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Abstract
Aims/hypothesis The aim of this randomised, crossover trial
was to compare cognitive functioning and associated brain
activation patterns during hypoglycaemia (plasma glucose
[PG] just below 3.1 mmol/l) and euglycaemia in individuals
with type 1 diabetes mellitus.

Methods In this patient-blinded, crossover study, 26 participants
with type 1 diabetes mellitus attended two randomised experi-
mental visits: one hypoglycaemic clamp (PG 2.8 ± 0.2 mmol/l,
approximate duration 55 min) and one euglycaemic clamp (PG
5.5 mmol/l ± 10%). PG levels were maintained by
hyperinsulinaemic glucose clamping. Cognitive functioning
was assessed during hypoglycaemia and euglycaemia conditions
using a modified version of the digit symbol substitution test
(mDSST) and control DSST (cDSST). Simultaneously, regional
cerebral blood flow (rCBF) was measured in pre-specified brain
regions by six H2

15O-positron emission tomographies (PET) per
session.
Results Working memory was impaired during hypoglycaemia
as indicated by a statistically significantly lower mDSST score
(estimated treatment difference [ETD] −0.63 [95% CI −1.13,
−0.14], p = 0.014) and a statistically significantly longer response
time (ETD 2.86 s [7%] [95% CI 0.67, 5.05], p= 0.013) com-
pared with euglycaemia. During hypoglycaemia, mDSST task
performance was associated with increased activity in the frontal
lobe regions, superior parietal lobe and thalamus, and decreased
activity in the temporal lobe regions (p < 0.05).Workingmemory
activation (mDSST − cDSST) statistically significantly increased
blood flow in the striatum during hypoglycaemia (ETD 0.0374%
[95% CI 0.0157, 0.0590], p = 0.002).
Conclusions/interpretation During hypoglycaemia (mean PG
2.9 mmol/l), working memory performance was impaired.
Altered performance was associated with significantly in-
creased blood flow in the striatum, a part of the basal ganglia
implicated in regulating motor functions, memory, language
and emotion.
Trial registration NCT01789593, clinicaltrials.gov
Funding This study was funded by Novo Nordisk.
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(MRI/PET/other) . Insulin therapy

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00125-017-4502-1) contains peer-reviewed but
unedited supplementary material, which is available to authorised users.

* Michael Gejl
mg@biomed.au.dk

1 Department of Biomedicine, Aarhus University, Bartholins Allé 6,
Building 1242, 8000 Aarhus C, Denmark

2 Department of Endocrinology and Internal Medicine, Aarhus
University Hospital, Aarhus, Denmark

3 Department of Neuroscience, University of Copenhagen,
Copenhagen, Denmark

4 Department of Clinical Medicine, University of Southern Denmark,
Odense, Denmark

5 Department of Clinical Biochemistry, Aarhus University Hospital,
Aarhus, Denmark

6 Steno Diabetes Center Copenhagen, Gentofte, Denmark
7 PET-Center, Department of Nuclear Medicine, Aarhus University

Hospital, Aarhus, Denmark
8 VU University Medical Centre, Amsterdam, the Netherlands
9 Pontifícia Universidade Católica, Rio de Janeiro, Brazil
10 Novo Nordisk A/S, Søborg, Denmark
11 Novo Nordisk Inc., Plainsboro, NJ, USA
12 Department of Endocrinology IC, Bispebjerg University Hospital,

Bispebjerg, Copenhagen, Denmark

Diabetologia (2018) 61:551–561
https://doi.org/10.1007/s00125-017-4502-1

http://clinicaltrials.gov
https://doi.org/10.1007/s00125-017-4502-1
mailto:mg@biomed.au.dk
http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-017-4502-1&domain=pdf


Abbreviations
AE Adverse event
CBF Cerebral blood flow
cDSST Control digit symbol substitution test
DSST Digit symbol substitution test
ETD Estimated treatment difference
fMRI Functional MRI
mDSST Modified digit symbol substitution test
PASAT Paced auditory serial addition task
PET Positron emission tomography
PG Plasma glucose
rCBF Regional cerebral blood flow
ROI Regions of interest

Introduction

Cognitive performance, even during simple tasks, is impaired
during acute hypoglycaemia (plasma glucose [PG] <2.5mmol/l
[45.0 mg/dl]) in individuals with type 1 diabetes mellitus [1, 2]
and the degree of impairment depends on the level of
hypoglycaemia [3]. Additionally, the cognitive impairment
induced by hypoglycaemia (PG 2.5–2.7 mmol/l) can remain
following the restoration of euglycaemia [4–6]; with some
studies showing cognitive impairments lasting for approxi-
mately 45–75 min after euglycaemic restoration [7, 8].
Working memory is an important aspect of cognitive function
and is susceptible to the effects of hypoglycaemia. It has been
demonstrated using functional MRI (fMRI) that, compared
with healthy individuals, people with type 1 diabetes mellitus
require higher levels of brain activation to attain parity for
working memory performance during hypoglycaemia (PG
≤2.8 mmol/l [50.4 mg/dl]) [9]. Thus, identification of cerebral
activation patterns during working memory performance at dif-
ferent PG levels could enhance our understanding of
mechanisms underlying the reduced cerebral efficiency seen
in type 1 diabetes mellitus [9]. For example, it remains to be
clarified if milder hypoglycaemic episodes, PG just below
3.1 mmol/l and previously associated with altered brain
activity [10, 11], have a similar negative impact on working
memory to those demonstrated at PG ≤2.8 mmol/l. In
individuals with type 1 diabetes mellitus, cerebral blood flow
(CBF) and cerebral glucose metabolism [12] within total grey
matter are correlated. This correlation becomes stronger when
adjusted for glucose levels, allowing CBF assessment to be
used as a proxy for cerebral metabolism [13]. However, there
are some limitations to assessment with fMRI; namely it does
not provide a direct measure of neuronal oxygen consumption
or neuronal activation and results are vulnerable to movement
distortion. Conversely, radiolabelled water (H2

15O) positron
emission tomography (PET) is a direct measure of cerebral
oxygen consumption (and thus neuronal activation) that is less
affected by movement and more quantifiable than fMRI [14].

This hypothesis-driven study aimed to test if cognitive perfor-
mance (assessed by H2

15O PET) and associated CBF estimates
are affected at less pronounced levels of hypoglycaemia than
previously studied and if cognitive performance is affected in
the recovery phase following less pronounced hypoglycaemia.

Methods

Study design

This randomised, single-centre, patient-blinded, two-period
crossover study compared cognitive performance (assessed
by working memory performance and reaction time) under
hypoglycaemic (aiming for a PG target just below 3.1 mmol/l;
the clamp target was defined as 2.8 ± 0.2 [2.6–3.0] mmol/l)
and euglycaemic (PG clamp target 5.5 mmol/l ± 10%) condi-
tions in participants with type 1 diabetesmellitus (ESMFig. 1).
Blood was drawn at pre-specified time points to assess
counter-regulatory hormone responses. Hypoglycaemia
awareness and symptoms during both clamps were also
assessed. Participants underwent the sequence of glycaemic
conditions in a blind and randomised order determined by
sequential enrolment and lowest available number assignment.
The two experimental visits were separated by 21–42 days (to
avoid effects of counter-regulatory hormone responses or other
physiological effects of hypoglycaemia). Female participants
attended the two visits at the same stage of their menstrual
cycle. The study was conducted from 14 January to 1
December 2013 at the Department of Endocrinology and
Department of Nuclear Medicine and PET Center, Aarhus
University Hospital, Aarhus, Denmark. Informed written con-
sent was obtained from all participants before any study-
related activities. The study was conducted in compliance with
International Conference on Harmonisation Good Clinical
Practice [15], the Declaration of Helsinki [16] and was ap-
proved according to local regulations by an independent ethics
committee.

Participants

Inclusion criteria for participants screened (n = 37) were right-
handedness, age 18–64 years, BMI 18.0–28.0 kg/m2, HbA1c

≤9.0% (≤75 mmol/mol), diagnosed with type 1 diabetes
mellitus and treated with multiple daily insulin injections or
continuous subcutaneous insulin infusion for ≥12 months prior
to screening. Key exclusion criteria included known central
nervous system abnormalities, structural brain abnormalities
(identified by structural MRI scans during screening), severe
hypoglycaemia (requiring third party assistance) or ketoacidosis
in the last 6months, clinically defined hypoglycaemic unaware-
ness, and treatment with medications potentially interfering
with glucose metabolism. Key experimental visit exclusion
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criteria included occurrence of a hypoglycaemic event (with PG
≤3.9 mmol/l) within the preceding 48 h. Full inclusion and
exclusion criteria are listed in ESM Table 1.

Cognitive tests

The Wechsler Adult Intelligence Scale (third edition) re-
vised digit symbol substitution test (DSST) [17] was pre-
viously adapted and validated to specifically measure
working memory [18], and has been successfully used with
fMRI [19]. Here, we used the stimuli of this adapted DSST
paradigm and modified it to our specific PET procedure.
As with the fMRI design, we used the modified DSST
(mDSST) task to measure working memory. A control task
(cDSST) was used for non-task-related brain activation
(without a working memory load), including visual and
motor cortex activation (for eye sight and movement) and
index finger movement.

Subtraction of regional CBF (rCBF) patterns during
cDSST from those during mDSST was interpreted as in-
dicative of brain activation patterns exclusively associated
with the operation of working memory. The mDSST task
consisted of three blocks of 32 randomly presented digit–
symbol combinations (ESM Methods: Cognitive tests –
mDSST and cDSST task combination blocks and ESM
Fig. 2), fitting the specific H2

15O PET design. The
cDSST task had the same basic design. Each block began
with test instructions shown for 7.8 s and was 0.2 s longer
than every 3 min PET acquisition, to ensure participants
were engaged in the mDSST or cDSST task during the full
3 min PET acquisition. Tasks were presented using
E-prime 2.0 (Psychology Software Tool, Pittsburgh, PA,
USA) through audiovisual goggles inside the PET scanner.
Correct responses (no response was considered as incor-
rect) and response time were recorded and analysed.

To test working memory following a prolonged recovery
phase (75–90 min after PG of 5–6 mmol/l was restored)
following hypoglycaemia or euglycaemia, the paced auditory
serial addition task (PASAT) was preferred over the mDSST
to avoid bias from habituation [20, 21]. During the PASAT,
participants heard a digit and had to add the next digit (pre-
sented 3 or 2 s later) and report the sum aloud. Both parts
consisted of 60 digits and correct responses were recorded.

PET imaging

Each participant underwent PET imaging at both visits. First, a
6 min transmission scan for attenuation correction was per-
formed. Thereafter, six 3 min tomography sessions with either
mDSST or cDSST in a fixed order were performed. Cerebral
activity levels were measured as change in brain uptake of
radiolabelled water (H2

15O), the retention of which matches
the rate of CBF, by means of a high-resolution research

tomograph (Siemens/CTI, Knoxville, TN, USA) operating in
3-D mode. Additional detail is provided in ESM Methods:
PET imaging.

Experimental visit procedures

Participants attended the study site at approximately 20:00
hours on the day before each experimental procedure, at which
point normal insulin treatment was suspended. Participants
stayed overnight to ensure stabilisation of PG within the range
of 5–8 mmol/l via variable intravenous infusion of insulin
(Actrapid®, 100 U/ml) and glucose (20% glucose/dextrose/
10 mmol/l KCl), before initiation of experimental procedures
at 08:00 hours the following day. On the days of the experi-
mental procedures, cognitive tests were briefly performed ≥1 h
before initiation of hypoglycaemia or euglycaemia to prevent
practice effects. Each glycaemic condition was preceded by a
60 min run-in period whereby variable intravenous infusions of
glucose or human soluble insulin were delivered to obtain a
steady-state PG target level of 5.5 mmol/l ± 10%. During the
run-in and clamps, the participants’ cannulated handwas placed
in a thermoregulated box with their arterialised venous blood
sampled for PG measurements using a benchtop glucose
analyser (YSI 2300 Stat Plus, Yellow Springs, OH, USA).
Euglycaemia was maintained using a glucose clamp (glucose/
Actrapid® infusion) for approximately 1 h after which insulin
(Actrapid®, 100 U/ml) was given at an infusion rate
of 3 mU kg−1 min−1 for 10 min and then reduced to
1.5 mU kg−1 min−1 thereafter. Euglycaemia was maintained or
hypoglycaemia induced with glucose infusion rate adjusted
accordingly to meet the PG target for approximately 55 min,
during which H2

15O PET scans and cDSST and mDSST tasks
were performed (Fig. 1). Following glycaemic clamps, partici-
pants were brought back to euglycaemia (with glucose infu-
sions to reach a PG target of 5–6 mmol/l) and after approxi-
mately 75–90min the PASATwas conducted. After experimen-
tal procedures, participants resumed usual insulin treatment.

Counter-regulatory hormones

Counter-regulatory hormones were measured as a validation
that the PG target was sufficient to elicit a counter-regulatory
response, and thus, hypoglycaemia. Hormonal responses (nor-
adrenaline [norepinephrine], glucagon, cortisol and growth
hormones) were measured 30 min prior to induction of
hypoglycaemia or euglycaemia, and 45 min and 150 min (just
prior to PASAT test) after induction of hypoglycaemia or
euglycaemia.

Hypoglycaemia awareness and symptoms

At screening, hypoglycaemia unawareness was assessed by
asking participants ‘Can you feel your hypos?’ and checking
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their medical files for any indication of unawareness. During
the study, hypoglycaemia awareness was assessed both
30 min prior to and 45 min after induction of hypoglycaemia
or euglycaemia, by asking participants ‘Do you feel hypo?’.
The hypoglycaemia symptoms questionnaire (based on the
Edinburgh Condition Scale) [22] was completed by partici-
pants 30 min prior to and 55 min after induction of
hypoglycaemia or euglycaemia. It measured autonomic
(sweating, palpitations, shaking and hunger), neuroglycopenic
(confusion, drowsiness, odd behaviour, speech difficulty and
incoordination) and general malaise (headache and nausea)
symptoms on a seven point Likert scale.

rCBF assessment

Cerebral activation was measured as rCBF in 19 pre-specified
regions of interest (ROI). Given the hypothesis-driven nature
of this study, these regions were selected in accordance with
relevant literature for one or more of the following criteria:
DSST evoked brain activity patterns in normal conditions,
i.e. euglycaemia, without working memory load (precuneus,
dorsolateral prefrontal cortex, anterior cingulate gyrus/cortex,
posterior cingulate gyrus, posterior supramarginal gyrus and
orbitofrontal cortex) [19, 23]; neural substrate of DSST per-
formance (inferior frontal gyrus, superior frontal gyrus, middle
frontal gyrus, superior parietal lobe, precuneus, posterior cin-
gulate gyrus/cortex and parahippocampal gyrus) [24, 25];
brain areas showing changes in functional activity in response
to hypoglycaemia (medial temporal lobe, hippocampus,
parahippocampal gyrus, insula, globus pallidum, striatum,
dorsolateral prefrontal cortex, anterior cingulate gyrus, inferior
frontal gyrus, superior frontal gyrus, precuneus, posterior cin-
gulate gyrus, posterior supramarginal gyrus and primary visual
cortex) [9, 26–30]; and brain areas reported as involved in
working memory tasks (dorsolateral prefrontal cortex, inferior

frontal gyrus, middle frontal gyrus, superior frontal gyrus,
ventromedial prefrontal cortex, orbitofrontal cortex, insula,
superior parietal lobe, anterior cingulate gyrus/cortex, hippo-
campus and thalamus) [31–33]. All rCBF measures were nor-
malised to measures in the cerebral cortex, as this region is
considered to be less impacted by the duration of type 1 dia-
betes mellitus [34]. In the present study, there was no signifi-
cant difference in rCBF in the cerebral cortex between
hypoglycaemia and euglycaemia during either cDSST or
mDSST tasks.

Three endpoints were used to determine regional cerebral
activation: rCBF during mDSST and cDSST performances,
and rCBF for working memory. For the cDSST and mDSST
endpoints, rCBF was calculated by subtracting the mean of
three rCBF values for euglycaemia from the mean of three
rCBF values for hypoglycaemia. To isolate changes as a result
of working memory, rCBF values during the mDSST test
were corrected for the rCBF values during cDSST, by
subtracting the mean of three cDSST rCBF values from the
mean of three mDSST rCBF values; this correction was con-
ducted for measurements taken during both glycaemic clamps
with the totals for euglycaemia subtracted from those for
hypoglycaemia ([mean (3 × CBF during mDSST) − mean (3
× CBF during cDSST)] hypoglycaemia − [mean (3 × CBF
during mDSST) − mean (3 × CBF during cDSST)]
euglycaemia) to isolate changes in working memory during
hypoglycaemia.

Endpoints and statistical analyses

The primary objective of the study was to compare cognitive
performance during hypoglycaemia with that during
euglycaemia. The primary endpoint was the number of correct
mDSST scores. For each glycaemic condition, mean mDSST
scores, reaction time and PASAT scores were compared using
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Fig. 1 Experimental visit design
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a linear mixed-effect model with glycaemic condition and
period as fixed factors and participant as a random factor;
mean differences between hypoglycaemia and euglycaemia
were estimated from the model and corresponding 95% CI
and p values were calculated. The rCBF and predefined ROI
(during both cDSST and mDSST), as well as the difference in
rCBF between the two tasks, were compared during
glycaemic conditions using an analysis of variance with
glycaemic condition, period and participant as fixed factors.
Because of the hypothesis-driven nature of this trial, no cor-
rection for multiplicity was performed with regard to different
ROI analyses.

The SD for DSST score between euglycaemia and
hypoglycaemia (PG 2.5 mmol/l) was determined in a previous
trial (NCT01002768) to be approximately nine. Assuming a
similar variability in this trial, using a 5% significance level
and two-sided paired t test, a sample size of 25 participants
completing both periods was calculated to have 90% power to
detect a true difference in DSST score between hypoglycaemia
and euglycaemia of approximately six. A total of 28 partici-
pants were randomised to ensure at least 25 participants com-
pleting both experimental visits.

Results

Participant disposition

Of the 37 participants screened, 29 (22men and sevenwomen)
were randomised and 26 completed both experimental visits
(ESM Fig. 3); data are presented for completers only (Table 1).

Three participants were withdrawn after randomisation (two
men and one woman) for inability to place the venous catheter
(n = 1), erroneous randomisation (n = 1) and meeting experi-
mental visit exclusion criteria (n = 1). Mean age of participants
was 38.7 years (range 19.0–65.1 years), BMI was 24.6 kg/m2,
HbA1c was 7.3% (56.7 mmol/mol) and duration of diabetes
was 18.7 years (Table 1). The educational level of participants
was a mean ± SD of 14.0 ± 2.0 years (Table 1). Individual PG
profiles during hypoglycaemic and euglycaemic clamps are
shown in ESM Fig. 4. Mean ± SD PG achieved during
hypoglycaemia was 2.9 ± 0.14 mmol/l, which is within the
target PG. During the study four adverse events (AEs) were
reported in three participants (two each during hypoglycaemia
[presyncope and orthostatic hypotension] and euglycaemia
[headache and nausea]). All AEs were non-serious, mild and
classified as not related to Actrapid or devices used. One par-
ticipant reported an AE after release from the trial site (flank
pain).

Cognitive performance

On average, participants had a statistically significantly lower
mean mDSST score (± SD) during hypoglycaemia than
euglycaemia (30.3 ± 1.5 vs 30.9 ± 0.6), with an estimated treat-
ment difference (ETD) of −0.63 (95% CI −1.13, −0.14; p =
0.014) (Fig. 2a). Mean ± SD total response time during
mDSSTand hypoglycaemia was significantly longer than during
euglycaemia (41.5 ± 8.9 s vs 38.7 ± 7.3 s), with an ETD of 2.86 s
(95% CI 0.67, 5.05; p = 0.013) (Fig. 2b). Exclusion of two out-
liers (Fig. 2 and ESMTable 2) from the statistical analysis did not
affect outcomes, with the mDSST score remaining significantly
lower (ETD −0.32 [95% CI −0.62, −0.03], p = 0.035) and total
response time remaining longer during hypoglycaemia compared
with euglycaemia (ETD 2.00 s [95% CI 0.48, 3.52], p = 0.012).
For working memory in the recovery phase, PASATscores were
not statistically significantly different following hypoglycaemia
compared with euglycaemia, for either the 3 s PASAT (ETD
−0.37 [95% CI −3.26, 2.52], p = 0.794) or the 2 s PASAT
(ETD 0.79 [95% CI −1.34, 2.91], p = 0.454; ESM Table 3).

rCBF

Effects of hypoglycaemia on rCBF during cDSST During
the cDSST, without a working memory load, rCBF was statis-
tically significantly lower during hypoglycaemia compared
with euglycaemia in three temporal lobe regions (hippocam-
pus, medial temporal lobe and parahippocampal gyrus) and in
the striatum. In addition, rCBF was statistically significantly
increased in six frontal lobe regions (dorsolateral prefrontal
cortex, inferior frontal gyrus, middle frontal gyrus, orbitofrontal
cortex, superior frontal gyrus and ventromedial prefrontal cor-
tex), the superior parietal lobe and in the thalamus (Fig. 3a and
ESM Table 4).

Table 1 Baseline characteristics of completers

Characteristic Value

Number of participants 26

Age, years (mean ± SD) 38.7 ± 15.3

BMI, kg/m2 (mean ± SD) 24.6 ± 2.7

Race

Of European descent, n (%) 26 (100.0)

Sex

Female, n (%) 6 (23.1)

Male, n (%) 20 (76.9)

Educational level, years
(mean ± SD [min–max])

14.0 ± 2.0 (10.0–18.0)

Diabetes characteristics
(mean [min–max])

Duration of diabetes, years 18.7 (3.1–46.4)

HbA1c, mmol/mol 56.7 (39.0–74.0)

HbA1c, % 7.3 (5.7–8.9)

Baseline information was recorded at screening and/or randomisation. If
an assessment was recorded on both visits, the randomisation value was
used as the baseline value
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Effects of hypoglycaemia on rCBF during mDSST During
the mDSST (with a working memory load) rCBF was statis-
tically significantly increased in three frontal lobe regions
(dorsolateral prefrontal cortex, inferior frontal gyrus and mid-
dle frontal gyrus), the superior parietal lobe and the thalamus,
and statistically significantly decreased in the hippocampus
and the medial temporal lobe during hypoglycaemia (Fig. 3b
and ESM Table 4).

Differences in rCBF between hypoglycaemia and
euglycaemia during cDSST and mDSST Isolating working
memory (measured as the rCBF during mDSST corrected for
cDSST), there was statistically significantly higher blood flow
in the striatum during hypoglycaemia when compared with
euglycaemia (Fig. 3c), with an ETD of 0.0374% (95% CI
0.0157%, 0.0590%; p = 0.002).

Hypoglycaemia assessments and counter-regulatory
hormone responses

When asked ‘Do you feel hypo?’ 30 min prior to induction of
glycaemic conditions, the proportion of participants
responding ‘no’ was 96.2% and 92.3%, for those exposed to
prior hypoglycaemia or euglycaemia, respectively. During the
glycaemic clamps (nominal time 45 min) proportionally more
participants answered ‘yes’ when they were asked if they felt
hypoglycaemic during hypoglycaemia (42.3%) compared
with euglycaemia (11.5%). When we compared these sub-
groups in a post hoc analysis to determine the impact on the

primary endpoint (mDSST score and response times), we
found no differences between those responding ‘yes’ or ‘no’
to feeling the experimental hypoglycaemia (ESM Results).
Mean ± SD hypoglycaemic symptom scores 30 min prior to
induction of hypoglycaemia and euglycaemia were 17.69 ±
5.67 and 18.69 ± 4.88, respectively. Hypoglycaemic symptom
scores during hypoglycaemia (55 min after initiating the in-
duction of hypoglycaemia) and euglycaemia were 23.38 ±
11.67 and 18.27 ± 4.75, respectively.

Noradrenaline, cortisol and growth hormone responses
were increased during hypoglycaemia compared with
euglycaemia. The response of glucagon was compromised
when comparing hypoglycaemia with euglycaemia. The
counter-regulatory hormonal responses are shown in Fig. 4.

Discussion

This multidisciplinary study examined how cognitive perfor-
mance and its concurrent rCBFwere affected by hypoglycaemia
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ipant as a random factor. (a) Red dots represent participants where the
correct number of mDSST responses is higher during euglycaemia than
hypoglycaemia. Green dots represent participants where the correct num-
ber of mDSST responses was higher during hypoglycaemia than

euglycaemia. ETD hypoglycaemia – euglycaemia −0.63 (95% CI
−1.13, −0.14). Number of correct responses (observed mean ± SD:
hypoglycaemia, 30.3 ± 1.5; euglycaemia, 30.9 ± 0.6). (b) Red dots repre-
sent participants where the mDSST response time is longer during
hypoglycaemia than euglycaemia. Green dots represent participants
where the mDSST response time is longer during euglycaemia than
hypoglycaemia. ETD hypoglycaemia – euglycaemia 2.86 (95% CI
0.67, 5.05). Total response time (observed mean ± SD: hypoglycaemia,
41.5 ± 8.9 s; euglycaemia, 38.7 ± 7.3 s)

�Fig. 3 Normalised rCBF from PET scans and associated forest plots
showing differences in brain activation in hypoglycaemia compared
with euglycaemia during (a) cDSST, (b) mDSST and (c) mDSST −
cDSST. Only participants with available endpoints for both conditions
were included in the analysis. The PET scans and forest plots are
normalised to the cerebral cortex and show the percentage difference in
rCBF in hypoglycaemia compared with euglycaemia (green, increase in
rCBF; red, decrease in rCBF). Endpoints were compared using an
ANOVA model with condition, period and participant as fixed factors
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at a mean PG of 2.9 mmol/l. This is a higher level of PG than
has been tested in previous studies [1, 2], but matches the level
recommended in reporting of clinical trials by the recent posi-
tion statement from the International Hypoglycaemia Study
Group [35] and is considered to be ‘sufficiently low to indicate
serious, clinically important hypoglycaemia’. During
hypoglycaemia there was a modest, yet significant, decrease
in the number of correct mDSST responses referring to working
memory, as well as a significant increase in response time. The
effects of hypoglycaemia on rCBF in the striatum was statisti-
cally significant, highly uniform and with little variation (in SD)
between participants. Furthermore, use of working memory
during hypoglycaemia was associated with a significant in-
crease in blood flow in the striatum.

Previous studies have reported reductions in cognitive
function scores in the range of 2–40% during hypoglycaemia
[8, 36]. The comparatively small decrease in number of cor-
rect mDSST responses in our study indicates, as expected, that
working memory function was relatively preserved with re-
gard to accuracy but at the cost of response speed [3]. These
results indicate that during hypoglycaemia, at a mean PG of
2.9 mmol/l, participants with type 1 diabetes mellitus may be
able to keep performance at a similar level as during
euglycaemia, at least when performing less complex tasks,
but at a 7% slower execution rate (3 s over a block of 32
questions). While this level of slowing may not be of great
importance for many daily functions where response time is
not critical, it could become serious in tasks which do depend
on rapid information processing, such as driving.

Our study showed no difference in the number of correct
PASAT responses in the recovery phase following
hypoglycaemia compared with euglycaemia, possibly
reflecting time of testing (75–90 min after euglycaemia resto-
ration). Cognitive performance during recovery from
hypoglycaemia has varied between different studies [4–6].
In one study, the cognitive tests were repeated at 10–15 min
intervals up to 85 min after restoration of euglycaemia, and
cognitive performance, for some tasks, was found to be only
impaired for up to 10 min after euglycaemia was restored [6].

During the hypoglycaemic clamp, approximately 58% of
participants answered ‘no’ to feeling hypoglycaemic, despite
efforts made to exclude participants with impaired awareness
of hypoglycaemia. Despite this, rCBF was significantly im-
pacted during both cDSST and mDSST tasks. Indeed, both
were associated with increased rCBF in frontal lobe regions
(goal-directed action, behavioural control and problem
solving) [34, 37] and the thalamus (relay station) and de-
creased rCBF in temporal lobe regions (memory functions).
Furthermore, some regions that were deactivated during
cDSST (and hence received reduced rCBF) were less affected
duringmDSSTwhen working memory function was required;
hence, rCBF was also higher in the basal ganglia and insula.

The effects of hypoglycaemia on rCBF in the thalamus,
insula and globus pallidus were not statistically significantly
different between cDSST and mDSST, but the effect in the
striatum was significantly different and was highly uniform
across participants, as indicated by the narrow confidence in-
tervals (Fig. 3c).
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In people with type 1 diabetes mellitus, studies have re-
vealed increasedCBF in the hypothalamus, brainstem, anterior
cingulate cortex and putamen when reducing PG from 5.2 to
4.3 mmol/l. This suggests that these regions are sensitive to
small blood glucose changes, and that even small sudden
glycaemic changes may be of clinical importance [11]. In the
current study, increased rCBF in the frontal lobe areas during
hypoglycaemia could reflect the processing of input from the
thalamus, which was also highly activated. Working memory
was associated with increased blood flow in the striatum, a part
of the basal ganglia thought to support motor functions,
memory, language and emotion regulation. Increased rCBF in
this region may suggest an increased support of this subcortical
system during a task that is otherwise related to frontal regions,
suggesting that the brain requires more resources to maintain
performance during hypoglycaemia. A less efficient brain (i.e.
recruiting more resources to preserve cognitive performance)
during hypoglycaemia (PG ≤2.8 mmol/l) in individuals with
type 1 diabetes mellitus was also shown by a previous study
that used a working memory task during fMRI [9].

Study limitations

Regional blood flow averages did not allow testing for significant
changes of blood flow in smaller parts of individual brain re-
gions; this would require specific voxel-based analysis. A further
limitation is that individual responses to hypoglycaemia can vary
widely [38], as illustrated here by the finding that about half of
participants had an impaired awareness of hypoglycaemia during
the clamp and thus did not feel the impact of hypoglycaemia
during the hypoglycaemic clamp. This may be attributed to the
milder levels of hypoglycaemia achieved in the study (PG
2.9 mmol/l) and the comparable threshold for appearance of
symptoms [39, 40]; however, it may also reflect the inclusion
of participants with previously unrecognised unawareness and an
inability to identify reduced awareness in everyday life. A more
complete picture of potential impairments in counter-regulatory
hormonal responses would have been afforded if adrenaline
(epinephrine) had also been measured. The cDSST and
mDSST tasks were not alternated and therefore the rCBF
response to hypoglycaemia may be subject to time-dependent
differences in activation. Although a time-dependent impact of
hypoglycaemia on the brain has been suggested [29], H2

15O PET
imaging for the cDSST and mDSST tasks commenced after the
target hypoglycaemic PG was reached (0–20 min and 30–
60 min, respectively). Therefore, effects of decreasing PG on
the brain were not captured in this study and will limit any
potential time-dependent effect. Finally, no cognitive dysfunction
screening was carried out on participants prior to the study; how-
ever, cognitive problems related to working memory or other
memory functions are not typically seen in adults with type 1
diabetes mellitus [41]. Despite these limitations the data still
challenge the prevailing notion that working memory is not

impaired until glucose levels are <2.8 mmol/l and shows that
working memory is also impaired between 2.8 and 3.0 mmol/l,
the glucose levels that generally reflect the lower and upper limits
for the manifestation of hypoglycaemia symptoms [39, 40].

In conclusion, this hypothesis-driven study demonstrated
that working memory performance and reaction times are ad-
versely affected by hypoglycaemia in individuals with type 1
diabetes mellitus, and that they are associated with measurable
effects on rCBF, even at mean PG concentrations of 2.9 mmol/l.
The findings are clinically relevant, supporting the importance
of reducing the risk of hypoglycaemic episodes at this level.
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