose is to design circuits
allowing for topologically protected storage andmanipulation of quantum information in structures without
branched topological segments.

The core of our design is theMajorana box qubit (MBQ) formed in afloating superconducting islandwith
two longTS nanowires,markedTS infigure 1(a). This structure is experimentally attractive because the parallel
wires can be driven simultaneously into the TS phase by a uniformmagnetic field, and because the connecting
transverse superconductor (S) can be a conventional s-wave superconductor. In addition, the designs require
reference arms that can be non-proximitized semiconductors, and hence there are noT-junctions of topological
superconductingwire segments. Thewire geometry is natural for interfacing the qubit with quantumdots
(QDs), employed to read out andmanipulate the stored quantum information. TheQDs can be defined by gates
at the segments of thewirewhich are not part of the box, see figure 1. The parity of theMBQ is protected by its
charging energywhich is supposed to be large. It is important to note that the charging energy scales linearly

L1 W~ with the size of the box, while the residual energy splittings of theMajoranamodes are exponentially
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suppressed for increasing TSwire length LW.Moreover, for theQD schemes discussed below, the charge of the
isolatedMBQ system isfixed, thus protecting the qubit fromquasiparticle poisoning.

TheMBQhas fourMBSswith correspondingMajorana operators j jg g= †. Under strongCoulomb

blockade, the fermion parity of the island is a good quantumnumber, 11 2 3 4g g g g =  , andwith negligible
Majorana overlaps the fourMajorana operators correspond to a degenerate spin-1/2 degree of freedom [13–16].
Pauli operators for theMBQcan be represented as

x y zi , i , i , 11 2 3 1 2 3g g g g g g= = =ˆ ˆ ˆ ( )

expressing the fractionalization of spin into spatially separatedMBSs. This spin also appears in the topological
Kondo effect [13, 14] and enters the definition of stabilizers inMajorana surface codes [15, 16]. Its non-local
topological origin suggests excellent qubit properties, where theMBQ state can be addressed by electron
tunneling via weak links betweenMBSs and either normal leads,figure 1(a), orQDs, figures 2(a), (d). Coulomb
blockade permits only cotunneling processes, where an electron enters the box through tunneling link i and exits
via link j. The effective tunneling amplitude then contains aMajorana bilinear i i jg g [13–16] amounting to one of
the Pauli operators in equation (1).

The simplestMBQexperiment involves interferometric conductancemeasurements, which provide a
natural way to qubit readout and/or initialization in the Pauli eigenbasis [15, 16]. The setup is shown in
figure 1(a) andwemodel it by theHamiltonian

H H t t z d d h.c. , 2a leads 0 1 1 2= + + +[( ˆ) ] ( )†

whereHleads describes the two uncoupled leadswith density of states 1,2n and electron operators d1,2 near the
respective tunnel contact. The cotunneling amplitude via theMBQ is t z1 ˆ, and t0 refers to tunneling through the
reference arm infigure 1(a).

In appendix A, we discussmeasurement-induced decoherence [17] in this setup, showing that on time scales
t V1> , whereV is the bias voltage, conductancemeasurements are projective. There are two possible
conductance outcomes, see figure 1(b),

G
h

t t z
e

, 3z

2

1 2 0 1
2n n= +∣ ∣ ( )

and the interference term enables readout of the ẑ-eigenvalue z 1=  . After themeasurement, theMBQ is
prepared in the eigenstate determined by the conductance outcome. Since phase coherence in the reference arm
requires smallV, and cotunneling conductances are small, we expect the current-based readout schemes to be
limited by the time needed for data accumulation.

Wenext discuss quantum-dot-based readouts relying onwell-known techniques with anticipated faster
measurement times compared to the conductance readout. In the setup offigure 2(a), electrons can tunnel back
and forth between the two dots either through the box (amplitude t z1 ˆ) or via the reference arm (t0). The
corresponding Rabi oscillation period thus depends on the qubit state and itsmeasurement allows forMBQ
readout. Similar ideas have been implemented in spin qubit systems [18] and proposed for singleMajoranawires
[19]. Assuming that the dots havewell-resolved single-particle levels, we include only one level per dot (spin-
degenerate or spin-polarized). For a single electron occupying the two dots, corresponding to the basis

1 , 2d dñ ñ{∣ ∣ }with detuning energy e , the system is described by

Figure 1.Majorana box qubit and readout based on conductance interferometry. (a)Two long TSwires (blue) are shunted by a
superconducting bridge (S, orange) to form afloating island hosting fourMajoranas jg (crosses).We study longwires LW x , with ξ
being the TS coherence length, such thatMBSwave function overlaps are negligible and allMBSs are zero-energy states.With gate
electrodes (gray), one can adjust tunnel couplings through the non-proximitized semiconductor regions (green). The few-channel
semiconducting reference arms (R, light green ) are shorter than their phase coherence length, L LR < f, and a dimensionlessmagnetic
fluxj is enclosed by the resulting interference loop. The electrostatic potential is controlled by a nearby gate and tuned to aCoulomb
blockade valley with quantized charge on the island. Readout of z i 2 3g g=ˆ is possible via conductance interferometry between two
normal leads (yellow). (b)The conductance Gz j( ) is 2p-periodic inj, with a relative π-shift for the two qubit states 0ñ∣ and 1ñ∣ with
ẑ -eigenvalue z 1= + and z 1= - , respectively. To achieve good readout fidelity, onemay tune the flux to a point ofmaximum
contrast with G t t4max 0 1d ~ ∣ ∣, see equation (3).
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t t z

t t z Q
, 4b s
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0 1
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e
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⎛
⎝⎜

⎞
⎠⎟

ˆ
ˆ ˆ ( )

whereHsmodels a charge sensor withweak capacitive couplingλ between its charge, described by the operator
Qs
ˆ , and the dot-2 charge operator q 2 2d d2 = ñáˆ ∣ ∣.

The readout protocol infigure 2(b) is controlled by te ( ), i.e., through dot gate voltages. Starting in dot state
2dñ∣ at t=0, the electron undergoes Rabi oscillations between the dots (see appendix B). Since the Rabi
frequency t ztz

2
0 1

2w e= + +∣ ∣ depends on the qubit state z 1=  , with carefully timed charge
measurements, projectiveMBQ readout then becomes possible,figure 2(c). For optimal contrast (large
dw w w= -+ -∣ ∣), one can tune t0 and/or the phasej infigure 2(a). The visibility of the Rabi-oscillation readout
will of course be reduced by the rather short dephasing time known from similar charge qubits [20].

Alternatively, wemay switch to frequency domain and employ charge reflectometry readout [21–24], for
which charge dephasing can be compensated by longer integration times. This setup is illustrated infigure 2(d),
where a resonator is capacitively coupled to q2, replacing the sensor dot infigure 2(a). TheHamiltonianHc is as
in equation (4) butHsnowdescribes the resonator circuit with frequency 0w , and Q a as = +ˆ † denotes the
coupling to resonator photons a. Since the resonator-dot couplingλ is weak, we transform fromdot basis

1 , 2d dñ ñ{∣ ∣ } to the Rabi basis with Paulimatrices x y z, ,t . In the strong-coupling regimewith 0w near-resonant
with the Rabi frequencies zw =, the rotating-wave approximation then gives the effectiveHamiltonian
(appendix B.3, [23, 24])

H a a g a a , 5c z z z
RWA

0w t w t t= + + ++ -( ) ( )† †

with coupling g t zt 2z z0 1l w= - +∣ ∣ . Now adding a drive H E t a E t aidr in *k= -[ ( ) ( ) ]† on the resonator
input port, with single-tone signal E t I e t

0
i= w-( ) and photon decay rate ink into the drive line, the

transmitted signal at the output port ( outk ) follows from the transmission amplitude A a Iout 0k= á ñw w .
Using amaster equation approach, we find (appendix B.3 and [23, 24])

A

g

i
,

i 2 . 6

z

z z z

in out
i

2 in out 0

2
tot

k k

k k w w c

c w w

=
-

- + + - +

= G - -

w
( ) ( )

[ ( )] ( )

Figure 2.MBQreadout using quantumdots. (a)Device for time-domain readout. Two quantumdots 1 and 2 (light red) are formed on
top and bottom semiconductorwires (green). Dot levels and tunnel couplings can be adjusted by gates (gray). In addition, dot 2 is
capacitively coupled to a charge detector swith conductance G q2[ ]depending on dot-2 charge q2. (b)Readout protocol. (i)

t t0 1e  ∣ ∣ at times t 0< such that dot 2 is occupied, while dot 1 is empty. (ii)A sudden gate switch at t=0 brings the dot levels to
resonance, and the electron subsequently undergoes Rabi oscillations between the dots, with frequency zw depending on the qubit
state z 1=  . (iii)After wait time mt , one diabatically switches ε back to a large off-resonant value andmeasures q2. (c)With
q t z t, cos z2

2 wá ñ ( ) ( ), by careful choice of mt , e.g., to amaximumof the slower Rabi oscillations, the sensor conductance G q m2 t[ ( )]
will be perfectly correlatedwith the qubit state zwhich is thereby read out. For other values of mt (dashed), readout is not ideal. (d)
Device for frequency-domain readout using charge reflectometry, where a resonator replaces the charge sensor in (a). The input signal
Iin w( ) is either reflected back, or transmitted as output Iout w( ) and subsequently analyzed. (e)When irradiating the resonator with
low-bandwidth input∼I0, a peak in the transmitted photon spectrum Iout w( ) for w = W indicates the respectiveMBQ state 0ñ∣ or
1ñ∣ . (f)Alternatively, one couldmeasure the z-dependent phase shift f wD ( ) of the transmitted signal, where the contrast df is
maximized for resonant drive 0w w= .
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The broadening totG stems fromdecay and dephasing of the double dot.MBQ readout is nowpossible either by
observing a peak in the amplitude of the transmitted photon spectrum (I A Iout

2
0w = w( ) ∣ ∣ ) at frequency zw = W

determined byminimizing Re z0w w c- +∣( ) ( )∣ in equation (6),figure 2(e), or bymeasuring the z-dependent
phase shift of the transmitted signal ( Aargf wD = - w( ) ( )), figure 2(f).

As a variant of the quantum-dot-based readout proposed here, wemention the possibility of using the
regimewhere the tunneling through the reference arm (t0) ismuch stronger than the (co-)tunneling through the
MBQ (t1). In this limit, the two dots are effectively hybridized into a single dot tunnel coupled to twoMajorana
operators, say 2g and 3g . The energy shift of theQDdepends on z i 2 3g g=ˆ which therefore can be read out by a
measurement of the dot charge [25] or the quantum capacitance [31].

At this point, it is worth stressing that all the above readout schemes are topologically protected in the sense
that imperfections thatmay reduce the readout fidelity (which can be compensated for by longer integration
times) do not change the projection caused by themeasurement. This is because themeasured operator is
uniquely defined by the dots or leads being addressed. The robustness of the projection is a consequence of the
non-local and fractionalized nature of theMBQquantum spin.

So farwe discussed readout and preparation of ẑ-eigenstates. Using the three-dot devicewith an interference
link infigure 3(a), the ẑ-measurement is readily generalized to readout of all three Pauli operators (x y z, ,ˆ ˆ ˆ).
Here, a phase-coherent reference arm connecting far ends of the box is needed, e.g., between 1g and 2g . For this
purpose, afloating TSwire (top) acts as a single fermion level stretched out over the entire wire length [26, 27].
Thereby, readout andmanipulations along the far side of theMBQbecome possible. Figure 3(b) lists the
corresponding dot pairs to access all Pauli operators. This simple geometry allows for non-trivial test
experiments, e.g., tofirst prepare an eigenstate in one basis, and thenmeasure a different Pauli operator.

Similar protocols allow tomanipulate arbitraryMBQ states yñ∣ . For instance, consider an electron transfer
fromdot 2 3 infigure 3(a), implemented by ramping the detuning parameter ε.With interference links
turned off (t 00 = ), the tunneling amplitude is t z1 ˆ, seeequation (4). The protocol begins with an electron on dot
2, 0 2dyY ñ = ñ Ä ñ∣ ( ) ∣ ∣ . Assuming that a latermeasurement detects an electron on dot 3, the final state is

z3 3 T e 0 3 . 7f d d t
Hdt

d
i

t

0ò yY ñ = ñá Y ñ = ñ Ä ñ- ¢⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟∣ ∣ ∣ ∣ ( ) ( ˆ∣ ) ∣ ( )

In effect, the Pauli- ẑ operator has thus been applied, zy yñ  ñ∣ ˆ∣ . Equation (7) holds because all odd-in-t1 terms
are proportional to ẑ and because thefinalmeasurement has confirmed the transfer 2 3 . This protocol works
beyond the adiabatic regime [15, 16] and allows for fast high-fidelity operations.Moreover, after a failed transfer
attempt, t2 2 0f d dY¢ ñ = ñá Y ñ = Y ñ∣ ∣ ∣(∣ ( ) ) ∣ ( ) , one can simply retry. Likewise, other Pauli operators are accessible,

Figure 3. Single- and two-qubit devices. (a)MBQwith three quantumdots and an interference link for readout of all Pauli operators
and full one-qubit control. Dark squares indicate either a charge sensor or a resonator system, seefigure 2. (b)Possible combinations
of active dot pairs addressing particular Pauli operators, see equation (1). (c)Device with twoMBQs a and b connected by dots 4 and 5,
allowing for readout of their joint parity via theMBQproduct operator z za bˆ ˆ . The other dots serve to read andmanipulate qubits
individually.
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see figure 3(b). Suchmanipulations are protected and, without anyfine tuning, uniquely determined by the
initial and final dot occupations.

Arbitrary single-qubit rotations are generally not protected to such a degree. Nevertheless, with interference
links andfine tuning of tunneling phases, e.g., via thefluxj infigure 2, semi-protected operations are possible
[25]. Consider dots 2 and 3 infigure 3(a), modeled by equation (4)with t t t zz 0 1= +ˆ ˆ. For Re t t 00 1* =( ) , since
tz∣ ∣ is independent of z 1=  , theMBQdegeneracy remains intact and no dynamical phase is picked up during
the electron transfer. One thereby obtains a phase gate, e ziy yñ  ñq∣ ∣ˆ , with tan 1q = - [ Im t t1 0( )].When
combinedwith other dot pairs, arbitrary rotations are possible.Without phase tuning, protectionmay be
achieved by a four-step pumping protocol [16]. In both cases, projective dot chargemeasurements can eliminate
diabatic errors.

A quantum computer is universal if one has full one-qubit control and a two-qubit entangling gate [28]. The
above single-qubitmeasurements can easily be extended to the joint readout of two qubits, whichmakes the
design ideal formeasurement-based gate protocols [28–30].Wefirst consider an entanglingmeasurement for
the two-qubit device infigure 3(c). (see appendix C for additional details.)With interference links turned off, an
electron transfer process fromdot 4 5 has the tunneling amplitude t t z t zab a a b b= +ˆ ˆ ˆ , where ta b represents

cotunneling viaMBQ a/b. The corresponding Rabi frequency, tz z ab
2 2

a b
w e= += ∣ ∣ , depends solely on the

joint parity z z 1a bá ñ = ˆ ˆ , which can thus be read out as infigure 2. After preparation of xa b,ˆ -eigenstates, this
operation yields an entangled two-qubit state, and subsequent readout of za b,ˆ and/or xa b,ˆ can detect Bell-type
correlations [28].

Finally, the device infigure 4 allows formeasurement-based topologically protected implementation of the
Clifford gates C S H, ,z{ ˆ ˆ ˆ }, seefigure 5 for the relevant logic circuits. First, the controlled-NOT (CNOT) gate acts
as CC T C Ty y y yñ Ä ñ  ñ Ä ñ∣ ∣ ˆ (∣ ∣ ), where the operator C z z x1 1 1C T C T

1

2

1

2
= + Ä + - Äˆ ( ˆ ˆ) ˆ ( ˆ ˆ) ˆ flips the

target (T) qubit if and only if the control (C) qubit is in the 1ñ∣ -state, see figure 5(a). Next, single-qubit gates
S idiag 1,z =ˆ ( ) and S ex

xi 4= p-ˆ ˆ infigures 5(b), (c) together allow for 2p -rotations around any qubit axis. The
Hadamard gate H x z 2= +ˆ ( ˆ ˆ) , effectively exchanging x̂- and ẑ-eigenstates, then follows by combined
rotations H S S Sz x z=ˆ ˆ ˆ ˆ .

In conclusion, we have described readout, initialization,manipulation, and entangling operations for
MBQs, all of which can be tested in current state-of-the-art experiments. Using these tools, we devised a two-
qubit universal quantum computerwith protectedClifford gates. Naturally, the performance of the setupwill
depend on thefidelity of the readout operation.We have argued that one expects high fidelities because of the

Figure 4. Four-qubit device. (a) Similar tofigure 3(c) but with fourMBQs allowing for implementation ofmeasurement-based
topologically protected Clifford group operations, seefigure 5. Twodata qubits, denoted target (T) and control (C) for a CNOT
implementation infigure 5(a), are coupled andmanipulated by two ancilla qubits A1 andA2 (in theCNOT,A1 serves as active ancilla).
The choice of data and ancilla qubits is arbitrary and can be freely interchanged. Using the two ancilla qubits, one can implement

2p -rotations (i.e., Ŝ-gates) around both qubit axes ẑ and x̂ of both data qubits C andT. (b)Extension of the protocols infigures 3(b),
(c).With the indicated dot pairs, any single-qubit operator and the product operators of adjacent qubits can be addressed.
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topological nature of the qubits, but this of course needs to be confirmed by experimental implementation.
Successful demonstration of our proposed devices could pave theway towards fault-tolerant scalable quantum
computation, e.g., using surface code architectures and/or hybrid strategies. Finally, we note that interesting
generalizationswith six ormoreMBSs on the box could implementmeasurement-induced braiding operations
on a single box [30, 31].
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AppendixA. Conductance-interferometric readout

Herewe briefly discuss underwhich conditions the interferometric conductance readout of theMBQ in
figure 1(a)will implement a projectivemeasurement. Assuming that the amplitudes t0,1 in equation (2) are
switched on at initial time t=0 and that the initial state of theMBQ is 0 1y a bñ = ñ + ñ∣ ∣ ∣ , we obtain for the
time-dependent reduced densitymatrix of the qubit

t
e

e
. A.1

F t

F tMBQ

2

2

*

* *
r

a ab
a b b

=
-

-

⎛
⎝⎜

⎞
⎠⎟( )

∣ ∣
∣ ∣

( )
( )

( )

Figure 5. Logic circuits for implementation of the Clifford gates. (a)Protocol realizing theCNOTgate [29]. After initializing qubit A1
in 0A1ñ∣ , onemeasures joint parities x xA T1á ñˆ ˆ and z zC A1á ñˆ ˆ with respective results a 11 =  and a 12 =  . Finally, A1 is read out,
x a 1A1 3á ñ = = ˆ , followed by controlled Pauliflips onC andT. Theseflips are conditioned on the intermediatemeasurement
outcomes a1,2,3, where zCˆ and xT̂ is not applied (is applied) for a a 11 3 = + 1-( ) and a 12 = + 1-( ), respectively.With these recovery
operations, the protocol is guaranteed to give aCNOT gate, see inset on the right. (b)Protocol implementing 2p -rotations around
the ẑ -axis on qubit C. After preparing a y 1A1 = + eigenstate yA1ñ∣ onA1, ameasurement z z bC A1 1á ñ =ˆ ˆ entangles both qubits.
Subsequently, readout of z bA1 2á ñ =ˆ collapses the state onA1.With recovery operation zCˆ not applied (applied) for b b 11 2 = + 1-( ),
the protocol implements the desired gate, S diag 1, i ez

zi 4= p-ˆ ( ) ˆ . (c)As (b), but for 2p -rotations around the x̂-axis. After
preparing a y 1A2 = - eigenstate yA2ñ∣ ¯ onA2, onemeasures x x cC A2 1á ñ =ˆ ˆ and subsequently reads out A2, z cA2 2á ñ =ˆ .With recovery xCˆ
not applied (applied) for c c 11 2 = + 1-( ), the protocol implements the gate S ex

xi 4= p-ˆ ˆ on qubit C. ExchangingC↔T andA1↔A2
in above protocols generates a flippedCNOT (control↔ target) and 2p -rotations on qubit T.
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The decay of off-diagonal elements is encoded in the real part of the decoherence function

F t t
Dt Vt t

Vt t
Re 4

2 ln , ,

, ,
A.2D V

V

1 2 1
2

1

2
2 1 1

1
n n

p
= ´

+ <

>

⎧
⎨⎪
⎩⎪

( ) ∣ ∣
( ) ( )

( )

whereV is the applied bias voltage, and the leads have density of states 1,2n and bandwidthD. Once the off-
diagonal elements have died out, the conductancemeasurement can therefore be considered projective. The
MBQwill then either be in state 0ñ∣ , with probability 2a∣ ∣ , or in state 1ñ∣ , with probability 12 2b a= -∣ ∣ ∣ ∣ . From
the decoherence function F (t)we can thus extract theminimalmeasurement time needed for a readout based on
conductance interferometry, see equations (2) and (3) of themain text.

We now turn to the derivation of the above result.We first write the operators d 1,2=ℓ at the contact points to
theMBQ in terms of conventional lead fermionmodes, d ck k,= åℓ ℓ . The uncoupled leadsHamiltonian in

equation (2) then follows as H c c ,k k k kleads , , , ,x= åℓ ℓ ℓ ℓ
† where k,xℓ is the occupation energy of lead state k,ℓ( ).

The reduced densitymatrix can then be calculated by time-evolving states throughHa in equation (2), with

U t T H t texp i d ,t
t

a0ò= - ¢ ¢⎡⎣ ⎤⎦ˆ ( ) ( ) where Tt is the time-ordering operator, followed by performing a trace over

the lead degrees of freedom. In our case,Ha(t) is time-independent after initial switch-on of tunnel couplings.
Prior to themeasurement, theMBQ is detached from the leads and therefore we assume an initial densitymatrix
in product form, t t0 0MBQ leadsr r r= = = Ä( ) ( ) , with initialMBQdensitymatrix

t c i j0 i j ijMBQ ,r = = å ñá( ) ∣ ∣. The leads are in a thermal state, e H
leads

leadsr ~ b- with T1b = , where the applied
bias voltageV determines the chemical potential difference.With these ingredients, we obtain the reduced
densitymatrix

t U t c i j U t
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†

†

HereUi(t) follows by substituting theMBQPauli operator ẑ inHawith its eigenvalue, z i z iiñ = ñˆ∣ ∣ and
U t i U t iiñ = ñˆ ( )∣ ( )∣ , and similar forU tj ( )† . This is possible since theMBQ-mediated tunnelingHamiltonianHa

generically contains only a single Pauli operator perMBQ (in this case ẑ), such that theMBQdensitymatrix can
be expressed in the corresponding eigenbasis, here i j 0 , 1ñ = ñ ñ∣ ∣ ∣ . It is also clear that diagonal elements (with
respect toMBQ tunneling inHa) are conserved,U t U t 1i i =( ) ( )† . Since the off-diagonal densitymatrix elements
decay, we obtain tMBQr  ¥ =( ) diag c c,00

2
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2(∣ ∣ ∣ ∣ ), see equations (A.1) and (A.2).
To obtain an expression for the decay of off-diagonal elements, we take the lead trace and perform a second-

order cumulant expansion in equation (A.3). Considering only the real part (responsible for decay) and noting
that elements 0 1MBQrá ñ∣ ∣ and 1 0MBQrá ñ∣ ∣ are related byHermitian conjugation, wefind

F t U t U t
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†

where nB w( ) is the Bose–Einstein distribution function.Wenow evaluate this expression at zero temperature,
nB w w -Q -( ) ( ), and introduce a lead bandwidthD as frequency cutoff, Dw∣ ∣ . The integrals in
equation (A.4), summing over s = , can then be simplified to give

g t
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1 cos

. A.5
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The short-time decay (with t D V,1 1- - ) is Gaussian, g t V D t1

2
2 2 2» +( ) ( ) , while for intermediate times

(D t V1 1<- - )we have g t Dt V t2 ln 1

2
2 2+( ) ( ) . The (asymptotic) behavior for t V 1> - follows as

g t D V Vt Vt2 ln 2 1 cosp+ - -( ) ( ) ( ( )), where in equation (A.2)wediscarded constant/oscillating
parts and kept only the term t~ .

The absolute value of the cotunneling amplitude is given by t EC1 1 2l l∣ ∣ ∣ ∣ , with lead-Majorana tunnel
couplings lℓ and island charging energyEC [13]. The timescale for decay of the off-diagonal elements (i.e.,
dephasing) of theMBQ state then follows from E VC

1
1 2

2t = GGj
- ( ) , containing the lead-island broadenings

21,2
2n lG == ∣ ∣ℓ ℓ ℓ weighted vs the charging energyEC, and the bias voltageV itself. Sincewe have to be in the

cotunneling regimewith V E, C1,2G  , for typical device parameters [7], we find 10t »j ns. Conductance
readout therefore ismost likely not limited by tj but rather by data allocation towards sufficient signal-to-noise
ratio to resolve the two conductance outcomes, see equation (3) and discussion inmain text. Under Coulomb
valley conditions (where ourMBQ is operated) the corresponding cotunneling currents are small [7].
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Finally, we note that the interference linkwith tunneling amplitude t0 outside of theMBQ (see equation (2))
does not affect the dephasing time of theMBQ, see equation (A.4). Here, tracing out the leads in equation (A.3) is
the crucial step, wherewe assume that no knowledge of the leads state is retained, in particular not about the
number parity of transferred electrons. For t 00 = , when this number parity isfixed by ameasurement,
decoherencewill not set in because the parity and the number of applications of the corresponding Pauli
operator are perfectly correlated. This fact is exploited by theQD readout and confirmed charge transfer
schemes in themain text.With interference links turned off, such protocols do not involve dephasing of the
MBQ state (see equation (7)) but instead correspond to the application of a Pauli operator to theMBQ state if an
electron has been transferred. The same statement holds true for the number parity of transferred electrons in
the case of normal leads. If we now include the interference link, t 00 ¹ , such correlations between the number
parity of transferred electrons and the number of Pauli operator applications will be absent, since the leads are
effectively shorted. In this case, the decoherence is of themore conventional type because the information loss is
distributed across a continuumof lead states. For t 00 = , decoherence is only caused by our lack of knowledge
about the number parity of transferred electrons. In any case, the value of t0 does not affect the dephasing time.

Appendix B.Quantum-dot-based readout

Herewe discuss details onMBQ readout via (double)QDs, as illustrated infigure 2 of themain text.Wefirst
translate the bareMBQplusQDsHamiltonian into its eigenbasis (B.1), and then analyze the functionality of
measurement devices in time-domain (B.2) and frequency-domain readout schemes (B.3).

B.1. Rabi oscillations for doubleQDcoupled toMBQ
Since the coupling between dot 2 and the readout device is either intermediately turned off or consideredweak, it
is convenient to switch to the eigenbasis ofHb in equation (4)with 0l = .We refer to the hybridized double dot
as Rabi system. For given Pauli eigenvalue z 1=  of theMBQ, the Rabi eigenstates follow from the dot basis

1 , 2d dñ ñ{∣ ∣ }as

t

t

1 2 2 ,

1 2 2 , B.1

z z d z d z z

z z d z d z z

w w e w w e

w w e w w e

ñ = ñ + - ñ -

ñ= ñ - + ñ +

∣ [ ∣ ( )∣ ] ( )
∣ [ ∣ ( )∣ ] ( ) ( )

where t t t zz 0 1= + is total inter-dot tunneling and tz z
2 2w e= + ∣ ∣ is the Rabi frequency. SinceHb contains a

single Pauli operator, the corresponding eigenvalue z is a good quantumnumber. The same holds true formore
participatingMBQswherewe have a set of good quantumnumbers z z, ,1 2 ¼( ).We can therefore focus on two
Rabi eigenstates ,z zw wñ ñ∣ ∣ throughout, and beyond that refer to the block-diagonal structure ofHb in eitherQD
orRabi basis. Defining Paulimatrices in the Rabi basis

, , B.2z z z z z x z z z zt w w w w t w w w w= ñá - ñá = ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

the bare systemHamiltonian reads H z z0 w t= . Note the hidden 4×4 structure, with two distinct Rabi systems
for z 1=  , see figure 2(b) and equation (B.1).

B.2. Real-time observation of Rabi oscillations
For real-time readout of Rabi oscillations on the dots, wefirst prepare the system at tze  ∣ ∣ locked in the 2dñ∣
state of the dots with charge on dot 2. Next we pulse diabatically to small ε, ideally 0e = . The system thus is
initialized in the state

0 1 2 . B.3d0 a bY ñ = ñ + ñ Ä ñ∣ ( ∣ ∣ ) ∣ ( )

Switching to the Rabi basis and letting the system evolve up to thewait time mt , it will performRabi oscillations
between the dot states 2dñ∣ and 1dñ∣ . The oscillation period depends on the qubit state via the Rabi frequency zw ,
see figure 2(b) of themain text, leading to an entangled state ofMBQandQDs. The time-evolved state of the
QDs is then given by

t
t

t t t
i

sin 1 cos
i

sin 2 . B.4z

z
z d z

z
z d

w
w w

e
w

wY ñ = ñ + - ñ
⎛
⎝⎜

⎞
⎠⎟∣ ( ) ( )∣ ( ) ( ) ∣ ( )

As the next step, we diabatically pulse back to large ε such that the remaining dynamics follow from effectively
decoupled dots. Inserting thewait time mt spent at themeasurement point 0e = , wefind the charge
measurement outcome probabilities pz(q)
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where q 1, 2= indicates whether the chargewas found onQD1or 2, and me is the value of the detuning during
the time-evolution described by equation (B.4). As prescribed by the initial state (B.3), wefind
p p1 2 2a+ =+ +( ) ( ) ∣ ∣ and p p1 2 2b+ =- -( ) ( ) ∣ ∣ . Further,maximumoscillation amplitudes of the probabilities
are achieved for 0e = at themeasurement point, giving

p p

p p

2 cos , 1 sin ,

2 cos , 1 sin ,

m m

m m

2 2 2 2
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a w t a w t
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where theRabi frequency reduces to t0z zw e = =( ) ∣ ∣.Maximum contrast is achieved for mt where
p p2 2+ -( ) ( ) (modulo amplitudes a∣ ∣and b∣ ∣). A chargemeasurement finding q=2 thus identifies the qubit
state to be 1ñ∣ (z 1= - )with highfidelity. Conversely, finding q=1with p p1 1+ -( ) ( ) identifies the qubit to
be in state 0ñ∣ (z 1= + ). As an example, we plot the probabilities q t tcos z2

2 wá ñ =( ) ( ) (i.e., p 2z̄ ( )) for initial
qubit states 0ñ∣ and 1ñ∣ infigure 2(c) of themain text.

Let us now consider the action of a dot-chargemeasurement on the dynamically evolved state mtY ñ∣ ( )
defined through equations (B.3) and (B.4). Assuming the initial state as above ( 0e = ) and for ameasurement
finding q=2, the qubit will be in the state

p
; 2
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; 2
, B.6m

m m

m

t
a w t b w t

t
Y ñ =

ñ + ñ+ -∣ ( ) ( )∣ ( )∣
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with totalmeasurement probability p p p; 2 2 2mt = ++ -¯ ( ) ¯ ( ) ¯ ( ) as normalization. Conversely, if onemeasures
q=1 the qubit state is

p
; 1

e sin 0 e sin 1

; 1
, B.7m

m m

m

i i

t
a w t b w t

t
Y ñ =

ñ + ñj j
+ -+ -

∣ ( ) ( )∣ ( )∣
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with p p p; 1 1 1mt = ++ -¯ ( ) ¯ ( ) ¯ ( ). The phases t t targz z z zj = =∣ ∣ ( ) stem from the prefactor of the 1dñ∣ -term in
equation (B.4).

Abovewe saw that the action employed bymeasuring the dot state q 1, 2= will not fully project the qubit
state in the general case. Onlywhen one of the probabilities vanishes is the projection complete, which however
requires perfect timing of mt . Deviations from this perfect value, together with imperfections due to noise, limits
the readoutfidelity. Unfortunately, one cannot simply re-measuremultiple times to obtain better statistics.
Instead, the upper limit to improvements through repetition is set by the visibility of charge oscillations. In other
words, re-measuring with updated coefficients pcos ; 2m ma a w t t¢ = +( ) ¯ ( ) and

pcos ; 2m mb b w t t¢ = -( ) ¯ ( ) after initiallymeasuring 2dñ∣ and repeatingwill not completely converge the qubit
state. For further discussions onmeasurement details of the time-domain readoutmethod, see e.g. [19].

B.3. Charge reflectometry readout
Herewe discuss the charge reflectometry readout ofMBQ-QDhybrid systems inmore detail. As discussed
above, readout based on coherent charge oscillations infigures 2(b), (c)will be limited by charge fluctuations and
noise. Driven high-frequency charge oscillationsmight bemore robust in this regard and the technique is well-
known in the context of double-dot spin or charge qubits [23, 24]. As illustrated infigure 2(d), a resonator is
capacitively coupled to theQDcharge to be read out.

We translate the coupling term Q qs 2l~ ˆ ˆ in equation (4) into the Rabi basis. Replacing q2, onefinds

H H H Q
t1

2
1 . B.8c s s

z
z

z

z
x0 l

e
w

t
w

t= + + - -
⎛
⎝⎜

⎞
⎠⎟ˆ ∣ ∣ ( )

Nowconsider a resonatorwith bare frequency 0w , modeled by H a as 0w= † , and capacitive coupling to the
resonator photons, Q a as = +ˆ †.When resonator and double dot are near-resonant, 2 z0w w» and

2 minz0w w- ∣ ∣ , , 2z z0 0w w w w+( ∣ ∣), the rotating-wave approximation gives Hc
RWA in equation (5) of the

main text.
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B.3.1. Strong-coupling regime. First we consider the strong coupling regime (focused on inmain text), where
the hybridized double dot (Rabi system) is at resonancewith the resonator, 2 z0w w .Within the rotating-wave
approximation, see equation (5), one can re-express the system in terms of dressed states, see e.g. [32]. Similar
calculations as done here for the strong-coupling regime can be found in [21–24] alongwith experiments. In
order to allow readout of the energy spectrumof the systemwe add a drive term
H E t a E t aidr in *k= -[ ( ) ( ) ]† , withfield E t I e t

0
i= w-( ) incident at the resonator. Switching to the rotating

frame of the drive, the full Hamiltonian reads

H a a g a a I a a
1

2
i , B.9z z z0 in 0t t t k= D + D + + + -+ -( ) ( ) ( )† † †

where the effective coupling g t 2z z zl w= - ∣ ∣ describes emission and absorption of resonator photons. Pauli
matrices i 2x yt t t=  ( ) are defined in accordancewith equation (B.2). The dots and photon energies in the
rotating frame are shifted to 2z zw wD = - and 0 0w wD = - .

The time evolution now follows froma standardmaster equation approach. In the presence of coupling to
baths, the Liouville equation for the densitymatrix reads

H

n n
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1 , B.10
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th th
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where A A A A A,1

2
 r r r= -[ ] { }† † is the Lindblad dissipator. Terms in outk~ model decay of resonator

photons into the input/output line, while γ and Gf quantify decay and dephasing of the hybridized double dot.
The baths set the temperatureT of the system, where n 1 e 1kT

th
2 z= -w( ) and N 1 e 1kT

th
0= -w( ).We

thenfind the equations ofmotion
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with total decay rate n1 2tot
1

2 thgG = G + +f ( ). For the steady-state solutionwe take the semiclassical

decoupling approximation, a az zss ss sst tá ñ » á ñ á ñ . Due to external dephasing and decay ( totG ), once the steady
state is reached, the double dot then is assumed to be in a thermal equilibriumwith the environment, i.e.,

kTtanhz zsst wá ñ = - ( ).We find
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wherewe defined the susceptibility g iz z z
2

totc = G - D( ). Fromhere, we directly obtain the transmission
amplitude
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In equation (6) of themain text we took for simplicity the zero-temperature limit 1z sstá ñ  - . One sees that the
real part of zc describes shifts of the transmission resonances, where amaximumof A 2

w∣ ∣ follows byminimizing
Re z z0 ssc tD - á ñ∣ ( ) ∣, while the imaginary partmodifies the resonator decay rates. Finite temperatureT

diminishes the relative shifts z z ssc t~ á ñ , with 0z sstá ñ  for kT zw .We plot the transmission
I A Iout

2
0w = w( ) ∣ ∣ and the phase shift AargfD = -w w( ) infigures 2(e), (f) of themain text, where for illustration

purposes we take the idealized situation 0totG = andT=0.Other parameters are 2l = (then
g 0 1z e = =∣ ( )∣ ), 100w = , 0.2in outk = andRabi frequencies 6w =+ , 4w =- in arbitrary units. In this case

0w is centered between the transition frequencies 2 zw of the double dot. Therefore also the resulting transmission
peak shifts ( zW ) and phase shifts ( fD ) are symmetric around 0w , see figures 2(e), (f). Other choices of zw =
relative to 0w , e.g., by adjusting the detuning ε, may yield better contrast (dW and/or df in figures 2(e), (f))
depending on the remaining parameters, see equation (6) and the discussion below.

Taking experimentally relevant parameters from the cavity—double dot experiments in [23, 24] in
combinationwithMajoranawire experiments [7] as guideline, we next consider: bare coupling 1l = (then
g 0 0.5z e = =∣ ( )∣ ), 100w = , 2 0.02in outk k= = (i.e., resonator quality factor Q 5000w k= = ) and
tunnel couplings t t t 60 1= + =+∣ ∣ ∣ ∣ , t t t 40 1= - =-∣ ∣ ∣ ∣ in units of 200MHz. Further, we consider decay and
dephasing of the hybridized double dot (Rabi system) as 0.5g = and 5G =f (see [23, 24]), respectively, and
temperatureT=5 (corresponding to 1 GHz;50mKon-chip base temperature).With these parameters the
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plots infigures 2(e), (f) change tofigures B1 (a), (b). If the Rabi frequencies are centered around the bare
resonator frequency 0w , one of the frequency shifts is negative ( 0wW <+ ) and the other positive ( 0wW >- ).
However, they are no longer symmetric around 0w which is caused by the broadening and finite-temperature
effects. Similarly, the phase shift for the z = + -( )MBQstate at resonant drive 0w w= is negative (positive).
The point 0fD = is crossedwhen running across the transmission resonance, i.e., for w = W+ -( ), as indicated
by the vertical dashed lines in the figure. The configuration of energy scales/frequencies with double dot
transition energies 2 zw centered around 0w is advantageous for phase shift readout, where the contrast df is
maximized for a resonant drive 0w w= matching the bare resonator frequency. Such differential phase shifts of
order 10df >  can be clearly resolved in experiments, see [23], and readout of the qubit state should be possible
with integration times in the sub-μs regime.

Last, we show the resonator response as function of the double-dot detuning ε, see figures B2 (a), (b), where
the resonator is driven at its bare resonance frequency, 0w w= . As long as the double-dot is far-detuned from
the resonator, g2 z z0w w- ∣ ∣ , the two systems effectively decouple and the drive signal is transmitted
resonantly by the bare resonator, with full transmission A 12 =w∣ ∣ , see figure B2(a). As the hybridized double dot
energy splitting 2 zw approaches the bare resonance frequency 0w , the systems eigenstates are transformed into
dressed states, see also [23, 24, 32]. Consequently, first due to dispersive and ultimately the strong-coupling
shifts of the resonance frequency z0w  W , the drive and resonator become off-resonant. The transmission is
therefore suppressed at smaller values of ε, see figure B2(a), and a large part of the input signal is back-reflected.

Figure B1. (a)Resonator transmission A 2
w∣ ∣ versus drive frequencyω (in units 200l = MHz) for zero double-dot detuning, 0e =

such that tz zw = ∣ ∣with remaining parameters given in the text. Vertical dashed lines indicate the position of principal resonances
zw = W . Clearly, the signals and splitting d~ W are diminished by broadening totG( ) andfinite temperature T( ) effects, see

equation (B.13).When going beyond the RWA,we expect to see further (but weaker) dips at larger drive-resonator detuning, where
the double-dot splitting crossesmulti-photon resonances of the cavity (e.g., a two-photon resonance at 2 2 z0w w= ). (b)Transmission
phase shift fD (in degree) versus drive frequencyω for same parameters as in (a).

Figure B2. (a)Resonator transmission A 2
w∣ ∣ versus double-dot detuning ε (in units 200l = MHz) for a drive resonant with the bare

resonator frequency, 0w w= . Other parameters are as infigure B1. (b)As (a), but now for the phase shift fD (in degrees) of the
transmitted signal. In both plots the red dashed lines indicate the points where 2 0w w=- , appearing symmetrically around 0e = (as
is the whole plot) since ε only enters quadratically in zw . Further red(blue) dotted lines denote detuning strengths wheremulti-photon
resonances 2 20w w= - (2 20w w= +) are crossed. These processes are not capturedwithin the rotating-wave approximation.We
expect such resonances to bemuchweaker than the principal ones at 2 z0w w , in particular for finite (large) broadening totG and
temperatureT.
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In addition, decay and dephasing of the double-dot cause energy loss of the drive, which diminishes the
transmitted signal. As can be seen in figure B2(a), while ameasurement of the resonator transmission in
principle can give information about the qubit state, the differences forMBQ states 0ñ∣ and 1ñ∣ (blue/red curve)
are quite small. This is because the readout configuration chosen forfigure B2 (andfigure B1) is targeted towards
transmission-phase-shift readout, with drive frequency near the resonator frequency, 0w w= . Infigure B2(b)
the phase shift is seen to go to zerowhen the double dot is far-detuned from the resonator, whereas when the
double dot is close to resonance it pulls the resonator frequency z0w  W . Consequently, afinite phase shifts
arises with 0fD < , as long as 2 zw is larger than the resonator frequency. Sincewe consider parameters with

t2 0w>+∣ ∣ and t2 0w<-∣ ∣ , for theMBQ state z = + the resonance 2 z 0w w= is never crossed, and the
transmission phase shift stays negative for any ε. Conversely, forMBQ state z = - the resonance condition

2 0w w=- is fulfilled at finite t40
2 2e w=  - -∣ ∣ (red dashed line infigures B2(a), (b)), and the transmission

phase shift changes sign. Ameasurement finding a positive phase shift fD at 0e  (for this parameter setting)
thus detects theMBQ state z 1= - , and a negative shift indicates z = +. Very similar experiments as suggested
here have been successful in detecting such shifts (of similarmagnitude as predicted here)when tuning the
tunnel coupling of a double dot, see [23].While in the case of Frey et al [23] the tuning of tunnel couplingswas
introduced by a gate, here the different tunnel couplings tz∣ ∣ (or Rabi frequencies zw ) encode theMBQ state. It
should be noted that the strong coupling regime also hasmore complex bistability behaviors [33], which should
be avoided in order not to confuse the readoutmeasurements. Unwantedmulti-photon phenomena can of
course complicate the readout, but they cannot, as discussed in themain text, alter the operator being projected
by themeasurement.

B.3.2. Dispersive regime. Secondly we discuss readout in the dispersive regime, see [34, 35] for similarmodels
and discussion ofMajorana systems coupled tomicrowave resonators. Depending on experimental details,
operation of the resonator and readout devices either in the strong-coupling or dispersive regimemay bemore
practical.We again start fromHc in equation (B.8), now in the dispersive regime. In this situation, only virtual
photon processes are relevant, and expansion to second order in 0l w and 2 z0l w w( ) yields the effective
Hamiltonian (see [34, 35])

H a a c

t t z
c

2 2
,

,
4

,
4

. B.14
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z z

z z z z
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z
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z z

z
z z
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0 1

2
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d c

t w c t

d
l e
w w
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w w w

ed w c
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= + + + + +

= =
+
-

= -
+
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⎝

⎞
⎠ ( )

∣ ∣
( )

( )

†

The dispersive shift zc becomes large for 2 z0w w , where the perturbative expansion breaks down and the
photonfield resonantly drives Rabi oscillations between the dots (i.e., we are back to the strong-coupling case).
From theHamiltonian (B.14)we can directly read off the shifted resonance frequencies z z z0 ssw c tW = + á ñ
when taking the steady-state expectation value z z sst t á ñ . Note that in this simplified approach neither
resonance broadening due to decay and dephasing of the Rabi system ( totG )nor decay of the resonator photons
( in outk ) are considered. Both effects (alongwith the drive) can be included as for the strong-coupling case
following the same steps as above.

Finally, the precise formof the strong-coupling or dispersive shifts z~W depends on the type of coupling
between system and resonator.However, we expect that there is no sizable direct coupling 1 2 , 2 1d d d d~ ñá ñá∣ ∣ ∣ ∣
between theQDs apart from tunneling via the interference link or theMBQ. Therefore any resonator or gate
couples only to theQDcharge operators q1̂ and q2̂, and the resulting shifts appear to contain only information
about the tunneling amplitudes tz∣ ∣. This property is highly desirable in particular for joint-parity readouts used
to entangle adjacent qubits.

AppendixC. Joint-paritymeasurements

In themain text we have discussed single-qubit and joint-paritymeasurements usingQDs. For example, for
two-qubit readoutwith tunneling t t z t zab a a b b= + , see figure 3(c), the readout signal depends through the Rabi
frequency tz z ab

2 2
a b

w e= + ∣ ∣ only on the joint parity z z 1a b =  . It is, however, not obvious that the state of
the two-qubit system is only projected onto a subspacewith z z 1a b =  , and not further affectedwithin this
subspace. In this appendix, we show thatmeasurement-induced dephasing or accidental qubit rotations are
completely avoided, a property inherited from the geometric protection ofMBQ spins. Any single-qubit and
joint-paritymeasurements performed by thesemethods thus are expected to offer exceptionally high readout
fidelities and lowprobability of readout-induced errors.We also note that joint-paritymeasurements (or
stabilizers inmore complex devices [15, 16]) can be accessed directly without ancilla qubits and initial
entanglement operationswhich are necessary in transmon architectures [36].
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Tounderstand how this works, we study thefinal reduced densitymatrix of the qubit system, MBQ,fr , given

that it startedwith densitymatrix MBQ,0r . For the dot system initially in state 2dñ∣ , onefinds

U t U tTr 2 2 , C.1d dMBQ,f env meas MBQ,0r r= Ä ñá- [ ( )( ∣ ∣) ( )] ( )†

whereU(t) is the time-evolution operator, and the trace runs over themeasurement apparatus and
environmental degrees of freedom. TheHamiltonian of the system in dot basis 1 , 2d dñ ñ{∣ ∣ } takes the form (see
equation (4))

H H
Q t

t Q
, C.2Q

1

2

e

e
= +

+

- +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ˆ
ˆ ˆ

( )†

where Q1,2
ˆ are operators that describe coupling of the charges q1,2 on dots 1 and 2 to the environment (described

byHQ). For the two-qubit examplementioned above, the tunneling-amplitude is given by t t z t za a b b= +ˆ ˆ ˆ . At
the end of the qubit readout procedure, the dot system is tuned out of resonance and the electron ends up in
either 2dñ∣ or 1dñ∣ , which can be confirmed by ameasurement as used forMBQ readout before.We therefore
consider two cases: either the electron ends up in the original state in 2dñ∣ , or in the other dot state 1dñ∣ .

If we find the dot state 2dñ∣ , the reduced densitymatrix is 2 2d dMBQ,frá ñ∣ ∣ . It is straightforward to see (by

expansion of the time-evolution operator in powers of t t,ˆ ˆ†) that then only termswith exactly asmany forward
(t̂ ) as backward-tunneling (t̂ †) events survive, i.e., terms that depend on t∣ˆ∣but not on the tunneling amplitude t̂
itself. For the two-qubit example these terms depend only on z za bˆ ˆ . In otherwords, even though the dot system is
collapsed and dephases during the readout process, only the relative phase—encoded in t∣ˆ∣—is affected. Thus,
with a successful readout of the Rabi frequency z z 1a b

w = the desired projection of theMBQdensitymatrix to a
coherent subspace, z z 1a b = + or z z 1a b = - is ensured.

On the other hand, if we find afinal dot state 1dñ∣ the electron has been transferred to the other dot during the
readout procedure, such that theremust be exactly one extra tunneling t t z t za a b b= +ˆ ˆ ˆ (not balanced by back-
tunneling t̂ †), and theMBQ states have acquired an additional phase factor. To recover the desired final density
matrix, we can apply a confirmed electron transfer between the two dots, 1 2 . As discussed in themain text,
such a transfer then applies the tunneling operator t̂ †, independent of adiabaticity. After the confirmed transfer
to thefinal state 2dñ∣ , we are in the same situation as before, ending upwith the desired projection.Moreover, we
note that after a joint-parity readoutwith result (say) z za b = +, because of t t, ,= -+ + - -( ) ( ), the recovery
operation is identified by a relative sign between the two allowed states 00 abñ∣ and 11 abñ∣ in that subspace. In fact,
by keeping track of the initial and finalQD states one can take this phase into account without physically
applying the recovery operation. The above arguments can be generalized to situationswithmoreMBQs
between theQDs and to stabilizers inmore complex systems [16].

We have thus established thatMBQquantum information is well-protected during readout and
manipulation because it is hosted in cotunneling links. This is in contrast to, e.g., spin qubits where the quantum
information is transferred toQD states themselves. Nevertheless, there will still be residualmechanisms for
dephasing. One source could be charged two-level systems that couple to the excited charge states of theMBQ
such that thefluctuator acquires which-path information during cotunneling events. This effect is, however,
suppressed because the relevant time scale for tunneling is EC

1~ - and therefore fluctuators with characteristic
times longer than this cannot obtain significant which-path information.Moreover, near the center of the
Coulomb valley where theMBQ is charge symmetric addition and removal of charges cost the same energyEC,
andMBQcharge fluctuations due to different cotunneling events thus tend to average out. Finally, wemention
that coupling to electromagnetic fluctuations thatmixes theMBSwith above-gap states could lead to dephasing.
This effect is suppressed by the topological gap, but amore detailed calculation is needed to determine its
importance.
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