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Reorganisation of Earth’s  
biogeochemical cycles briefly oxygenated 
the oceans 520 Myr ago

T.W. Dahl1*, J.N. Connelly1,2, A. Kouchinsky3,  
B.C. Gill4, S.F. Månsson1, M. Bizzarro1,2

Abstract	 doi: 10.7185/geochemlet.1724

The Phanerozoic radiation of bilaterian animals has been linked to oxygenation of Earth’s 
oceans, due to the oxygen demand of the evolving animal ecosystems. However, how early 
animals may have regulated Earth’s surface oxygen budget via self-stabilising feedbacks is 
poorly understood. Here, we report parallel positive uranium, carbon, and sulphur isotope 
excursions from carbonate successions in Siberia that document a brief global oxygenation 
episode 521–520 Myr ago, at the onset of diversification of larger arthropods known from 
the fossil record. Our data and model indicate that an abrupt increase in the sinking rate 
of marine organic matter expanded the oxygenated zone in the oceans and that reducing 
conditions returned 1.3 ± 0.8 Myr after the onset of this transient oxygenation episode, 
necessitating a strong negative feedback to the increasing levels of oxygen. We speculate that 
larger zooplankton could have sourced both oxygen and food to the seafloor, fueling biotur-
bation over wider areas and, thereby, stabilising O2-rich habitats in the oceans. Thus, this 
reorganisation exemplifies how animal ecosystems might have influenced oxygen availability 
in Earth’s surface environment soon after their establishment.
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Letter

In contrast to many geochemical proxies that evaluate local ancient marine redox 
including iron speciation and trace metal (Mo, U, V) enrichments, the uranium 
isotope composition (δ238U, the per mille deviation of the 238U/235U ratio relative 
to CRM 145 standard) of seawater can be used to evaluate ocean oxygenation at 
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a globally integrated scale. This is possible due to the long residence time and 
uniform δ238U of uranium in the modern ocean and predicted for the Cambrian 
ocean (Weyer et al., 2008; Dahl et al., 2014; Tissot and Dauphas, 2015). The δ238U 
proxy has been utilised to track past global ocean redox during three known 
oceanic anoxic events (Montoya-Pino et al., 2010; Brennecka et al., 2011; Dahl et al., 
2014; Elrick et al., 2016; Lau et al., 2016), where anoxic water masses expanded 
over larger areas of the seafloor and caused negative δ238U excursions. Here, we 
use uranium isotopes to identify a transient global oxygenation episode during 
the radiation of animals in the Cambrian.

Our new δ238U data of carbonate-associated uranium comes from lime-
stones collected from the Siberian Platform across the provisional Cambrian 
Stage 2–3 boundary (~521 to 520 million years ago) (Fig. 1), when animals 
that shed their exoskeleton (ecdysozoa) began to diversify (Maloof et al., 2010; 
Kouchinsky et al., 2012). A perturbation in the marine carbon cycle is expressed 
at this time as a large positive carbon isotope excursion recognised globally and 
in all studied sections; geological maps and stratigraphic sections are shown in 
Figures S-1 and S-2 (Maloof et al., 2010). This excursion serves as an important 
stratigraphic marker, although little is known about the biogeochemical signifi-
cance of the event. The end-Stage 2 samples carry low δ238U values of –0.65 ‰, 
increasing stratigraphically to a value of –0.45 ‰ that approaches the modern 
oxygenated oceans, –0.39 ± 0.01 ‰ (Tissot and Dauphas, 2015), before again 
returning in two steps to –0.7 ‰. This positive δ238U excursion of +0.25 ‰ 
coincides with the positive carbon isotope excursion, suggesting that they are 
both linked to the changes in global seawater chemistry. The samples display 
no systematic correlation between the δ238U excursion and indicators of dolo-
mitisation (Mg/Ca, dolomite), pore water redox conditions (total organic carbon 
content), diagenetic alteration (Mn/Sr, δ18O) detrital input (Al/Ca, clay content) 
and primary carbonate mineralogy (Sr/Ca; see Supplementary Information S2) 
that might produce such a positive δ238U excursion, offset from contemporaneous 
seawater. That said, our samples consist of (abiotic) micrite with (biotic) shells 
made of secondary calcite (Fig. S-3). The difference between abiotic and biotic 
precipitation of calcite δ238U is predicted to induce a ~0.1 ‰ offset from seawater 
(Chen et al., 2016). As we cannot determine the ratio of U derived from abiotic 
to biotic sources, we conclude that at this level of confidence, an overall positive 
δ238U trend is observed in the stratigraphy that we ascribe to secular changes 
of open marine δ238U in early Cambrian seawater. We note that our data set is 
limited to only one section and predict the same trend can be observed in other 
marine deposits with authigenic U enrichments.

The positive excursion of seawater δ238U represents a global oxygenation 
period in the oceans that dramatically decreased the fraction (fU) of total U burial 
occurring in anoxic marine settings. A simple isotope mass balance calculation 
constrains fU from the δ238U of seawater (δSW) (see derivation in Supplementary 
Information S4). This calculation assumes an isotopically constant U input from 
rivers and a constant isotope fractionation between seawater and the U sinks. 
The modern ocean is at steady state with δ238U at –0.39 ± 0.01 ‰ and estimates 
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Figure 1 	 Isotope data from three carbonate successions straddling the Cambrian Stage 2–3 
boundary (Cambrian Stage 2–3) in Siberia. Carbon isotope data from carbonate (δ13CCARB) is 
taken from Kouchinsky et al. (2007). Sulphur and uranium isotope data are from carbonate-
associated sulphate (δ34SCAS) and uranium (δ238UCAU), respectively. Age assignments derived 
from correlations to the carbon isotope stratigraphy and the age model of Maloof et al. (2010).

for the average oceanic input range from –0.30 ‰ to –0.27 ‰ (Tissot and 
Dauphas, 2015; Noordmann et al., 2016). If the anoxic proportion of global U 
burial (fU) today is 12–25 % (Morford and Emerson, 1999; Dunk et al., 2002; 
Noordmann et al., 2016), and anoxic settings impart a +0.5 ± 0.1 ‰ net isotope 
offset from overlying seawater, this implies that the average isotope fractionation 
between seawater and all other oxic U sinks (ΔOTHER) is –0.02 ± 0.05 ‰. Given 
this formulation, we calculate that 68 ± 18 % of marine U burial before the Stage 
2–3 event occurred in anoxic parts of the oceans when δ238U of seawater was 
–0.65 ‰. This scenario compares to the ocean state during the anoxic expansion 
associated with the end-Permian extinction (Brennecka et al., 2011). Further, the 
anoxic U burial fraction declined to 29 ± 12 % at the peak of the event and then 
afterward returned to a more reducing ocean state with 78 ± 20 % anoxic U burial 
(Fig. S-2). The stated uncertainties for fU in the Cambrian are propagated errors 
from ΔOTHER, ΔANOX, and δIN reflecting a range of plausible parameterisations of 
the marine U cycle (see sensitivity analysis in Supplementary Information S4 for 
details). These data consistently require the Cambrian Stage 2–3 event to have 
occurred when the oceans were far more reducing than today, culminating at an 
oxygenation state similar to the modern ocean.

Existing palaeoredox studies also point to ocean oxygenation during the 
Early Cambrian (Fig. 2). Specifically, the molybdenum isotope (δ98Mo) record 
from shales and phosphorites show several fluctuations recorded in ~560 to 520 
Myr old stratigraphic sections in China (Wille et al., 2008; Wen et al., 2011; Xu 
et al., 2012; Chen et al., 2015; Kendall et al., 2015; Wen et al., 2015). The last positive 
δ98Mo excursion is broadly correlated to the first appearance of trilobites in China, 
strong Mo enrichments and with the oxygenation event reported here (Dahl et 
al., 2010; Xu et al., 2012; Chen et al., 2015; Wen et al., 2015; Jin et al., 2016). The 
coincident positive δ98Mo and δ238U excursions point to a widespread oxygenation 
episode in the earliest Cambrian Stage 3 oceans where O2-rich waters expanded 
and affected the Mo and U isotope composition of seawater as the overall burial 
fluxes of Mo and U into anoxic and euxinic settings decreased. We can predict 
the δ98Mo trajectory of seawater from the oceanic δ238U trajectory, if we assume 
the anoxic burial proportions of total Mo and U burial (fMo, fU) are correlated. We 
adopt a power law relationship fMo = fU

α that satisfies fMo = fU = 1 during extreme 
anoxia and fMo = fU = 0 for extreme oxia. Using the modern ocean state as a cali-
bration point, we find that α = 1.34 ± 0.38 (see Supplementary Information for 
details). Based on this relationship, average seawater δ98Mo should have increased 
from 1.40 ‰ in the Cambrian Stage 2 to a peak at 2.0 ‰ before returning to 
1.10 ‰ during the δ238U excursion. This prediction is in good agreement with 
the maximum values observed in the δ98Mo record during this time interval 
(Lehmann et al., 2007; Chen et al., 2015; Wen et al., 2015) (Fig. 2). Collectively, 
the Mo and U isotopes indicate a transient, rather than a persistent change in 
ocean oxygenation at the beginning of Stage 3. This implies that earlier positive 
δ98Mo excursions (~2 ‰) in Terreneuvian phosphorite deposits (Wen et al., 2011), 
and perhaps in the latest Ediacaran (Kendall et al., 2015), represent episodic 
events rather than persistent ocean oxygenation. Similarly, detailed studies of the 
bottom water redox conditions in the Nanhua Basin, South China, suggest that 
oxygenated waters also invaded shallower part of the basin later in the Stage 3 
(Jin et al. 2016). As such, the oxygenation history of the early Cambrian ocean 
appears more dynamic than previously thought (e.g., Dahl et al., 2010; Sperling 
et al., 2013; Chen et al., 2015).

The oxygenation event coincides with global changes in the marine carbon 
and sulphur cycles. We also report sulphur isotope data from carbonate-associ-
ated sulphate (δ34SCAS) from three distinct stratigraphic sections in Siberia that 
show a similar systematic positive δ34SCAS isotope excursion coinciding with 
the δ238U and δ13C excursions (Fig. 1). The simultaneous excursions across the 
Cambrian Stage 2-3 boundary suggest the C, S and U cycles responded to the 
same global biogeochemical event. Similar parallel positive carbon and sulphur 
isotope excursions during the late Cambrian SPICE event (Gill et al., 2011; Dahl 
et al., 2014) and the Botoman Sinsk event were interpreted to represent a period 
of enhanced organic carbon and pyrite burial (Zhuravlev and Wood, 1996). While 
these events are linked to expanding ocean anoxia and animal extinctions, the 
positive δ238U excursion reported here reveals a distinct driver for the environ-
mental change.
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Figure 2 	 Summary of the redox proxy and carbon isotope data from latest Ediacaran to 
Early Cambrian (560–515 Myr). Redox proxy data includes the sedimentary contents and stable 
isotope compositions of molybdenum and uranium: Euxinic shales (black circles), Ferruginous 
shales (red circles), oxic shales (blue circles), shales from unknown redox environments (gray 
crosses), phosphorites (white diamonds), and carbonates (white circles). The grey field on the 
molybdenum isotope plot indicates values that are definitively fractionated from seawater, 
although values greater than these may be so as well. References for the data are listed in 
the Supplementary Information Extended Data, Table S-22.

The Cambrian Stage 2–3 event coincides with the onset of the first major 
diversification of arthropods, which predates by a few million years the first 
appearance of macrozooplankton and suspension-feeding anomalocarids (Hou, 
2004; Stein et al., 2009; Vinther et al., 2014). Therefore, we consider that this 
oxygenation episode reflects the first invasion of larger zooplankton in the pelagic 
zone that triggered an increase in the sinking rate and compaction of organic 
matter. Today, the export of organic matter from the photic zone (<200 m depth) 
— a process referred to as the biological pump — occurs as sinking molts, faecal 
matter, carcasses, and skeletons (Alldredge et al., 1993; Hedges and Keil, 1995). 
The sinking velocity of a particle in the ocean is a quadratic function of its size. 
Therefore, a small increase in the mean size of particulate organic matter would 
have caused the rates of water column remineralisation to decrease, so that less 
O2 was consumed in the water column and a more gentle O2 gradient was estab-
lished below the photic zone (Fig. 3, Meyer et al., 2016). Consequently, more 
organic matter would have been exported to the seafloor resulting in enhanced 
rates of organic carbon and pyrite burial.

To quantify the potential consequences of faster sinking rates on organic 
carbon export (JRAIN) onto the seafloor, we utilise the δ13C and δ34S data and a 
simple biogeochemical model for the coupled marine C and S cycles. Organic 
carbon export fuels both organic carbon burial (JORG = JRAIN - JREMIN) and 

Figure 3 	 Conceptual model for the episodic expansion of the oxygenation zone in the oceans. 
The emergence of bilaterian animals (a-b) increased sediment mixing via bioturbation causing 
atmospheric pO2 to decline. The oxygenation zone contracts until (c) a rapid increase in the 
sinking rate of organic matter changes O2 consumption rates in the upper water column. (d) 
This accelerates organic carbon export to the sediments and delivers more food and O2 to the 
benthos over wider areas of the seafloor. Enhanced bioturbation promotes atmospheric pO2 
decline, and re-stabilises the ocean in a more reducing state. Arrows and numbers illustrate 
organic export fluxes in one scenario (details in Table S-11). For simplicity, the organic C export 
increases in one step with the emergence of larger faecal pellets. Quantitative estimates for 
organic carbon export and remineralisation are derived from the coupled C and S isotope 
modelling (see Supplementary Information S5).

remineralisation in sediments (JREMIN). In this model, pyrite burial is proportional 
to the remineralisation flux (JPY = α · JREMIN) because microbial sulphate reduc-
tion accounts for the major part of organic remineralisation in sediments and a 
fraction of its byproduct, sulphide, reacts with available Fe compounds to form 
pyrite (see Supplementary Information for model details). With this formulation 
(α constant), we find that a 3–6 fold increase in the organic carbon rain rate 
is sufficient to increase δ13C (0 to 3 ‰) and δ34S (28 to 40 ‰) simultaneously. 
This can be achieved with only a 1.7–2.5 fold increase in the mean of the size 
distribution of sinking organic matter particulates, assuming similar density and 
shape for the particulates before and after the invasion of larger zooplankton. We 
consider this as a minimum estimate, if a greater portion of larger faecal pellets 
do not aggregate (Butterfield, 1997). However, it shows that even a modest size 
increase potentially influences the global biogeochemical cycles.

The evolutionary history of animals over the Neoproterozoic-Cambrian 
transition suggests a stepwise increase in their overall size and their digestive 
tracts, which would have enhanced the biological pump (Logan et al., 1995; Butter-
field, 2009; Lenton et al., 2014). Biomarker evidence suggests a fundamental shift 
in the preservation state of marine organic matter with abundant faecal matter 
in sedimentary rocks younger than ~517 Ma compared to similar rocks older 
than ~565 Ma (Logan et al., 1995). Although the abundance of pelagic animal 
fauna through the Cambrian Stage 2–3 interval is not known, it is apparent that 
the maximum size of pelagic heterotrophic organisms and their digestive tracts 
increased by three orders of magnitude from the Ediacaran into the Cambrian. 
Heterotrophic consumers such as micro- and mesozooplankton (20–200 µm) 
evolved in the latest Ediacaran (635–542 Ma) (Perrier et al., 2015). The fossil 
record indicates that animals of probable chaetognath affinity (‘protoconodonts’) 
a few millimetres in size or larger swam in the early Fortunian ocean (>535 Ma), 
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and that large macrozooplankton (i.e. bivalved arthropod Isoxys) up to 45 mm 
had appeared in the earliest Stage 3 (~520 Ma) (Ivantsov, 1990; Hou, 2004; Stein 
et al., 2009). However, it says nothing about when various types of zooplankton 
became ecologically important. Rather, we suggest that a stepwise increase in 
the size of zooplankton is a plausible trigger for the reorganisation of Earth’s 
marine biogeochemical cycles and, consequently, the earliest Cambrian Stage 3 
oxygenation episode. By implication, earlier steps in animal evolution may have 
also led to oxygenation events preserved in the geochemical record during the 
Ediacaran–Cambrian transition (see below).

Given that the geochemical evidence suggests that the Cambrian Stage 2–3 
oxygenation episode was brief, a stabilising feedback must have acted to coun-
terbalance marine oxygenation. Current models for the evolving biogeochemical 
cycles in the Cambrian have not included such a rapid feedback mechanism 
(Bergman et al., 2004; Berner, 2006). Evidence from bioturbation indices (Mangano 
and Buatois, 2014) and Earth system modelling (Canfield and Farquhar, 2009; 
Boyle et al., 2014) suggest that the Cambrian Stage 3 oxygenation episode occurred 
during an apparent atmospheric pO2 decline resulting from increased mixing of 
marine sediments by animals. Since the early Cambrian Stage 2 (~530  Ma), 
animals had evolved the ability to burrow deeper into sediments acting to lower 
marine P availability, organic productivity, organic carbon burial, and hence the 
main source of atmospheric pO2 (Boyle et al., 2014). The emerging larger pelagic 
fauna accelerated this feedback mechanism, since the enhanced biological pump 
would have both increased the food supply and food quality for benthic heterotro-
phic organisms and led to more fully oxygenated conditions in the water column 
below the photic zone, thereby opening new ecospace for sediment-mixing 
animals over wider areas of the continental shelves. Subsequently, this focusing 
of organic matter at the seafloor increased overall rate of bioturbation, organic 
carbon remineralisation and oxygen consumption over larger areas of the seafloor 
and, ultimately, a decline in atmospheric pO2 that again limited the size of the 
oxygenated zones in the oceans (Fig. 3). It is notable that for this sequence of 
feedbacks to respond over the time scale of the Cambrian Stage 2–3 oxygenation 
episode (1.3 ± 0.8 Myr (Maloof et al., 2010), see calculation in the Supplementary 
Information), atmospheric O2 inventory must have been significantly smaller 
than today in order to produce an excursion of the right duration. We derive an 
order of magnitude estimate for the atmospheric pO2 level at the Cambrian Stage 
2-3 boundary of between 4 ± 2 and 7 ± 4 atm % from the duration of the falling 
limb isotope excursions, assuming the global burial rate of marine organic carbon 
was the same as today. We also assume that anoxia returns as atmospheric pO2 
levels decline due to less organic carbon burial over the course of ~1/4 to ~1/2 
the duration of the full δ13C excursion (~325 ± 200 and ~650 ± 400 kyr). This 
atmospheric pO2 estimate scales linearly with global organic carbon burial flux, 
and requires that the acceleration of the biological pump (by faecal pellets) and 
the subsequent migration of the sediment-dwelling taxa are essentially instanta-
neous (<<100 kyr). This atmospheric pO2 level is well above the metabolic need 
for some animals (Pasteur limit ~0.2 atm %) (Mills and Canfield, 2014), but not 

sufficiently high to oxygenate the deep oceans permanently (Lyons et al., 2014) 
and it conforms with the idea that animal ecosystems could have become self-
limiting in terms of determining the size of the habitable ecospace in the oceans 
(Sperling et al., 2013; Boyle et al., 2014).
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