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Abstract: We report codes for the Standard Model Effective Field Theory (SMEFT)

in FeynRules — the SMEFTsim package. The codes enable theoretical predictions for

dimension six operator corrections to the Standard Model using numerical tools, where pre-

dictions can be made based on either the electroweak input parameter set {α̂ew, m̂Z , ĜF }
or {m̂W , m̂Z , ĜF }. All of the baryon and lepton number conserving operators present

in the SMEFT dimension six Lagrangian, defined in the Warsaw basis, are included. A

flavour symmetric U(3)5 version with possible non-SM CP violating phases, a (linear) min-

imal flavour violating version neglecting such phases, and the fully general flavour case

are each implemented. The SMEFTsim package allows global constraints to be deter-

mined on the full Wilson coefficient space of the SMEFT. As the number of parameters

present is large, it is important to develop global analyses on reduced sets of parameters

minimizing any UV assumptions and relying on IR kinematics of scattering events and

symmetries. We simultaneously develop the theoretical framework of a “W-Higgs-Z pole

parameter” physics program that can be pursued at the LHC using this approach and

the SMEFTsim package. We illustrate this methodology with several numerical examples

interfacing SMEFTsim with MadGraph5. The SMEFTsim package can be downloaded

at https://feynrules.irmp.ucl.ac.be/wiki/SMEFT.
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1 Introduction

When physics beyond the Standard Model (SM) resides at scales larger than the electroweak

scale (Λ� v̄T ), one can utilise an expansion in this ratio of scales to construct an Effective

Field Theory (EFT).1 Such an EFT can capture the low energy, or infrared (IR), limit

of physics beyond the SM so long as no light hidden states are in the particle spectrum

and v̄T /Λ < 1 is assumed/experimentally indicated. When these conditions are satisfied,

and a SUL(2) scalar doublet with hypercharge yH = 1/2 is assumed to be present in the

IR limit of the underlying sector, the theory that results from expanding in (currently)

experimentally accessible scales divided by the heavy scales of new physics is the Standard

Model Effective Field Theory (SMEFT).

The SMEFT is well defined and has been studied with increased theoretical sophisti-

cation in recent years. This theory can capture the IR limit of a wide range of possible

extensions of the SM, consistent with the stated assumptions. Such SM extensions can

address the strong evidence for dark matter and neutrino masses in addition to the theo-

retical issue of the hierarchy problem motivating ∼ TeV scale new physics. The interest

in the SMEFT is due to the significant growth in available experimental data due to the

continued operation of the LHC, and is also due to the theoretical developments reviewed

in ref. [1]. In recent years, it has has become more widely understood that to gain the most

out of studying the current LHC data set, and the high luminosity LHC data set, utilizing

the SMEFT is valuable. Many LHC measurements will effectively be made below the scale

Λ, even if new states are discovered with masses m ∼ Λ. This enables a practically useful,

and simplifying, expansion in ∼ v̄T /Λ when considering physics beyond the SM.

Putting in place this theoretical framework allows a general constraint program to

be systematically developed over the long term, and also enables the combination of

1Here v̄T is the vev defined as the gauge independent vacuum expectation value of the Higgs field

including the effect of dimension six operators, 〈H†H〉 ≡ v̄2T /2.
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LHC data with the extensive amount of lower energy data in a consistent field theory

setting. Efforts in this direction have been hampered by the lack of a general coding

of the leading SMEFT corrections to the SM in FeynRules [2–4] to date (using the

theoretical approach of sections 2–5), to enable numerical studies. A major result of

this paper is to address this issue by reporting a series of novel SMEFT implementa-

tions into FeynRules that have been developed and are now released for public use at

http://feynrules.irmp.ucl.ac.be/wiki/SMEFT. The codes supplied define the SMEFTsim

package, and they cover two different approaches to how the SM Lagrangian parameters

are extracted from experimental measurements; i.e. the two electroweak input parameter

schemes {α̂ew, m̂Z , ĜF } and {m̂W , m̂Z , ĜF }. SMEFTsim also consists of three different

symmetry assumptions for the SMEFT operator basis, a fully flavour general SMEFT, a

U(3)5-SMEFT with non SM phases, and a Minimal Flavour Violating (MFV) [5–9] version.

We discuss these theories in section 4 and we present details of the structure of the coding

of the SMEFTsim package in section 6.

Using SMEFTsim, LHC studies using EFT methods are still challenging as the number

of real parameters present is very large in the leading lepton and baryon number conserving

corrections to the SM: there are 76 parameters in the case the number of generations

nf = 1 and 2499 parameters in the case nf = 3. Even before this precise counting of

parameters was determined [10], the understanding that the number of parameters was

large led to pessimism that a general EFT approach could be pursued with collider data.

As is well known, to ensure the key point of the EFT approach is not lost due to theoretical

inconsistency, a full non-redundant set of operators (allowed by the assumed symmetries)

must be retained in a consistent EFT at each order in the power counting of the theory.

Retaining all operators in the SMEFT does not imply that global fits to interesting

experimental data necessarily involve the full set of 2499 parameters. Rather remarkably, a

SMEFT physics program, although challenging, can be practically carried out at the LHC.

The second main result of this paper is to develop the theoretical support for leading order

(LO) EFT studies in a collider environment with subsets of parameters. We lay out the

theoretical foundation of this approach in section 10 and define a ‘WHZ pole parameter’

program using this reasoning.

Reduced parameter sets can be adopted, despite neglecting terms the same order in

the power counting of the EFT, for two main reasons. First, flavour symmetry assump-

tions, well motivated out of low scale experimental constraints, can be used. This leads

to consistent alternate theories in addition to the general SMEFT: a U(3)5-SMEFT and a

MFV-SMEFT. A simple corollary that we also systematically exploit defining the ‘WHZ

pole parameters’ is that terms that violate symmetries preserved, or approximately pre-

served, in the SM interfere in a numerically suppressed fashion. Second, the number of

relevant parameters is dramatically reduced in a global study of processes involving near

on-shell intermediate narrow states of the SM. Exploiting such kinematics is already generic

in well measured processes that are distinguished from large non-resonant backgrounds in

a hadron collider environment and we advocate pushing this approach to its logical, and

experimentally attainable limit.

– 2 –
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Case CP even CP odd WHZ Pole parameters

General SMEFT (nf = 1) 53 [10] 23 [10] ∼ 23

General SMEFT (nf = 3) 1350 [10] 1149 [10] ∼ 46

U(3)5 SMEFT ∼ 52 ∼ 17 ∼ 24

MFV SMEFT ∼ 108 - ∼ 30

Table 1. Parameter counts in the general SMEFT flavour cases for nf generations, and the

approximate number of parameters that feed into a W-Higgs-Z pole parameter program in the

Warsaw basis, as discussed in section 10. Also shown are the parameter counts in the U(3)5 limit

and the MFV SMEFT case. The symbol ∼ indicates that these latter results are approximate

counts for a leading order analysis, with leading flavour breaking spurion insertions, as discussed in

section 10.

Taking all of this into account, the feasibility of a ‘WHZ pole parameter’ approach is

illustrated in table 1 — which shows a manageable set of parameters to simultaneously

study and constrain considering the global data set. We advocate dedicated experimental

analyses be developed along these lines taking advantage of this dramatic simplification

of the SMEFT approach at LHC. We demonstrate this numerically using SMEFTsim and

MadGraph5 [11] in section 10.5.

So long as an appropriate theoretical error is assigned for this reduction in parameters,

this approach can be adopted without introducing undue UV bias or blocking the possibility

of building an inverse map to new physics sectors through the SMEFT. The is because these

are IR assumptions and simplifications of the SMEFT projected into well measured LHC

observables. Although the number of parameters is still 23 in the case of one generation

and 46 in the case of three generations, we note that the number of models considered

and experimentally constrained in the past decades in dedicated particle physics studies

is substantially larger. As soon as a decoupling limit v̄T /Λ < 1 is present, vast arrays of

possible extensions to the SM project into the compact and well defined SMEFT formalism.

LHC results indicate that at this time it is reasonable to systematically consider and use

the assumption that v̄T /Λ < 1 via the SMEFT. In this case, it is much more efficient to

project experimental results into the SMEFT using SMEFTsim, rather than into a endless

series of models based on yet more assumptions. We encourage the LHC experimental

collaborations to develop and study this approach using the tool provided.

2 Notation, canonical normalization and gauge

Our formulation of the SMEFT is based upon refs. [1, 10, 12–18]. We use the Warsaw

basis for L(6) as defined in ref. [19]. The SMEFT is constructed out of a series of SUC(3)×
SUL(2) × UY(1) invariant (local and analytic) higher dimensional operators built out of

the SM fields. The Lagrangian is given as

LSMEFT = LSM + L(5) + L(6) + L(7) + . . . , L(d) =

nd∑
i=1

C
(d)
i

Λd−4
Q

(d)
i for d > 4, (2.1)

– 3 –
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with the SM Lagrangian [20–22], defined as

LSM =−1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν +
∑

ψ=q,u,d,`,e

ψ i /Dψ (2.2)

+(DµH)†(DµH)−λ
(
H†H− 1

2
v2

)2

−
[
H†jd Yd qj + H̃†juYu qj +H†je Ye `j + h.c.

]
,

where H is an SUL(2) scalar doublet and H̃j = εjkH
†
k with εkj = −εjk and ε12 = 1, j, k =

{1, 2} and topological Lagrangian terms are neglected. The gauge covariant derivative is

defined with the convention Dµ = ∂µ + ig3T
AAAµ + ig2t

IW I
µ + ig1yBµ, where TA are the

SUc(3) generators, tI = τ I/2 are the SUL(2) generators, and y is the UY(1) hypercharge

generator.2 The Yukawa matrices are complex with the relation Yi =
√

2Mi/v to the

complex mass matrices Mi, whose real eigenvalues are the fermion masses. The chiral

projectors are defined as PR/L = (1±γ5)/2. The fields {q, `} are left handed and the fields

{e, u, d} are right handed. We use the definition σµ ν = i [γµ, γν ]/2 and at times the short

hand notation ψ for a general fermion field, and Xµ for a general gauge field is used.

The number of non-redundant operators in L(5), L(6), L(7) and L(8) is

known [19, 23–29].3 The operators Q
(d)
i are suppressed by d − 4 powers of the cutoff

scale Λ, and the C
(d)
i are the Wilson coefficients. The explicit definition of the L(6) op-

erators used here are given in ref. [19] and listed in table 10. We absorb factors of 1/Λ2

into the Wilson coefficients as a notational choice unless otherwise noted. Utilizing the

Warsaw basis is theoretically favoured as it is the only L(6) basis that has been completely

renormalized to date in refs. [10, 33–36].

We use notation where the parameters of the canonically normalized Lagrangian (i.e.

couplings, masses) carry bar superscripts.4 The canonically normalized fields are generally

indicated with a script font: {G,W,B}. The procedure for canonically normalizing is the

same in both input parameter schemes, and we follow the approach laid out in ref. [10]. In

unitary gauge, the Higgs doublet is expanded as

H =
1√
2

(
0

[1 + cH,kin]h+ v̄T

)
, (2.3)

where

cH,kin ≡
(
CH� −

1

4
CHD

)
v̄2, v̄T ≡

(
1 +

3CH v̄
2

8λ

)
v̄. (2.4)

This results in a canonically normalized h field when the Lagrangian is written in mass

eigenstate fields. Note that the distinction between v̄T and v̄ is at dimension eight when v̄

multiplies a Wilson coefficient Ci. As such we can trade Ci v̄
2
T ↔ Ci v̄

2 to the accuracy we

2This covariant derivative convention is the same as adopted in ref. [19], and opposite to the usual

convention in FeynRules [2–4].
3The general algorithm to determine the number of operators at higher orders in the SMEFT’s defining

expansion has been developed in refs. [28–32].
4This notation should not be confused with bar notation used to denote the Dirac adjoint - ψ̄.

– 4 –
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are working. The gauge fields are redefined as

GAµ = GAµ
(
1 + CHGv̄

2
T

)
, W I

µ =WI
µ

(
1 + CHW v̄

2
T

)
, Bµ = Bµ

(
1 + CHB v̄

2
T

)
, (2.5)

to take them to canonical form. The modified coupling constants are also redefined

g3 = g3

(
1 + CHG v̄

2
T

)
, g2 = g2

(
1 + CHW v̄2

T

)
, g1 = g1

(
1 + CHB v̄

2
T

)
, (2.6)

so that the products g3G
A
µ = g3GAµ , etc. are unchanged (at O(1/Λ2)) when canonically

normalizing the theory.

Furthermore, the mass eigenstate basis for {W3
µ,Bµ} in the SMEFT is given by [10, 12][

W3
µ

Bµ

]
=

[
1 −1

2 v
2
T CHWB

−1
2 v

2
T CHWB 1

] [
cos θ sin θ

− sin θ cos θ

][
Zµ
Aµ

]
, (2.7)

while the mass eigenstate fields of the SM {Zµ, Aµ} are defined via[
W 3
µ

Bµ

]
=

[
cos θ sin θ

− sin θ cos θ

][
Zµ
Aµ

]
, (2.8)

with cos θ = g2/
√
g2

1 + g2
2, sin θ = g1/

√
g2

1 + g2
2. The relation between the mass eigenstate

fields in the two theories are

Zµ = Zµ
(

1 +
s2
θ̂
CHB√
2ĜF

+
c2
θ̂
CHW√
2ĜF

+
sθ̂cθ̂CHWB√

2ĜF

)

+Aµ
(
sθ̂cθ̂(CHW − CHB)√

2ĜF
−

(1− 2s2
θ̂
)CHWB

2
√

2ĜF
+

δs2
θ

2sθ̂cθ̂

)
, (2.9)

Aµ = Aµ
(

1 +
c2
θ̂
CHB√
2ĜF

+
s2
θ̂
CHW√
2ĜF

− sθ̂cθ̂CHWB√
2ĜF

)

+ Zµ
(
sθ̂cθ̂(CHW − CHB)√

2ĜF
−

(1− 2s2
θ̂
)CHWB

2
√

2ĜF
− δs2

θ

2sθ̂cθ̂

)
. (2.10)

These expressions hold in both input parameter schemes. The notation θ̂ denotes the weak

angle defined in terms of input parameters (see next section). The three angles θ, θ̄, θ̂ differ

by quantities proportional to the L(6) Wilson coefficients. When such factors multiply a

Wilson coefficient Ci, the three notations are equivalent up to neglected dimension eight

corrections.

The SMEFTsim codes use unitary gauge and several simplifications that have taken

place are dependent on this gauge choice. Nevertheless, the approach laid out here does

not have any intrinsic theoretical assumption that blocks it being extended to other gauges

to enable next to leading order (NLO) SMEFT results.5 This approach to canonically nor-

malizing the mass eigenstate Lagrangian in the SMEFT has been shown to be extendable

to Rξ gauge fixing in ref. [37]. Gauging the SMEFT is subtle and will not be discussed at

5See ref. [1] for more discussion on this point.
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length here but we note that utilizing unitary gauge for one loop calculations is well known

to be best avoided. Even Rξ gauge requires a careful treatment of novel ghost interactions

introduced in the gauge fixing terms rotating between the gauge and mass eigenstates, as

discussed in ref. [37–39]. It has been shown that the related issues involving ghosts in one

loop calculations can be overcome when the leading order (LO - i.e. only retaining L(6)

corrections) approach of this work is adopted.

3 Treatment of inputs

3.1 {α̂ew, m̂Z , ĜF } input parameter scheme

We use notation where the input parameters used to define the numerical values of

Lagrangian parameters, and quantities derived from input parameters carry hat super-

scripts. To determine the numerical value of the SM Lagrangian parameters from the

{α̂ew, m̂Z , ĜF } EW inputs, the LSM Lagrangian parameters are fixed by the following

definitions at tree level (with c2
θ̂

= 1− s2
θ̂
)

ê =
√

4πα̂ew, ĝ1 =
ê

cθ̂
, ĝ2 =

ê

sθ̂
,

s2
θ̂

=
1

2

[
1−

√
1− 4πα̂ew√

2ĜF m̂2
Z

]
, v̂T =

1

21/4
√
ĜF

, m̂2
W = m̂2

Zc
2
θ̂
.

(3.1)

The Lagrangian parameters in the SMEFT differ from the SM Lagrangian terms due to

L(6) local operator corrections. A generic parameter κ receives a shift from its SM value

due to L(6) operators given by

δκ = κ̄− κ̂ , (3.2)

and in the SM limit (Ci → 0) one has δκ→ 0. We define the short hand notation6

δm2
h =

m̂2
h√

2ĜF

(
−3CH

2λ
+ 2
√

2 ĜF cH,kin

)
, δGF =

1

ĜF

(
C

(3)
Hl −

Cll + C ′ll
4

)
, (3.3)

δm2
Z =

1

2
√

2

m̂2
Z

ĜF
CHD +

21/4
√
πα̂ m̂Z

Ĝ
3/2
F

CHWB, δm2
W = m̂2

W

(√
2δGF + 2

δg2

ĝ2

)
, (3.4)

and using this notation, related results are [1, 10, 13–16]

δv2
T = v̄2

T − v̂2
T =

δGF

ĜF
, (3.5)

δg1 = ḡ1 − ĝ1 =
ĝ1

2c2θ̂

[
s2
θ̂

(√
2δGF +

δm2
Z

m̂2
Z

)
+ c2

θ̂
s2θ̂v̄

2
TCHWB

]
, (3.6)

δg2 = ḡ2 − ĝ2 = − ĝ2

2c2θ̂

[
c2
θ̂

(√
2δGF +

δm2
Z

m̂2
Z

)
+ s2

θ̂
s2θ̂v̄

2
TCHWB

]
, (3.7)

δs2
θ = s2

θ̄ − s2
θ̂

= 2c2
θ̂
s2
θ̂

(
δg1

ĝ1
− δg2

ĝ2

)
+ v̄2

T

s2θ̂c2θ̂

2
CHWB. (3.8)

6The U(3)5 limit used here treats the two flavour contractions (Cllδmn δop +C′llδmp δno)(l̄mγµln)(l̄oγ
µlp)

as independent [40].
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Using the {α̂ew, m̂Z , ĜF } EW input parameters one has {ᾱew, m̄Z} = {α̂ew, m̂Z}. We

still define a parameter δm2
Z for latter convenience. Note that ḠF for EW applications is

defined as ḠF = 1/
√

2 v̄2
T . The input parameters are measured at different experimental

scales p2 ' {0, m̂2
Z , m̂

2
µ} and are defined as follows.

3.1.1 Extraction of α̂ew

The extraction of α̂ew occurs in the measurement of the Coulomb potential of a charged

particle in the Thomson limit (p2 → 0). The low scale extraction of α̂ew in the SMEFT is

given by

−i
[

4π α̂ew(q2)

q2

]
q2→0

≡ −i (ē0)2

q2

[
1 +

ΣAA(q2)

q2

]
q2→0

. (3.9)

In this expression, ΣAA is the two point function of the canonically normalized photon field

in the SMEFT at a fixed order in perturbation theory. Formally unknown finite terms in

the low scale extraction are present due to the vacuum polarization of the photon in the

q2 → 0 limit, and in addition further related uncertainties are introduced using this input

parameter in running this low scale parameter up through the Hadronic resonance region

(due to π± loops etc.). The expression for ΣAA is generally rearranged into the form[
ΣAA(q2)

q2

]
q2→0

= Re
ΣAA(m2

Z)

m2
Z

−
[

ReΣAA(m2
Z)

m2
Z

−
[

ΣAA(q2)

q2

]
q2→0

]
, (3.10)

where the last quantity in square brackets dominantly leads to an uncertainty that is far

larger than the low scale measurement uncertainty in the limit q2 → 0. This introduces a

significant numerical uncertainty as these nonperturbative contributions must be estimated.

This is the dominant effect, leading to a parameter α̃ew(m̂2
Z) defined incorporating this

correction and leading to the reduced theoretical precision given by [41, 42]

1/α̃ew(m̂Z) = 127.950± 0.014, while 1/α̂ew(0) = 137.035999139(31). (3.11)

We use as a code input the value of α̂ew(m̂Z) = α̃ew(m̂Z) given in refs. [41, 43] which

includes an estimate of this numerical uncertainty. When α̂ew is used as an input parameter,

the mapping of this expression to Lagrangian parameters is given in eq. (3.1).

3.1.2 Extraction of ĜF

The extraction of ĜF defined by the Effective Lagrangian generated in the p2 � m̂2
W limit

of the SM interactions (see ref. [44]) is defined at the scale µ2 ∼ m2
µ

LGF ≡ −
4ĜF√

2
(ν̄µ γ

µPLµ) (ē γµPLνe) , (3.12)

with the measurement of µ− → e− + ν̄e + νµ defining the numerical value through the

measurement of the total muon lifetime (τµ). The extraction of ĜF in this manner is

subject to the condition that the ν flavours are summed over experimentally. This is
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required so that unitarity allows the neglect of contributions to the corresponding decay

rate due to the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [45, 46] relating the

weak and mass eigenstates of the Neutrino’s, which is suppressed in eq. (3.12).

When ĜF is used as an input parameter in the SMEFT, the introduction of the shift

δGF is still required for EW studies at the LHC. This is because the predictions of observ-

ables for LHC do not follow from the lower scale (µ2 ∼ m2
µ � v̄2

T ) Effective Lagrangian

given in eq. (3.12).

3.1.3 Extraction of m̂Z

The extraction of m̂Z is defined in the simultaneous fit to the LEPI pseudo-observables

{m̂Z , Γ̂Z , σ̂
0
had, R̂

0
`} as defined in ref. [47] that occurs in the pole scan through the Z mass

that was preformed at LEP.7 The extraction of m̂Z occurs with the subtraction of soft

initial and final state QED radiation (captured in a QED radiator function denoted RQED)

from the peak cross-section σ0 as [47]

σ0
f̄f =

12π

m̂2
Z

Γ̂ee Γ̂f̄f

Γ̂2
Z

1

RQED
, σ0

had =
12π

m̂2
Z

Γ̂ee Γ̂had

Γ̂2
Z

1

RQED
, R0

` =
Γ̂had

Γ̂`
. (3.13)

The input m̂Z is defined to be extracted from the simultaneous fit to these pseudo-

observables. When m̂Z is used as an input the introduction of the shift δm2
Z given in

eq. (3.3) still appears in some cases, when experimental predictions depend on the inferred

values of ĝ1, ĝ2.

3.2 {m̂W , m̂Z , ĜF } input parameter scheme

Using the {m̂W , m̂Z , ĜF } input parameter scheme offers several theoretical advantages:

• The use of m̂W has been shown to have a subdominant measurement bias to the

quoted experimental error in the SMEFT [48]. This has not been established for

α̂ew. Furthermore, the impressive intrinsic precision of the low scale measurements

of α̂ew is not relevant for the comparison of the two schemes, due to the large error

introduced running α̂ew up through the hadronic resonance region being dominant.

Due to this, the percentage errors of each input parameter are within a factor of two

as far as global constraint studies at EW scales are concerned.

• The use of m̂W as an input allows SMEFT studies to expand around the physical

poles defining scattering amplitudes such as ψ̄ ψ → ψ̄ ψ ψ̄ ψ through charged currents

in a double pole expansion, leading to more consistent global constraint studies, see

refs. [1, 15] for more discussion.

• The use of an m̂W input parameter has some advantages when developing one loop

results in the SMEFT, see the discussion in ref. [39, 49–51]. In addition, the scales of

the input parameters are closer together using {m̂W , m̂Z , ĜF } reducing logarithmic

enhancements present in running α̂ew for LHC predictions, and related mixing effects

with L(6) operators.

7For more discussion on the interpretation of these pseudo-observables (PO) in the SMEFT see ref. [1].
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The precise extraction of m̂W at the Tevatron occurred historically after LEPI-II opera-

tions. This fact largely explains the current dominance of the {α̂ew, m̂Z , ĜF } input scheme.

Initial investigations of the input scheme dependence of the global constraint conclusions

in the SMEFT framework indicate that this scheme dependence is below experimental un-

certainties [16]. The advantages of the {m̂W , m̂Z , ĜF } input scheme are substantial enough

that transitioning to this approach is theoretically favoured. We provide codes utilizing

each input parameter scheme to aid in this transition. Using the {m̂W , m̂Z , ĜF } input

scheme, the SM Lagrangian parameters are defined as

ê = 2 · 21/4m̂W

√
ĜF sθ̂, ĝ1 = 2 · 21/4m̂Z

√
ĜF

(
1− m̂2

W

m̂2
Z

)
, ĝ2 = 2 · 21/4m̂W

√
ĜF ,

s2
θ̂

= 1− m̂2
W

m̂2
Z

, v̂T =
1

21/4
√
ĜF

. (3.14)

In this scheme {δGF , δm2
h} are unchanged and

δα

2 α̂
= −δGF√

2
+
δm2

Z

m̂2
Z

m̂2
W

2 (m̂2
W − m̂2

Z)
− CHWB√

2 ĜF

m̂W

m̂Z
sθ̂, (3.15)

δs2
θ̄ = 2c2

θ̂
s2
θ̂

(
δg1

ĝ1
− δg2

ĝ2

)
+ v̄2

T

s2θ̂c2θ̂

2
CHWB, (3.16)

δm2
Z

m̂2
Z

=
1

2
√

2ĜF
CHD +

√
2

ĜF

m̂W

m̂Z

√
1− m̂2

W

m̂2
Z

CHWB,
δm2

W

m̂2
W

= 0, (3.17)

δg1 = − ĝ1√
2
δGF − ĝ1

δm2
Z

2 s2
θ̂
m̂2
Z

, (3.18)

δg2 = − ĝ2√
2
δGF . (3.19)

3.2.1 Extraction of m̂W

An input parameter m̂W can be extracted using a fit to the transverse mass mT
W at hadron

colliders. Recall that when utilizing transverse variables (defined in the plane orthogonal

to the collision axis) one defines a missing ET vector

~EmissT = −
∑
i

~pT (i), (3.20)

summing over all visible final state particles i. ~EmissT is so reconstructed in the case of

W → `ν decays and this defines |~p νT |. Combined with a measured pT of an identified ` (the

momentum of the lepton in the plane transverse to the collision axis), these variables are

used to construct

(mT
W )2 = 2|~p `T ||~p νT |(1− cosφ`ν) (3.21)

where φ`ν is the angle between the leptons in the plane perpendicular to the collision axis.

In the limit of |~pWT | → 0 one has m2
T = s sin2 θ where θ is defined as the angle between

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
7
0

Input parameters Value Ref.

α̃ew(m̂Z) 1/(127.950± 0.017) [41, 43]

m̂W 80.365± 0.016 [GeV] [56]

m̂Z 91.1876± 0.0021 [GeV] [41, 43, 57]

ĜF 1.1663787(6)× 10−5[GeV]−2 [41, 43]

m̂h 125.09± 0.21± 0.11 [GeV] [58]

α̂s(m̂Z) 0.1181± 0.0011 [41]

m̂e 0.5109989461(31)× 10−3 [GeV] [41]

m̂µ 105.6583745(24)× 10−3 [GeV] [41]

m̂τ 1.77686± 0.00012 [GeV] [41]

m̂u 2.2+0.6
−0.4× 10−3 [GeV] [41]

m̂c 1.28± 0.03 [GeV] [41]

m̂t 173.21± 0.51± 0.71 [GeV] [41]

m̂d 4.7+0.5
−0.4× 10−3 [GeV] [41]

m̂s 0.096+0.008
−0.004 [GeV] [41]

m̂b 4.18+0.04
−0.03 [GeV] [41]

Table 2. Set of parameters used as inputs and corresponding numerical values. Only one parameter

between α̃ew(m̂Z) and m̂W is retained, depending on the input scheme chosen. Note that the value

of the m̂W is the Tevatron extracted value, not the global average that includes LEP extractions of

m̂W that are harder to interpret in the SMEFT [48].

the W boson decay products and the beam axis in the W boson rest frame and s is the

partonic energy of the produced W . The Jacobian of transforming between the variable θ

and mT is given in the pWT = 0 case by mT /(s −m2
T ). This introduces a sharp Jacobian

peak in the mT spectrum that allows an extraction of the W mass from the shape of the

spectra and its endpoint. Precise extractions of m̂W are strongly impacted by detector

resolution effects and pWT 6= 0 requiring template fits to the derived spectra to fit for m̂W .

See refs. [48, 52–55] for more details and the mapping to m̂W from such spectra.

3.3 Numerical values of inputs

The numerical values used to define the mass and coupling input parameters in each scheme

are given in table 2. In addition, when including flavour violating effects, the Cabibbo

Kobayashi Maskawa (CKM) matrix [59–61] is defined through the Wolfenstein parameter-

ization [62] as

VCKM =

 c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13

 (3.22)

≈

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (3.23)
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where the numerical parameters are input as [41]:

parameter name value

λ CKMlambda 0.22506 ± 0.00050

A CKMA 0.811 ± 0.026

ρ CKMrho 0.124 +0.019
−0.018

η CKMeta 0.356 ± 0.011

Here “name” refers to the label of the parameter in the FeynRules codes. Note that

the Pontecorvo Maki Nakagawa Sakata (PMNS) [46, 63] matrix is not implemented in

SMEFTsim as neutrino masses are neglected, but it can be directly incorporated in an

extension.

In the context of the SMEFT, experimental extractions and fits to the CKM matrix

elements get corrections due to L(6) operators. Such corrections define a difference between

“bar” and “hatted” CKM quantities that are neglected here. The reason we have neglected

these effects on the CKM inputs is that to our knowledge, no complete analysis in the

SMEFT defining such corrections to the global fit to Wolfenstein parameters exists in the

literature. Analyses that build up results central to the effort to determine such corrections

include refs. [40, 44, 64–66]. When such results are available they will be included in the

SMEFTsim package as an update.

3.3.1 Fermion mass inputs

The fermion mass inputs are given in table 2. The relation of these measured quantities

and SMEFT Lagrangian parameters is more subtle than in the SM. Following ref. [10]

LY = −h ψR,r [Yψ]rs ψL,s + . . . (3.24)

and the relation between the complex fermion mass matrix [Mψ]rs and effective complex

Yukawa coupling in the SMEFT is given by

[Mψ]rs =
v̄T√

2

(
[Yψ]rs −

1

2
v̄2
TC
∗
ψH
sr

)
, [Yψ]rs =

1

v̄T
[Mψ]rs [1 + cH,kin]− v̄2

T√
2
C∗ψH
sr
. (3.25)

These matrices are not simultaneously diagonalizable. Nevertheless the rotational freedom

of the fermion kinetic terms (see eq. (4.1)) that leaves the kinetic terms invariant allows

the mass matrix to be taken to diagonal form so that

U(ψ,R)† [Mψ]rs U(ψ,L) ≡ diag{m̂1
ψ, m̂

2
ψ, m̂

3
ψ}. (3.26)

The effective Yukawa matrices are then off diagonal in general and complex in the mass

eigenstate basis

U(ψ,R)† [Yψ]rs U(ψ,L) = 21/4ĜF diag{m̂1
ψ, m̂

2
ψ, m̂

3
ψ}
[

1 + cH,kin −
ĜF√

2
δv2
T

]
(3.27)

− 1

2 ĜF

[
U(ψ,R)†C∗ψH U(ψ,L)

]
rs
,
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In taking [Mψ]rs to diagonal form, non-SM phases that are present in the SMEFT are

shifted into the general 3×3 VCKM matrix. The rephasing freedom of the SM fermion field

kinetic terms still reduces VCKM to a unitary matrix with the same number of parameters

as in the SM (i.e. three real parameters and one phase). New non-SM relative phases do

persist in the effective Yukawa couplings in general. In the case of U(3)5 symmetry where

C∗ψH
rs

→ C∗ψH [Yψ]rs with C∗ψH ∈ C non-SM phases remain. In the case of MFV being

assumed C∗ψH
rs

→ C∗ψH [Yψ]rs and C∗ψH ∈ R, and non-SM phases are absent.

3.3.2 Remaining inputs

The remaining inputs in either scheme are the Higgs mass and the strong coupling given

directly by

m̂2
h ≡ m̄2

h

(
1 +

δm̂2
h

m̂2
h

)
, ĝ3 ≡

√
4πα̂s. (3.28)

The Higgs mass is directly extracted from the fitted reconstructed peaks in h → γ γ and

h→ Z?Z → `+ `− `+ `−, see ref. [58] for a discussion. The extraction of ĝ3 is performed by

multiple methods. One of the most prominent in recent years is a joint fit to e+e− event

shapes and leading non-perturbative corrections, for a review see ref. [67]. The Lagrangian

parameter λ̄ is a derived quantity from the input of m̂h and ĜF which defines

λ̂ ≡ m̂2
h ĜF√

2
, λ̄ = λ̂

(
1− δm̂2

h

m̂2
h

−
√

2 δGF

)
. (3.29)

4 Flavour symmetries in the operator basis

4.1 Flavour symmetry assumptions

A general SMEFT contains a large number of real parameters in L(6), as listed in ta-

ble 1. There are 1350/53 CP-even parameters and 1149/23 CP-odd parameters in L(6) for

three/one generations [10]. Most of the parameters in the SMEFT are in the ψ4 operators

due to flavour indices. This makes clear the importance of flavour symmetry assumptions

and carefully utilizing numerical suppressions of ψ4 operators contributing to cross-sections.

We present codes that span several different flavour symmetry assumptions in the

operator basis: a flavour symmetric U(3)5 case that allows CP violating phases, a (linear)

minimal flavour violating version where flavour change follows the SM pattern and new CP

violating phases are neglected, and the general L(6) case. In this section, we summarize

the required theoretical results for each case.

4.1.1 U(3)5 limit

The U(3)5 limit refers to the limit of unbroken global flavour symmetry in the SM La-

grangian, restored in the limit Yu,d,e → 0. To define this global symmetry group we define
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the relation between the weak (unprimed) basis and the mass (primed) basis as

uL = U(u, L)u′L, uR = U(u,R)u′R, νL = U(ν, L) ν ′L, (4.1)

dL = U(d, L) d′L, dR = U(d,R) d′R, eL = U(e, L) e′L, eR = U(e,R) e′R. (4.2)

Each U rotation defines a U(3) flavour group. The U(3)5 group of the SM is defined as

U(3)5 = U(u,R)× U(d,R)× U(Q,L)× U(`, L)× U(e,R). (4.3)

The relative U rotations between components of the lepton and quark SUL(2) doublet fields

define the PMNS and CKM matrices as

VCKM = U(u, L)† U(d, L), UPMNS = U(e, L)† U(ν, L). (4.4)

At times, it is useful to have defined the unbroken flavour groups of the SM (with the U(1)

global flavour number groups removed) as the quark and lepton subgroups

Gq = SUuR(3)× SUdR
(3)× SUqL(3), G` = SU`L(3)× SUeR(3), (4.5)

and a Yukawa matrix transforms as Yi ∼ {Gq,G`} for these groups. Yukawa spurion

transformations are defined as

Yu ∼ (3, 1, 3̄, 1, 1), Yd ∼ (1, 3, 3̄, 1, 1), Ye ∼ (1, 1, 1, 3̄, 3), (4.6)

so that one can restore the full {Gq, G`} flavour symmetry by inserting the Yukawa matrices

in a manner that makes flavour singlet structures manifest. Furthermore, retaining only the

top and bottom quark Yukawa coupling, defines a phenomenologically interesting breaking

of the U(3)5 limit

U(e,R)† Ye U(e, L) ≈

 0 0 0

0 0 0

0 0 0

 , U(d,R)† Yd U(d, L) ≈

 0 0 0

0 0 0

0 0 yb

 , (4.7)

U(u,R)† Yu U(u, L) ≈

 0 0 0

0 0 0

0 0 yt

 , (4.8)

where yi =
√

2mi/v for a quark of mass mi in the SM. We supply a FeynRules code

implementing full diagonal Yukawa matrices that directly simplify numerically to this U(3)5

breaking limit. Below we demonstrate the breaking of this limit that occurs numerically

in the U(3)5 codes, and only retain the leading breaking terms linear in yb, yt.

The L(6) operators are broken down to the Classes given in table 10. The Wilson

coefficients of the operators in Classes 1,2,3 and 4 are unchanged going to the U(3)5 flavour

symmetric limit and allowing complex Wilson coefficients. The following Wilson coefficients

are then defined in the U(3)5 limit.
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Class 5, (ψ2H3):

CeH
rs
QeH
rs
→ CeH [Y †e ]rsQeH

rs
≈ 0, (4.9)

CdH
rs
QdH
rs
→ CdH [Y †d ]rsQdH

rs
≈ y?b CbH Q′bH

33
, (4.10)

CuH
rs
QuH
rs
→ CuH [Y †u ]rsQuH

rs
≈ y?t CtH Q′tH

33
, (4.11)

In the last step we have further neglected all Yukawa’s other than the top and bottom

Yukawa’s in the leading breaking of the U(3)5 limit while rotating to the mass eigenstate

basis. The operators where the fermion fields are taken to the mass eigenstate basis are

indicated with a prime superscript. Note that this is an IR limit defined in the SMEFT

and {CbH , CtH} ∈ C in general. The breaking of the U(3)5 limit also follows from inserting

spurions that are functions of [YuY
†
u ],[YdY

†
d ]. In these terms, the expansion in the y2

t ∼ 1

dependence can be considered to be implicitly absorbed into an effective Wilson coefficient

parameter for the Class 5 and 6 operators.

Class 6 (ψ2XH) operators:

CuG
rs
QuG
rs
→ CuG [Y †u ]rsQuG

rs
≈ y?tCtGQ′tG

33
, (4.12)

CdG
rs
QdG
rs
→ CdG [Y †d ]rsQdG

rs
≈ y?bCbGQ′bG

33
, (4.13)

CuW
rs
QuW

rs
→ CuW [Y †u ]rsQuW

rs
≈ y?tCtW Q′tW

33
, (4.14)

CdW
rs
QdW

rs
→ CdW [Y †d ]rsQdW

rs
≈ y?bCbW Q′bW

33
, (4.15)

CuB
rs
QuB
rs
→ CuB [Y †u ]rsQuB

rs
≈ y?tCtB Q′tB

33
, (4.16)

CdB
rs
QdB
rs
→ CdB [Y †d ]rsQdB

rs
≈ y?tCbB Q′bB

33
, (4.17)

CeW
rs
QeW

rs
→ CeW [Y †e ]rsQeW

rs
≈ 0, (4.18)

CeB
rs
QeB
rs
→ CeB [Y †e ]rsQeB

rs
≈ 0, (4.19)

in the U(3)5 limit the Wilson coefficients of the ψ2H3 and ψ2XH operators ∈ C as Ye,u,d
are 3×3 complex matrices in general. In the last approximation, again, all Yukawa’s other

than the top and bottom are neglected in the leading breaking of the U(3)5 limit while

rotating to the mass eigenstate basis.

Class 7 (ψ2H2D):

C
(1)
Hl
rs

Q
(1)
Hl
rs

 C
(1)
Hl Q

′(1)
Hl
rr

, C
(3)
Hl
rs

Q
(3)
Hl
rs

 C
(3)
Hl Q

′(3)
Hl
rr

, (4.20)

C
(1)
Hq
rs

Q
(1)
Hq
rs

 C
(1)
Hq Q

′(1)
Hq
rr

, C
(3)
Hq
rs

Q
(3)
Hq
rs

 C
(3)
Hq Q

′(3)
Hq
rr

, (4.21)

CHe
rs
QHe
rs
 CHeQ

′
He
rr
, CHu

rs
QHu
rs
 CHuQ

′
Hu
rr
, (4.22)

CHd
rs
QHd
rs
 CHdQ

′
Hd
rr
, (4.23)
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and CHud
rs

QHud
rs
→ CHud[Yu Y

†
d ]rsQHud

rs
≈ yt y

?
b (VCKM)33CHudQ

′
Hud
33

(with CHud ∈ C) in

the leading breaking of the U(3)5 limit. Rotating to the mass eigenstate basis has formally

led to a redefinition of the initial Wilson coefficient of the form C → U(L/R)†C U(L/R)

and these rotations have been absorbed into a redefinition of the Wilson coefficients on

the right hand side of the  . An implicit sum over flavour indices rr = {11, 22, 33}
has been used here. As the operators {Q(1,3)

Hl , Q
(1,3)
Hq , QHe, QHu, QHd} are self Hermitian,

{C(1,3)
Hl , C

(1,3)
Hq , CHe, QHu, CHd} ∈ R.

The U(3)5 limit of the four fermion operators is more subtle. The (L̄L)(L̄L) operators

simplify to [10, 40]

C ll
prst

Q ll
prst
 (CllQ

′
ll
pptt

+ CllQ′ ll
pttp

), C
(1)
lq
prst

Q
(1)
lq
prst

 C
(1)
lq Q

′(1)
lq
pptt

, (4.24)

C
(1)
qq
prst

Q
(1)
qq
prst
 (C

(1)
qq Q

′(1)
qq
pptt

+ C(1)
qq Q

′(1)
qq
pttp

), C
(3)
lq
prst

Q
(3)
lq
prst

 C
(3)
lq Q

′(3)
lq
pptt

, (4.25)

C
(3)
qq
prst

Q
(3)
qq
prst
 (C

(3)
qq Q

′(3)
qq
pptt

+ C(3)
qq Q

′(3)
qq
pttp

), (4.26)

with {Cll, Cll, C(1)
qq , C(1)

qq , C
(3)
qq , C(3)

qq , C
(1)
lq , C

(3)
lq } ∈ R due to the operators being self-Hermitian

and not transforming under any external group. Furthermore, The use of C and C denote

the two different flavour contractions and the operators with all fermion fields identical also

satisfy Qijkl = Qklij due to relabeling freedom of dummy indices in all flavour symmetry

cases, and in the flavour general case. The (R̄R)(R̄R) operators simplify in the U(3)5

limit to

C ee
prst

Q ee
prst
 CeeQ

′
ee
pptt

, C uu
prst

Q uu
prst
 (CuuQ

′
uu
pptt

+ CuuQ′uu
pttp

), (4.27)

C eu
prst

Q eu
prst
 CeuQ

′
eu
pptt

, C dd
prst

Q dd
prst
 (CddQ

′
dd
pptt

+ CddQ′dd
pttp

), (4.28)

C ed
prst

Q ed
prst
 CedQ

′
ed
pptt

, C
(1)
ud
prst

Q
(1)
ud
prst

 C
(1)
ud Q

′(1)
ud
pptt

, (4.29)

C
(8)
ud
prst

Q
(8)
ud
prst

 C
(8)
ud Q

′(8)
ud
pptt

, (4.30)

where the Cee operator only allows one term due to the fact that the e fields are singlets

under SUC(3) × SUL(2) × UY(1), and a Fierz identity [10] reduces the number of effec-

tive parameters. Again {Cee, Cuu, Cuu, Cdd, Cdd, Ceu, Ced, C(1)
ud , C

(8)
ud } ∈ R due to Hermitian

operators that are not transforming under an external flavour group.

The (L̄L)(R̄R) operators are trivial and have one real Wilson coefficient for each

operator. The chirality flipping ψ4 operators have the U(3)5 limits

Cledq
prst

Qledq
prst
→ Cledq [Y †e ]rs[Yd]ptQledq

rspt
≈ 0, (4.31)

C
(1)
quqd
prst

Q
(1)
quqd
prst

→ C
(1)
quqd [Y †u ]rs[Y

†
d ]ptQ

(1)
quqd
rspt

≈ C(1)
quqd y

?
t y
?
b Q

′(1)
quqd
3333

, (4.32)

C
(8)
quqd
prst

Q
(8)
quqd
prst

→ C
(8)
quqd [Y †u ]rs[Y

†
d ]ptQ

(8)
quqd
rspt

≈ C(8)
quqd y

?
t y
?
b Q

′(8)
quqd
3333

, (4.33)
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C
(1)
lequ
prst

Q
(1)
lequ
prst

→ C
(1)
lequ [Y †e ]rs[Y

†
u ]ptQ

(1)
lequ
rspt

≈ 0, (4.34)

C
(3)
lequ
prst

Q
(3)
lequ
prst

→ C
(3)
lequ [Y †e ]rs[Y

†
u ]ptQ

(3)
lequ
rspt

≈ 0, (4.35)

with {Cledq, C(1)
quqd, C

(8)
quqd, C

(1)
lequ, C

(3)
lequ} ∈ C. This limit does not forbid CP violation beyond

the SM due to the presence of complex Wilson coefficients. Again, in the last approximation

all Yukawa’s other than the top and bottom are neglected.

4.1.2 MFV breaking

Assuming that a CP violating phase only appears in L(6) due to the SM source of CP

violation present in the CKM matrix, and that the breaking of flavour symmetry in the

SMEFT follows the breaking pattern in the SM, defines the MFV paradigm [7] (see also

refs. [5, 6, 8, 9]).

The reasons to adopt these strong symmetry assumptions are basically twofold.

First, the set of experimental constraints derived in the flavour physics program push a

naive flavour violating suppression scale in the SMEFT expansion Λ � TeV, rendering

SMEFT studies of LHC in this case unlikely to extract evidence of physics beyond the

SM.8 The converse point also holds in that if SMEFT studies do uncover deviations in

LHC data, then an underlying sector must be consistent with strong lower energy flavour

constraints. If this occurs due to a MFV symmetry breaking pattern then this symmetry

assumption acts to reduce tuning of parameters. Second, and equally important is that

the introduction of such (IR) symmetry assumptions render systematic SMEFT constraint

studies feasible to practically carry out.9

We introduce the Jarlskog invariant [61, 62, 70, 71] as

J = c12c
2
13c23s12s13s23 sin(δ) ' A2λ6η(1− λ2/2) ' 3× 10−5, (4.36)

in the MFV limit (at leading order in the MFV expansion)

{CG̃, CW̃ , CHG̃, CHW̃ , CHB̃, CHW̃B} ∝ J, (4.37)

{CeH , CuH , CdH , CeW , CeB, CuW , CuB, CuG, CdW , CdB, CdG, CHud} ∼ R, (4.38)

{Cledq, C(1)
quqd, C

(8)
quqd, C

(1)
lequ, C

(3)
lequ} ∈ R, (4.39)

which renders {CG̃, CW̃ , CHG̃, CHW̃ , CHB̃, CHW̃B} and

Im{CeH , CuH , CdH , CeW , CeB, CuW , CuB, CuG, CdW , CdB, CdG, CHud}, (4.40)

neglectable in studies that also neglect next to leading order corrections, such as the codes

reported here, as loop suppressions are ∝ g2
SM/16π2 � J are not systematically included.

8See refs. [6, 7, 68] for discussion on flavour changing physics beyond the SM bounds.
9It is arguably possible that a completely flavour general constraint program can also be carried out in

the SMEFT, see refs. [66, 69] for analyses aiming at the flavour general case.
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MFV does not preserve flavour as in the U(3)5 limit, but dictates that the flavour

breaking pattern follows the SM. Following ref. [7] an MFV expansion can be constructed

by expanding in flavour invariants determined using the spurion transformation properties

in eq. (4.6). The Class X3, H6, D2H4, X2H2 Lagrangian terms are unchanged from the

U(3)5 limit results given above. The leading MFV breaking spurion’s are given by

Sqpr = [Y †uYu]pr + ∆[Y †d Yd]pr ≈ y2
t [V3pV

?
3r] + ∆ y2

b [V3pV
?

3r], (4.41)

Supr = [YuY
†
u ]pr ≈ y2

t δp3δr3, (4.42)

Sdpr = [YdY
†
d ]pr ≈ y2

b δp3δr3. (4.43)

Here and below ∆ indicates a relative normalization of terms resulting from the spurion

insertions and the first line is simplified with the implicit understanding that the y2
t /y

2
b

spurion breakings leading to flavour change will be inserted for the dL/uL fields respectively

expanding out the QL doublet field. The spurions transform as {8,1,1}, {1,8,1}, {1,1,8}
for Supr, S

d
pr, S

q
pr under the global favour symmetries Gq. The Sq spurion that dictates

flavour changing neutral currents, acts to absorb the rotation matrices between the weak

and mass eigenstate bases for the fermion fields. Similarly the Su, Sd spurions absorb the

rotation matrices going to the mass eigenstate basis fields. Incorporating the effects of all

of these spurion breakings leads to the following extra parameters in the supplied codes

constructed in unitary gauge.

For the Class 5,6 (ψ2H3,ψ2XH) operators, the effects of the spurions Su,d can be

absorbed into a redefinition of CuH ,CdH noted above, as only the third generation entry is

retained. The same point also holds for the (L̄R)(R̄L) and (L̄R)(L̄R) operators. The Class

7 (ψ2H2D) operators have the following extra parameters in the linear MFV breaking limit:

C
(1)
Hq
rs

Q
(1)
Hq
rs

≈
[
Sqrs ∆C

(1)
Hq

]
Q
′(1)
Hq
rs

, (4.44)

C
(3)
Hq
rs

Q
(3)
Hq
rs

≈
[
Sqrs ∆C

(3)
Hq

]
Q
′(3)
Hq
rs

, (4.45)

CHu
rs
QHu
rs
≈ [Surs∆CHu] Q

′
Hu
rs
, (4.46)

CHd
rs
QHd
rs
≈
[
Sdrs∆CHd

]
Q
′
Hd
rs
. (4.47)

The (L̄L)(L̄L) operators introduce the extra parameters

C
(1)
qq
prst

Q
(1)
qq
prst
≈
[
∆1C

(1)
qq S

q
pr δst + ∆2C

(1)
qq S

q
st δpr

]
Q
′(1)
qq
prst

(4.48)

+
[
∆1C(1)

qq S
q
pt δsr + ∆2C(1)

qq S
q
sr δpt

]
Q
′(1)
qq
prst

,

C
(3)
qq
prst

Q
(3)
qq
prst
≈
[
∆1C

(3)
qq S

q
pr δst + ∆2C

(3)
qq S

q
st δpr

]
Q
′(3)
qq
prst

(4.49)

+
[
∆1C(3)

qq S
q
pt δsr + ∆2C(3)

qq S
q
sr δpt

]
Q
′(3)
qq
prst

,

C
(1,3)
lq
prst

Q
(1,3)
lq
prst

≈
[
∆C

(1,3)
lq δprS

q
st

]
Q
′(1,3)
lq
prst

, (4.50)
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where the ∆Ci,∆Ci parameters are normalizations that can differ from the one multiplying

the spurion insertions. The (R̄R)(R̄R) operators have the extra parameters

C uu
prst

Q uu
prst
≈
[
Supr δst ∆1Cuu+Sust δpr ∆2Cuu + Supt δsr ∆3Cuu+Susr δpt ∆4Cuu

]
Q
′
uu
prst

, (4.51)

C dd
prst

Q dd
prst
≈
[
Sdpr δst ∆1Cdd+Sdst δpr ∆2Cdd + Sdpt δsr ∆3Cdd+Sdsr δpt ∆4Cdd

]
Q
′
dd
prst

, (4.52)

C eu
prst

Q eu
prst
≈ [Sust δpr ∆Ceu]Q

′
eu
prst

, (4.53)

C ed
prst

Q ed
prst
≈
[
Sdst δpr ∆Ced

]
Q
′
ed
prst

, (4.54)

C
(1)
ud
prst

Q
(1)
ud
prst

≈
[
Supr δst ∆1C

(1)
ud + Sdst δpr ∆2C

(1)
ud

]
Q
′(1)
ud
prst

, (4.55)

C
(8)
ud
prst

Q
(8)
ud
prst

≈
[
Supr δst ∆1C

(8)
ud + Sdst δpr ∆2C

(8)
ud

]
Q
′(8)
ud
prst

. (4.56)

The (L̄L)(R̄R) operators have the extra parameters

C lu
prst

Q lu
prst
≈ [Sust δpr ∆Clu]Q

′
lu
prst

, (4.57)

C ld
prst

Q ld
prst
≈
[
Sdst δpr ∆Cld

]
Q
′
ld
prst

, (4.58)

C qe
prst

Q qe
prst
≈
[
Sqprδst ∆Cqe

]
Q′ qe
prst

, (4.59)

C
(1,8)
qu
prst

Q
(1,8)
qu
prst
≈
[
Sqprδst ∆1C

(1,8)
qu + Sustδpr ∆2C

(1,8)
qu

]
Q
′(1,8)
qu
prst

, (4.60)

C
(1,8)
qd
prst

Q
(1,8)
qd
prst

≈
[
Sqprδst ∆1C

(1,8)
qd + Sdstδpr ∆2C

(1,8)
qd

]
Q
′(1,8)
qd
prst

. (4.61)

The remaining operators follow the pattern of the U(3)5 limit.

5 Operator normalizations

The normalization used in the SMEFTsim codes also differs from other codes, which should

be noted in comparing results. The HEL implementation [72], eHDECAY [73], Higgs

Characterization [74] and ROSETTA [75] use a varying suppression scale 1/m̂2
W or 1/v2

for operators. Furthermore, these codes normalize a subset of operators by powers of gauge

couplings.

Following Weinberg [76] we take a different approach that conforms with a traditional

EFT construction. We retain the general EFT with the most general interaction terms

consistent with the assumed symmetries without extra UV specific dynamical content or

assumptions. The L(6) operators are normalized in the SMEFTsim codes to a naive mass

dimension suppression scale Λ2. Operators with field strengths are not normalized to be

proportional to a corresponding SM gauge coupling, or suppressed by 16π2. The former

normalization is not required to respect SUC(3)×SUL(2)×UY(1) symmetry and the latter

is not model independent10. No assignment of UV specific coupling factors can be made

10A historically widespread approach of suppressing operators containing field strengths by loop factors

was shown to not be a model independent EFT statement in ref. [77]. See also the discussion in ref. [78]

agreeing with these developments.
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in L(6) without introducing further UV assumptions, so we do not include such factors in

the FeynRules codes.

Such normalizations can introduce a very problematic non-commutation with the equa-

tions of motion when interested in EFT studies that seek to obtain basis independent

results. Furthermore, unusual arguments that imply some SMEFT operator bases are pre-

ferred have also appeared in the literature related to this challenge. These problems can be

avoided if the corresponding Wilson coefficients of the operators normalized differently are

then varied sufficiently widely in experimental studies to cancel a chosen normalization. By

using a normalization by the naive mass dimension suppression scale 1/Λ2 we avoid placing

this serious burden on a user of the SMEFTsim codes. We note that this standard EFT

approach is also used in DsixTools [79] and in Hto4l [80]. This makes it easy to interface

with these two programs in the future. We caution that it does not follow, when using

a 1/Λ2 normalization, that scan procedures assuming a homogeneous size for the Wilson

coefficients is sufficient to cover all possible UV scenarios.

When comparing results with other codes, we caution that to our knowledge, the

SMEFTsim codes, and the implementations of ref. [37, 79], are the only example of complete

(public) codings of the L(6) SMEFT available to date.11

Note also that (of these complete codes) only SMEFTsim incorporates input parameter

corrections. Missing operators can have non-intuitive consequences on the interpretation of

Wilson coefficients that are retained comparing two SMEFT codes, and make comparing

complete operator basis results to incomplete results (that are also at times ill-defined)

challenging. This is due to the equations of motion being extensively used to define the

SMEFT in a minimal basis at L(6), so that the resulting Wilson coefficients in the re-

duced basis reflect many removed operator forms not retained. In short, when comparing

SMEFTsim results to other codes caveat emptor.

5.1 One loop functions

The codes supplied are designed to enable numerical studies of the LO (tree-level) inter-

ference of the SMEFT with the SM, while neglecting NLO corrections. This approach is

phenomenologically insufficient if universally applied to all SM interactions.

The processes h → gg, h → γ γ, h → γ Z only occur at one loop in the SM due

to renormalizability. To obtain a non-zero interference for these processes as a leading

numerical correction, we implement the one loop functions for these processes in the SM

following the results in refs. [81–85]. An explicit SM Lagrangian term LHSMloop that is

defined as

LSM loop =
h

v̂T
(gHgg∂µG

a
ν∂

µGaν + gHaaAµνA
µν + gHZaAµνZ

µν) , (5.1)

11SMEFTsim and the implementation of ref. [37] are different in scope. Ref. [37] provides a FeynRules

model formulated in Rξ gauge, which is an important step towards NLO results being developed in time.

SMEFTsim includes a FeynRules and UFO implementation formulated in unitary gauge aimed at enabling

consistent LO SMEFT analyses. In particular, the model files generated by SMEFTsim, including input

parameter corrections, can be directly employed for montecarlo event generation.

– 19 –



J
H
E
P
1
2
(
2
0
1
7
)
0
7
0

has been included with

gHgg =
g2
s

16π2
If

(
m2
h

4m2
t

, 0

)
, (5.2)

gHaa =
e2

8π2

[
Iw

(
m2
h

4m2
W

)
+ 3

(
2

3

)2

If

(
m2
h

4m2
t

, 0

)]
, (5.3)

gHza =
e2

4π2

[
sθ̂
cθ̂
IZw

(
m2
h

4m2
W

,
m2
Z

4m2
W

)
+ 3

2

3

(
1

2
− 4

3
s2
θ̂

)
1

2sθ̂cθ̂
If

(
m2
h

4m2
t

,
m2
Z

4m2
t

)]
. (5.4)

The loop functions are

If (a, b) =

∫ 1

0

∫ 1−x

0

1− 4xy

1− 4(a− b)xy − 4by(1− y)
dydx, (5.5)

Iw(a) =

∫ 1

0

∫ 1−x

0

−4 + 6xy + 4axy

1− 4axy
dydx, (5.6)

IZw (a, b) =
1

t2
θ̂

∫ 1

0

∫ 1−x

0

(5− t2
θ̂

+ 2a(1− t2
θ̂
))xy − (3− t2

θ̂
)

1− 4(a− b)xy − 4by(1− y)
dydx. (5.7)

In the codes supplied they have been defined in a Taylor expansion up to cubic terms in

the arguments

If (a, b) =
1

3
+

11b

90
+

22b2

315
+

74b3

1575
+

7a

90
+

16ba

315
+

58b2a

1575
+

2a2

63
+

2ba2

75
+

26a3

1575
, (5.8)

Iw(a, b) = −7

4
− 11a

30
− 19a2

105
− 58a3

525
, (5.9)

IZw (a, b) =
11

24
−

31c2
θ̂

24s2
θ̂

+
11a

180
−

11c2
θ̂
a

36s2
θ̂

+
19a2

630
−

19c2
θ̂
a2

126s2
θ̂

+
29a3

1575
−

29c2
θ̂
a3

315s2
θ̂

+
7b

45
−

4c2
θ̂
b

9s2
θ̂

+
2ab

35
−

62c2
θ̂
ab

315s2
θ̂

+
16a2b

525
−

4c2
θ̂
a2b

35s2
θ̂

+
53b2

630
−

17c2
θ̂
b2

70s2
θ̂

+
67ab2

1575
−

43c2
θ̂
ab2

315s2
θ̂

+
86b3

1575
−

10c2
θ̂
b3

63s2
θ̂

, (5.10)

and they are called respectively Ifermion[x,y], Iw[x], IwZ[x,y] in the SMEFTsim codes.

6 SMEFTsim FeynRules packages

The SMEFTsim package is designed based on the theoretical outline of the previous sections

and consists of several model files for the tree-level analysis of the L(6) SMEFT corrections.

It contains both model files for FeynRules [4] and pre-exported UFO files [3] to be

interfaced e.g. with MadGraph5 aMC@NLO [11].

Two independent models sets are supplied, called “Models set A” and “Models set B”:

each contains three different theories: a fully flavour general SMEFT, a U(3)5 − SMEFT

with non-SM complex phases and MFV−SMEFT. In addition, each case has two different

input schemes available {α̂em, m̂Z , ĜF } and {m̂W , m̂Z , ĜF }. The two models sets differ
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in the structure and in the technical implementation of L(6), but they produce equivalent

results: the use of both sets is recommended for debugging and validation of the numerical

results.

All the models are built upon the default SM implementation in FeynRules [86], from

which they inherit the SM fields, parameters and Lagrangian definitions. The original file

has been extended and modified to include the complete set of L(6) baryon and lepton

number conserving operators of the Warsaw basis [19] and the input numbers have been

updated according to table 2. The SM loop-induced effective couplings of the Higgs to gg,

γγ and Zγ have also been included, as detailed in the previous section. At this stage, the

ghost Lagrangian has been left in its SM form. As a consequence the models give valid

results only in unitary gauge, so $FeynmanGauge = False has been enforced in all cases.

The main purpose of the SMEFTsim package is to provide a complete tool for the

analysis of the tree level interference terms between the L(6) dependent amplitude and the

SM amplitudes in a measured process. The implementation of the entire parameter space

of the SMEFT and the automatic inclusion of the shifts due to the choice of an input

parameters set is a key feature. In this spirit, the models are not meant to be employed for

the extraction of accurate SM predictions and they are not equipped for NLO calculations in

MadGraph5 aMC@NLO. The results obtained with SMEFTsim have a finite theoretical

uncertainty O(%) for the interference term predicted due to neglected higher orders in the

SMEFT effective expansion (L(8) + · · · ) and radiative corrections that are not included.

In this section we provide further details about the implementation of the package in

FeynRules and MadGraph5.

6.1 Definition of the Wilson coefficients

All the Wilson coefficients are assigned a specific interaction order called NP = 1. See

refs. [4, 11] for a definition of interaction order and other options relevant to the Mad-

Graph5 implementation. They are defined to be dimensionless, as the cutoff scale of the

EFT has been defined as an independent external parameter called LambdaSMEFT with a

default value of 1 TeV, that can be modified by the user. LambdaSMEFT is defined with

an interaction order QED = -1, so that the ratio v̂2/Λ2 has overall QED = 0. The Wilson

coefficients in the model files are free input parameters. For real Wilson coefficients, they

are defined as external parameters and can be assigned the values directly by the user. Due

to the fact that FeynRules does not support complex external parameters, complex Wil-

son coefficients are technically defined as internal parameters in the form of cXX = cXXAbs

Exp[I*cXXPh] with two independent external parameters: the absolute value cXXAbs and

the complex phase cXXPh that are free to give numerical values by the user12 The assign-

ment is applied via the attribute Value rather than Definitions in FeynRules so as to

keep a compact notation in the algebraic evaluation. All the real coefficients and the abso-

lute values of the complex ones are assigned a default numerical value 1 while the phases

are set to 0. A restriction card called restrict SMlimit.dat, that sets all the Wilson

coefficients to zero, is supplied for each UFO model.

12We note that this decomposition has the advantage of allowing to perform external scans on an Rn

space easily.
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LSM The renormalizable SM Lagrangian.

LSMlinear LSM after performing the shifts due to redefinition of input parameters,

linearized in the Wilson coefficients.

LSMloop The effective Higgs couplings gg, γγ and Zγ.

LSMincl LSMlinear + LSMloop.

L6clN The dim-6 operators of the ClassN = 1, 2, . . . 8 classified as in table 10

L6 The full dim-6 operators,
∑

N=1,...,8 L6clN.

LagSMEFT LSMincl + L6.

Table 3. Lagrangian terms defined in the SMEFTsim code.

6.2 Definition of the Lagrangian

All the models contain the Lagrangian terms listed in table 3. In particular, L(6) has been

split into 8 terms, one for each Class defined in table 4. The Lagrangians are by definition

Hermitian, while the individual L(6) operators are not in general.

The Lagrangian is entirely written in the fermion mass eigenbasis, in which the Yukawa

matrices are real and diagonal and the CKM matrix is consistently inserted in charged

quark currents. By default all the Yukawa matrices have 3 non-zero diagonal entries and

all fermion masses (except those of neutrinos) are non-vanishing. Restriction files are

supplied for both the FeynRules and UFO models, that set to zero all the fermions’

masses and Yukawas except those of the t and b quarks. Analogously, the CKM matrix is

defined as a 3 × 3 unitary matrix in the Wolfenstein parameterization [62], but it can be

restricted to the 2× 2 Cabibbo rotation in FeynRules.

6.3 Field redefinitions and shifts

The field redefinitions required to have canonically normalized kinetic terms and the param-

eter shifts induced by the choice of a set of input parameters are automatically performed

in the code, consistent with sections 2 and 3. This means that all the parameters appearing

in the output Lagrangian are “hatted” quantities.

The shift in mW induced in the alpha scheme is peculiar in that it does not suffice to

have the shift reproduced correctly in the Lagrangian, but it is also necessary to embed it

in the definition of the W field for it to be read properly by MadGraph5. This is done

defining MW as an internal parameter that includes the shift dMW. This solution is ineffective

for the FeynArts/FormCalc/FeynCalc interface [87–89] that defines mass parameters

independently. When employing the {α̂ew m̂z, ĜF }-scheme models within either of these

frameworks, the user needs to apply manually the replacement

MW→ MW0(1 + dMW/MW0) MW2→ MW02(1 + 2dMW/MW0) (6.1)

in all the analytic expressions.
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Classes Hermitian Sym. Moduli Phases

5, 6, QHud 9 9

7 excluding QHud
√

6 3

8 – (L̄R)(R̄L)/(L̄R)L̄R) 81 81

8 – (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R)
√

45 36

excluding the operators listed below

8 – Qll, Qee, Quu, Qdd, Q
(1)
qq , Q

(3)
qq

√ √
27 18

Qee
√ √

21 15

Table 4. The number of independent parameters per Wilson coefficient for fermionic operators.

The operators constructed out of 2 fermions and 4 fermions are divided into the upper and lower

panels.

6.4 Specifics of the implementation for different flavour structures

6.4.1 Flavor general models

In the flavour general models, the L(6) operators constructed out of the fermion fields have

free flavour indices that are contracted with those of the associated Wilson coefficients. The

latter ∈ C in the flavour space, and are therefore defined as internal tensorial parameters

in FeynRules, with norms and phases given independently for all the complex entries.

Hermiticity and symmetry constraints require some entries to be real and enforce

relations among different entries of a Wilson coefficient matrix, reducing the number of

free parameters as detailed in section 2. This has been taken into account in the codes.

For instance, the Wilson coefficient of an Hermitian 2-fermion operator is specified by 9

real parameters (the 6 absolute values of the (11), (22), (33), (12), (13), (23) entry and the 3

phases of the off-diagonal ones among these) that can be assigned values in the model file.

The same method has been applied for 4-fermion operators. The multi-dimensional flavour

space makes the reduction of the parameter set more involved in this case. We summarize

the number of independent moduli and phases for each category of Wilson coefficients

in table 4.

6.4.2 U(3)5 flavour symmetric models

In the U(3)5 flavour symmetric models all the Wilson coefficients are scalar parameters

(∈ R for Hermitian operators). The Yukawa matrices used for internal flavour contractions

in Classes 5, 6, 8 are diagonal, inclusive of the non-zero (1,1) and (2,2) entries.

6.4.3 Linear MFV models

The Wilson coefficients of the fermionic operators for the MFV models are defined so as

to contain all the relevant spurions of flavour violation. Although only the (3,3) Yukawa

element is retained in the spurions, the (1,1) and (2,2) components are not set to zero in the

leading order contributions. For this reason it is not possible to reabsorb flavour-diagonal

spurions into a redefinition of the Wilson coefficients for the operators of Classes 5, 6 and

8 with (L̄R)(R̄L)/(L̄R)(L̄R) contractions. All the spurions (including the diagonal ones)
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are therefore retained in the FeynRules model. The restriction cards for massless light

fermions consistently set to zero the flavour-diagonal spurions, as they become redundant

in this limit. The replacement of the Wilson coefficients in terms of the spurions is done

explicitly in the Lagrangian (via the Definitions attribute), so as to make the number of

independent contractions manifest and to allow the reduction of symbolic CKM insertions

(unitarity enforces cancellations in the product of CKM insertions stemming from field

and spurions definitions). The Jarlskog invariant is neglected and CP violating operators

expected to be proportional to it are not implemented as they are significantly numerically

suppressed.

7 Models set A — technical details

7.1 Code structure

This models set contains one main file called SMEFTsim A main.fr that imports

fields definitions from SMEFTsim A fields.fr and parameters definitions from SMEFT-

sim A parameters.fr. The latter contains switch commands that select the appropriate

parameter definitions depending on the flavour framework and input parameters scheme

selected: before importing the model in Mathematica, the user should define the two

flags Flavor and Scheme that take the values {general, U35, MFV } and {alphaScheme,
MwScheme} respectively. The definitions of αew,mW , sθ̂, δg1, δg2 depend on the input

scheme choice, while the flavour specification determines which Wilson coefficients set is

imported among d6 parameters general.fr, d6 parameters U35.fr, d6 parameters MFV.fr (see

below) and, consequently, the form of δGF and of the redefinition of the Yukawa cou-

plings. The three files differ mainly in the implementation of the coefficients for fermionic

operators, as described in section 6.4.

The definitions of the L(6) operators are also dependent on the flavour assumption

adopted, and they are imported from one among the files SMEFTsim A operators general.fr,

SMEFTsim A operators U35.fr, SMEFTsim A operators MFV.fr.

7.2 Inputs and shifts

The redefinitions of the Higgs and gauge fields required to bring the kinetic terms to their

canonical form (see section 2) are applied automatically in the code. For the Higgs field,

this takes place in the doublet field definition, while for the gauge bosons a field redefinition

called rotateGaugeB is applied on the SM Lagrangian at the mass eigenstates level. This

choice avoids performing unnecessary rotations on the gauge fields appearing in L(6). The

redefinition of the vev and of the coupling constants due to fixing the input parameters set

(see section 3) is done applying the replacements redefConst and redefVev on the SM

Lagrangian terms.

The shifts δGF , δm2
Z , δm2

h, δg1, δg2, δs2
θ̂
, δmW are left explicitly in the Lagrangian

and they are defined in FeynRules as internal parameters depending on the Wilson coeffi-

cients, so that they are automatically assigned the correct numerical value in MadGraph5.

For instance the U(3)5 symmetric model produces directly the following Feynman rule for

– 24 –



J
H
E
P
1
2
(
2
0
1
7
)
0
7
0

the Z coupling to a pair of neutrinos:

− iĝ2

2cθ̂
δrsγ

µPL

[
1 + s2

θ̂
δg1 + c2

θ̂
δg2 +

v̂2

Λ2
sθ̂cθ̂CHWB +

v̂2

Λ2
(C

(3)
Hl − C

(1)
Hl )

]
. (7.1)

It is worth noting that the Lagrangian expressions containing these quantities have the

same form irrespectively of the input scheme chosen. What distinguishes the {α̂ew, m̂Z , ĜF }
from the {m̂W , m̂Z , ĜF } choice is the exact dependence of the shifts on of Wilson coeffi-

cients. The models contain a replacement list called either alphaShifts or MwShifts that

allows one to make explicit the Wilson coefficient dependence in algebraic expressions. The

replacements should be applied via ReplaceRepeated in Mathematica.

Finally, all the models contain the definition of the functions LinearWC and SMlimit.

The former linearizes analytical expressions in the L(6) corrections, while the latter sets

them to zero, recovering the unshifted SM expression.

7.3 Comments on the implementation for different flavour structures

The definition of the L(6) operators and associated Wilson coefficients has been optimized

for each of the three flavour setups considered. In the flavour general model the fermionic

operators have free flavour indices and the corresponding Wilson coefficients are defined

as tensorial parameters. In the U(3)5 symmetric models the flavour contractions for all

the fermionic operators are incorporated in the definition of the operators themselves.

This allows a reduction in the number of diagrams in the UFO model and consequently

the computation time. All the Wilson coefficients are therefore scalar numbers (∈ R for

Hermitian operators).

In the MFV case, only the Wilson coefficients of quark operators carry flavour indices

and they are defined as the appropriate combination of flavour invariants. Because the

model is written in the fermion mass basis and the Yukawa matrices are real and diagonal,

it is sufficient to define three spurions

Su = YuY
†
u = Y †uYu ≈ y2

t , Sd = YdY
†
d = Y †d Yd ≈ y2

b , SV d = VCKM Sd V
†

CKM .

to implement the spurion breaking given in eq. (4.41). In this way, for instance, C
(1)
Hq can

be introduced as

(C
(1)
Hq)rs 7→ (C

(1)
Hq)0 δrs + ∆uC

(1)
Hq (Su)rs + ∆dC

(1)
Hq (SV d)rs

where the two components of the Sq spurion have been assigned independent coefficients

∆uC
(1)
Hq and ∆dC

(1)
Hq and q = (uL, VCKMdL). One can immediately verify that expanding

the SUL(2) components gives the correct expression where CKM insertions accompany Sd
in the (ūLuL) current and Su in the (d̄LdL) current. Four fermion operators and their

coefficients are defined in an analogous way.

The following notation is adopted for spurion insertions: the coefficients of the identity

contractions are denoted with a final 0 (e.g. ceW0 ). The coefficients accompanying spurion

insertions have names starting with Delta: for operators that allow only one spurion

insertion the associated coefficient is called DeltacXX (where XX stands for the operator
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name). Wherever both the Su and Sd spurions are allowed we assign them coefficients

called DeltaucXX and DeltadcXX respectively. For four fermion operators that admit

spurion insertions in both currents, those in the first current have a coefficient Delta1cXX

(or Delta1ucXX , Delta1dcXX ) and those in the second one have coefficients Delta2cXX

(or Delta2ucXX , Delta2dcXX ). All the parameters appearing here are real, as the only

phases allowed from the MFV ansatz are those stemming from the CKM matrix.

8 Models set B — technical details

8.1 The structure of the model file

This model file contain a single master code SMEFT.fr and a number of subroutines, along

with several restriction files. The internal structure of this model file is depicted in figure 1.

The model file can be loaded in FeynRules using the notebook program SMEFTsim.nb,

with the product of the UFOs (Universal FeynRules Outputs). In the master code two

flags: Scheme and Flavor are established, which are used to identify the input scheme and

flavour symmetry being adopted in loading the model. For example,

Scheme=X; (* 1: alpha scheme; 2: mW scheme *)

Flavor=X; (* 1: flavour general; 2: MFV; 3: U(3)^5 *)

This setup allows one to have different subroutines in different levels (see details

in figure 1), resulting 6 versions of UFOs obtained. In the master code the

InteractionOrderHierarchy is defined but the InteractionOrderLimit is not speci-

fied.13 In addition to the QCD and QED, we specify the NP orders for the interactions that

arise from dimension-6 operators.

8.2 SM inputs

The SMdefs.fr is a universal subroutine consisting of the definition of the gauge groups

(U1Y, SU2L, SU3C) and the indices associated with these groups. As the gauge group

is not enlarged in the SMEFT, this subroutine are retained the same as the SM default

implementation.

The description of the SM fields is contained in a separate subroutine. Even if no

new field is introduced in the SMEFT, we make modifications for this subroutine, offer-

ing two versions for {α̂ew, m̂Z , ĜF } or {m̂W , m̂Z , ĜF } input schemes separately, as ex-

plained in section 3. The difference occurs on the W± boson mass MW. It is set Internal

in the SMfields alphascheme.fr file, while externally given a numerical value in the SM-

fields mWscheme.fr file.

The second part of the model file is the definition of the model parameters, which

include the SM parameters and the Wilson coefficients of L(6) operators. Due to the fact

that Wilson coefficients carrying flavour indices are proportional to Yukawas in the flavour

13For the definitions of interaction order and other attributes defined in MadGraph, we recommend the

users to consult the FeynRules and MadGraph5 manuals [4, 11].
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SMdefs.fr

SMfields_alphascheme.fr SMfields_mWscheme.fr

SMYukawas.fr

SMEFTparms_FLU.frSMEFTparms_MFV.frSMEFTparms.fr

parms_alphascheme.fr parms_mWscheme.fr

Lag.fr

Scheme=1 Scheme=2

Scheme=1 Scheme=2

Flavor=1 Flavor=2 Flavor=3

SM
EF
T.
fr

Figure 1. Illustrative structure of the SMEFT model set B files.

symmetric limits, the Yukawas and CKM must be defined before the Wilson coefficients.

For this purpose, we divide the SM parameters into two blocks: YUKAWA and SMINPUTS.

In the subroutine SMYukawas.fr, the mass of all fermion (mass eigenstates) belonging

to YUKAWA block are externally given numerical values.

The remaining SM parameters are exclusively defined in parms alphascheme.fr and in

parms mWscheme.fr for the {α̂ew, m̂Z , ĜF } or {m̂W , m̂Z , ĜF } input schemes, respectively.

The other block SMINPUTS includes three external parameters: aEWM1, Gf and aS in the

parms alphascheme.fr, and with the substitution of aEWM1 by MW in the subroutine labeled

as parms mWscheme.fr.

8.3 Wilson coefficients

In general, the full list of Wilson coefficients contain two types of parameters: scalar pa-

rameters for flavour-singlet Wilson coefficients and tensorial parameters when the Wilson

coefficients carry flavour indices. The dependence on the flavour space can be reduced as

shown in section 4. In the model file, there are three versions of subroutine SMEFT-

parms.fr, SMEFTparms MFV.fr and SMEFTparms FLU.fr provided corresponding to the

cases of flavour general SMEFT, MFV-SMEFT and U(3)5−SMEFT, respectively. In each

file, all the flavour-singlet Wilson coefficient parameters are stored in the NEWCOUP block.

The coefficients associated with spurion breaking in the MFV limit are individually stored

in a block named MFVCOUP. We stress that the attributes BlockName and OrderBlock cannot

be specified for tensorial parameters. By default, their block name are taken as FRBlock#X

in sequence. In addition, the shifts on the Higgs vev and coupling, gauge boson mass and

gauge couplings dGf, dvev, dlam, dW, dM2Z, dgw, dg1, dsw2 due to the L(6) contri-

bution are constructed in the subroutine parms alphascheme.fr and parms mWscheme.fr.
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Among them, the W mass shift dW presented in the {α̂ew, m̂Z , ĜF } input scheme follows

eq. (6.1). and the analytic forms for the remaining ones are summarized in section 3.

8.4 Lagrangian construction

The SMEFT Lagrangian is constructed in the subroutine Lag.fr. The SM Lagrangian LSM

is implemented by default. As already shown, in the presence of L(6) a shift at the leading

NP order is induced on the Higgs vev and SM gauge couplings compared to the SM values,

and meanwhile the field redefinition for the SM fields are also demanded, leading to a

conversion from the initial SM Lagrangian LSM to a new defined SM Lagrangian LSMshift.

This important step is accomplished in the LSMshift function by employing a series of

substitution rules named redefXXX:

lagtmp=LSM;

Return[lagtmp/.redefHiggs/.redefYuk/.redefSMfield/.redefWeakcoup

/.Conjugate[CKM[a , b ]]*CKM[a , c ]->IndexDelta[b, c]//OptimizeIndex];

Here a series of substitution rules (redefXXX) employed encode the above mentioned shifts

and redefinitions. It is clear that the terms of higher order in Wilson coefficients are

included in the LSMshift. This not only brings the inconsistency in the perturbative

expansion but also increases the difficulty in the numerical computation. In fact, for the

purpose of the phenomenological study, one may be interested in a SMEFT Lagrangian

linearized in Wilson coefficients. To this end, we practically introduce an auxiliary variable

WC and multiply it in front of each Wilson coefficient parameter in the redefXXX. The usage

of WC multiplier allows us to expand LSMshift in a Taylor series in WC to linear order by

means of the following command:

LSMlinear := Normal[Series[LSMshift, WC, 0, 1]]/.WC->1

For completeness, we add to the the inclusive SM Lagrangian the dimension-5 effective

couplings of the SM Higgs to gg, γγ and Zγ which is defined in the LhSMloop function

given in section 5.1.

LSMincl := LSMlinear + LhSMloop;

On the other hand, the effect of shifts and redefinitions on the dimension-six terms L(6)

are higher NP order and can be safely dropped in the SMEFT. As a result, the SMEFT

Lagrangian is LSM + L(6) denoted in the code as

LagSMEFT := LSMincl+L6.

9 General recommendations for the use of the UFO models in Mad-

Graph5

When generating a process in the SMEFT it is always necessary to specify the order

NP=1 to make sure that all and only the diagrams giving linear L(6) contributions are

included. Notice that the InteractionOrderLimit is not specified by default in the model
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files. In order to extract the tree level interference contribution between L(6) and the SM

amplitudes, we suggest generating the process with the syntax NP^2==1 in MadGraph5.

In general, due to the fact that SM Lagrangian parameters (gi, Yi, v̂ . . .) can multiply

the Wilson coefficients in the Lagrangian, a given interaction vertex can have multiple

interaction orders. For instance, the Zēe coupling stemming from QHe is proportional to

v̂2g1CHe/Λ
2 and has therefore interaction order {NP=1, QED=1}. There is one coupling

that has negative QED order, namely the contribution to the trilinear Higgs coupling h3

stemming from QH , which is proportional to CH v̂
3/Λ2 and has therefore order {NP=1,

QED=-1}. One should be careful when generating processes that include this coupling, as

this may alter the intuitive interaction order hierarchies among diagrams.

Before generating events or calling a survey in MadEvent it is preferable to set all the

relevant widths to auto in the param card. This is because the value of the particle width

is used to compute some cross-sections in a narrow-width approximation in MadGraph5.

The values assigned by default to the widths in the model are those computed in the SM

(sometimes including radiative corrections) and they are often inconsistent with a tree-

level SMEFT prediction.14 Note for the general SMEFT, it takes a few minutes to load

the model, and at most two hours to generate the UFO files.

10 A pole parameter global SMEFT fit

The SMEFTsim codes enable LHC SMEFT studies to be carried out combined with lower

energy data reported at LEP and other experiments, while all parameters in L(6) are

retained. Such a global SMEFT physics program is of interest long term, due to its im-

portance for the development of model independent constraints. This approach enables

hints of new physics that could emerge in the data in time to be understood and decoded

systematically by combining measurements of deviations in a well defined field theory set-

ting. This approach is also valuable as it is a way to record the data in a field theory

interpretation that allows the SM to break down at higher energies for the long term.

Developing simplified fits as an intermediate step towards the general fit case is also

important. This can be done minimizing UV assumptions and exploiting the kinematics

of the relevant collider scattering events, in addition to the SMEFT power counting and

flavour symmetries. This approach can be followed when defining a ‘WHZ pole parameter’

program to constrain an interesting subset of SMEFT parameters. We consider one of

the main applications of the SMEFTsim package is to directly enable this effort to be

undertaken in the LHC experimental collaborations. The idea is to use the fact that

L(6) operator forms interfere with a SM process for the numerically leading correction, to

supplement the power counting of the SMEFT systematically by using:

14This has a particularly large impact in the Higgs case: the default value assigned to its width in

FeynRules is obtained in the SM with the inclusion of radiative corrections, and it is significantly smaller

than the tree level value, mainly due to a large negative loop contribution to the h → bb̄ partial width.

Using the default width for Higgs-mediated processes may give unphysical results with branching fractions

apparently larger than 1.
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• Resonance domination of signal events enforced with optimized phase space cuts to

further suppress (primarily) Class 8 ψ4 operators. This is discussed in section 10.1.

• Numerical suppressions in interference due to the presence of small symmetry break-

ing effects in the SM due to light quark masses, helicity configurations, CP violation,

CKM suppressions and the GIM mechanism [90] in SM amplitudes.

Exploiting these IR physics effects in the SMEFT, in addition to the usual power counting

of the theory, significantly reduces the number of WHZ pole parameters to a manageable

set. Many studies have been performed that utilize one or more of these IR effects, but we

believe the systematic approach laid out here goes beyond past literature. It is important

to note that the parameter reduction that makes a LO SMEFT effort feasible using such IR

physics occurs if flavour symmetry assumptions are explicitly adopted or not, see table 1.

Some processes that are consistent with the discussion given here are ψ̄ψ → Z → ψ̄ψ, ψ̄ψ →
W → ψ̄ψ, ψ̄ψ → BB → ψ̄ψψ̄ψ, and phase space restricted pp → h → ZZ? → ψ̄ψψ̄ψ and

pp→ h→WW ? → ψ̄ψψ̄ψ when selecting for intermediate near on-shell massive bosons.

10.1 Resonance domination and numerically suppressed interference

The interference with the SM leads to a relative kinematic suppression of ψ4 operators,

compared to the parameters retained in a ‘WHZ pole parameter’ program in several ex-

perimental signals of interest.15 This occurs so long as scattering events in a measurement

are dominantly proceeding through a near on-shell phase space pole (i.e.
√
p2
i −mB . ΓB)

of the narrow bosons of the SM (B = {W,Z, h}).
The ‘WHZ pole parameters’ are generally defined by allowing a non-SM three point

interaction of the SM narrow bosons B = {W,Z, h} which allows a contribution to the

leading set of poles in the SM prediction. This largely limits the pole parameters to those

parameterizing the product 〈H|LSM|H〉 reduced into a minimal operator basis, such as

operators in Classes 2, 3, 4, 5, 7 in the Warsaw basis. Operators of Class one contribute to

anomalous massive vector boson and gluon scattering, the CP even operators of the form

QW are retained in the WHZ pole parameters. Operators of Class 2 are not relevant for

the near term at LHC — until double Higgs production can be probed. Furthermore, only

a small subset of Class 8 (L̄L)(L̄L) parameters are retained due to the redefinition of the

vev in the SMEFT.

To understand the relevance of the ‘WHZ pole parameters’ for hadron collider measure-

ments, consider a general scattering amplitude depicted in figure 2. The total amplitude

can be decomposed around the physical poles of the narrow bosons of the SM in the process

A =
Aa(p2

1, · · · p2
M )

(p2
1 −m2

B1
+ iΓB1mB1) · · · (p2

N −m2
BN

+ iΓBNmBN )

+
Ab(p2

1, · · · p2
M )

(p2
1 −m2

B1
+ iΓB1mB1) · · · (p2

N−1 −m2
BN−1

+ iΓBN−1
mBN−1

)

+ · · ·+Aj(p2
1, · · · p2

M ). (10.1)

15These arguments are the logical extension of the reasoning used to justify the neglect of ψ4 operators

in studying LEPI data, as discussed in refs. [13, 91].
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Figure 2. Decomposing a general scattering amplitude in the SMEFT into pole and non-pole

parameters. Here the black dot indicates a possible insertion of L(6) and shifts are only shown on

the final states as an illustrative choice, but also appear on the initial states in the suppressed + · · ·
contributions. A WHZ pole parameter is shown in case a).

figure 2 illustrates that L(6) corrections that are the same order in the power counting

can modify a resonant process in the SM (as in Aa and figure 2 a), lead to a contribution

to the scattering amplitude with fewer poles than in the SM process (as in Ab, · · · Aj−1

and figure 2 b), or lead to a contribution to the process with no internal SM poles (as in

Aj) from narrow SM bosons. Here the p2
i factors stand for general Lorentz invariants of

dimension two. Assume that selection cuts are made so that the process is numerically

dominated by a set of leading pole contributions of ≤ N narrow B bosons. Then the

leading SMEFT cross-section corrections in this phase space volume Ω are expected to be(
dσ

δΩ

)
pole

'
(
dσSM

δΩ

)1 [
1 +O

(
Ci v̄

2
T

gSMΛ2

)
+O

(
Cj v̄

2
T mB

Λ2 ΓB

)]
(10.2)

+

(
dσSM

δΩ

)2 [
1 +O

(
Ck p

2
i

gSMΛ2

)]
.

The differential cross-sections (dσSM/δΩ)1,2 are distinct in each case and Ci correspond

to WHZ pole parameters that are of the form 〈H|LSM|H〉, the Cj correspond to scheme

dependent corrections to the intermediate propagators16 and the Ck correspond to a subset

of operators that lead to three point interactions with more than one derivative.

Additional corrections to the measured processes and relevant backgrounds also exist

in the SMEFT, but they can be relatively numerically suppressed in a SMEFT oriented

experimental analysis. Consider the interference with a complex Wilson coefficient in

L(6), denoted C, that occurs when a resonance exchange is not present compared to the

leading resonant SM signal result (shown in figure 2 d)). The interference terms in the

corresponding observable then scale as

|A|2 ∝
(

g2
SM

(p2
i −m2

B + iΓ(p)mB)
+
C

Λ2

)(
g2

SM

(p2
i −m2

B + iΓ(p)mB)
+
C

Λ2

)?
· · · (10.3)

∝
[

g2
SM

(p2
i −m2

B)2 + Γ2
Bm

2
B

+
(p2
i −m2

B)(C/Λ2 + C?/Λ2)− iΓBmB(C?/Λ2−C/Λ2)

(p2
i −m2

B)2 + Γ2
Bm

2
B

]
· · ·

In the near on-shell region of phase space (
√
p2
i −mB ∼ ΓB) for the narrow boson B, the

16The mass shift of this form for W propagators are present in the {α̂ew, m̂Z , ĜF } input scheme, and

known to be numerically small.
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Figure 3. Contributions to ψ̄ψ → ψ̄ψψ̄ψψ̄ψ due to L(6) which is indicated with a black dot.

SMEFT then has the additional numerically subleading corrections(
dσSM

δΩ

)1

O
(

ΓBmB {Re(C), Im(C)}
g2

SMΛ2

)
+

(
dσSM

δΩ

)2

O
(

ΓBmB {Re(C), Im(C)}
g2

SMΛ2

)
· · ·

(10.4)

For this reason, the numerical effect of the non-pole parameters are relatively suppressed

by a factor of(
ΓBmB

v̄2
T

) {Re(C), Im(C)}
gSMCi

,

(
ΓBmB

p2
i

) {Re(C), Im(C)}
gSMCk

, (10.5)

compared to a Wilson coefficient that is a (scheme independent) pole parameter. Such a

suppression factor appears for each missing resonance selected for with selection cuts. This

relative numerical suppression occurs in addition to the power counting in the SMEFT.

It is the combination of these two suppressions that is experimentally and theoretically

relevant.

As experimental selection cuts for narrow SM B bosons do not isolate all of the poles

in a process in general, in some cases ψ4 operators can be classified as leading parameters

numerically, and should be retained in a global SMEFT analysis examining such a process.

For example, consider ψ̄ψ → ψ̄ψψ̄ψψ̄ψ which can occur through many Feynman diagrams,

including the diagrams in figure 3. In the left two diagrams of figure 3, isolation cuts to

identify and reconstruct only the two bosons that decay into pairs of final state fermions

do not suppress these contributions. A ψ4 operator can then be classified as a leading

contribution to be retained in an alternate interesting subset of SMEFT parameters for

this process, if the remaining phase space selection cuts did not further suppress these

contributions.17 We use the nomenclature ‘WHZ pole parameters’ which is intended to

signal that we exclude such cases by definition in this parameter set.

Other parameters neglected from the ‘WHZ pole parameters’ set are numerically sup-

pressed due to the lack of tree level flavour changing neutral currents in the SM, see

section 10.2 for details. We reiterate, these additional numerical suppressions come about

due to IR kinematics and symmetries in near on-shell regions of phase space for the nar-

row B bosons selected for, not UV assumptions. As NLO corrections are neglected in

the SMEFTsim package anyway, these numerically suppressed effects can be consistently

neglected — so long as an appropriate theoretical error is assigned for this approximation.

17This particularly occurs in the case of ψ4 operators leading to top final states which themselves emit

W± when decaying.
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Figure 4. Interference diagrams for anomalous three point interactions in the SMEFT.

Pole parameter SMEFT studies are an important step towards a global SMEFT anal-

ysis. This approach has some similarity to a pseudo-observable (PO) approach to LHC

data [92–99], and can be considered to extend and improve it by embedding this approach

it in a well defined field theory. Some minor differences in the approaches do exist, and

follow from the use of a consistent LSMEFT construction, as we discuss below.

10.2 Interference of anomalous interactions in the SMEFT

Retaining a general flavour conserving anomalous dipole interaction

Ldipole = CψX ψ̄ σµ ν PR ψHX
µ ν + h.c. (10.6)

due to the arguments of the appendix on the experimental constraints on dipole operators,

leads to off-shell interference with the SM Lagrangian in figure 4 a) and c) that give

|A|2 ∝ mψ εα ε
?
β

(
i 8Re[CψX ] (gL + gR)gαβp1 · p2 − 8Re[CψX ] (gR − gL)εαβ p1 p2

−i 4
[
CψX gL + C?ψX gR

]
pα pβ2 − i 4

[
C?ψX gL + CψX gR

]
pα pβ1

)
. (10.7)

Here a general chiral interaction in the SM is parameterized by gR/L. As the interference

is suppressed by mψ, it follows that CψX insertions can be initially neglected in LO global

SMEFT studies involving light fermions (ψ 6= {t, b}), not due to experimental constraints,

or a UV model assumption, but as a numerical suppression due to the IR physics of

the SMEFT. This can be done until experimental precision advances to overcome such

additional numerical suppressions. This is in agreement with ref. [95, 97–99] argued in the

context of a PO framework. Nevertheless, the results of the appendix argue for retaining

dipole operators when ψ = {t, b}, and we note that the inclusion of top dipole interactions

has been shown to have an important effect on Higgs phenomenology in many works,

including refs. [100–103]. Note that if such L(6) terms are not arbitrarily neglected, then

contributions such as shown in figure 2 c) require a deconvolution of possible non-SM soft

emissions in the LHC collider environment to extract model independent PO. For more

discussion see refs. [1, 92, 98].

IR SM-L(6) interference effects can also justify the neglect of flavour off diagonal three

point interactions. Such interactions can be present due to Class 5, 6 and 7 operators.

Flavour changing neutral currents vanish at tree level in the SM, and the one loop contri-

butions for the three point vertices Zψ̄i ψk, come about due to the interference of figure 4 b)
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and c). The one loop flavour changing three point interaction in the SM for the Z (fig-

ure 4 b) scales as [104–107]

AZik ' −
3
√
ḡ2

1 + ḡ2
2 ḡ

2
2 V

?
jk Vji

32π2

m2
j

m2
W

ψ̄k γ
µ PL ψi ε

Z
µ + · · · , (10.8)

due to the presence of a GIM mechanism [90], with mj the mass of the internal quarks

summed over. Similarly the amplitude following form the effective one loop coupling hψ̄i ψk
also has a GIM suppression [108–110]

Ahij '
3v̄T ḡ

3
2

162 π2 m̂W
ψ̄i

[
yi V

†
ik Vkj

m2
k

m̂2
W

PL + yj V
†
kj Vik

m2
k

m̂2
W

PR

]
ψj ,+ · · · (10.9)

Interference with flavour off diagonal corrections then experiences an additional numerical

suppression of this form in both cases. This can be used to justify neglecting such effects in

LO SMEFT analyses when neutral currents are present. No such extra GIM suppression

is present in the case of charged currents.18 For this reason, flavour off diagonal entries

in the Wilson coefficient matrices C
(3)
Hl , C

(3)
Hq can be practically retained in a LO analysis,

while neglecting the remaining flavour off diagonal Wilson coefficients of the Class 5 and

Class 7 operators. Even so, the numerical size of the first-third generation charged cur-

rents in the SM is smaller than neglected one loop corrections as a result of the CKM

parameter suppression, and such SMEFT parameters are thus neglected in the WHZ pole

parameter counts.

A similar argument holds for the Wilson coefficient matrix CHud, however in this case,

the neglect of this set of parameters follows from the corresponding right handed currents

not interfering at leading order with the SM interactions. Such interference first comes

about proportional to two insertions of light quark masses [112].

The interference of CP violating phase stemming from operators of Classes 1,4,5,6,7

with the corresponding effective operators generated in the SMEFT are also numerically

suppressed to the level of neglected loop corrections. These operators are neglected in

the pole parameter set but we note that we provide a fully general SMEFT code, and a

U(3)5-SMEFT code with all phases so that CP violating effects can be studied as desired

using the SMEFTsim package.

Neglecting numerically suppressed contributions from L(6) operators in a LO ‘WHZ

pole parameter’ program can be justified in this manner. Developing the SMEFT in time

to the level of NLO corrections is required for the interpretation of the most precise ex-

perimental data, see refs. [1, 17, 18, 39, 49–51] for discussion and results developing this

effort. In the mean time LO fits in a pole program can and should be pursued. A theory

error metric must be chosen in this effort to make such simplifying LO approximations.

18Note that a one loop result for a flavour changing neutral current in the SM can be compared to the one

loop improvement of an effective three point interaction in the SMEFT due to the insertion of L(6) in the

loop diagram. The latter does not in general experience the extra suppression from the GIM mechanism on

top of the one loop suppression, and can introduce a number of L(6) parameters not present in a tree level

analysis. This is another reason that one loop SMEFT results are of interest when incorporating precise

experimental constraints such as LEP data into a global SMEFT fit, see refs. [13, 14, 17, 18, 51, 111].
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Class Parameters nf = 1 nf = 3

1 CW ∈ R 1 1

3 {CHD, CH�} ∈ R 2 2

4 {CHG, CHW , CHB, CHWB} ∈ R 4 4

5 {CuH
33
, CdH

33
} ∈ R 2 2

6 {CuW
3r
, CuB

33
, CuG

33
, CdW

3r
, CdB

33
, CdG

33
}r 6=1 ∈ R 6 10

7 {C(3)
Hl
pr

, C
(3)
Hq
pr

, C
(1)
Hl
rr

, C
(1)
Hq
rr

, CHe
rr
, CHu

rr
, CHd

rr
}pr 6={(1,3),(3,1)} ∈ R 7 26

8 (L̄L)(L̄L) {C ll
µeeµ

, C ll
eµµe
} ∈ R 1 1

Total Count 23 46

Table 5. LO parameter counts in the general SMEFT flavour cases for nf generations for a

‘WHZ pole parameter’ program. The parameters retained are those that lead to contributions to

near on-shell regions of phase space, do not experience suppressions by light quark mases or GIM

suppression when interfering with the SM, or violate CP and carry a resonant enhancement in this

region of phase space.

Some theory error metrics were proposed in refs. [13, 14, 17, 18]. In addition, we note

the exact number of parameters in a pole constraint program is weakly basis dependent

as exchanging ψ4 operators for operators without fermion fields is largely blocked as the

latter do not carry sufficient flavour indices. As the vast majority of the parameters of the

SMEFT reside in the operators with a maximal set of flavour indices the simplification in

the number of parameters present is dramatic.

The SMEFTsim codes do not contain anomalous one loop flavour changing neutral

current interactions for the SM. The loop level generation of CP odd operators in the

SM proportional to the Jarlskog invariant are also absent. As such, a restricted set of

parameters is a natural result of numerical simulations using SMEFTsim. The restricted

set of parameters comes about when the leading order interference terms with the SM

are calculated, which is the purpose of the SMEFTsim package. These arguments on

numerically suppressed interference also lead to the corresponding second order terms in

a constructed χ2 to fit experimental data also being suppressed. As such retaining such

parameters in a fit is subject to large theoretical uncertainties. In addition L(8) is of the

same order as such terms in a constructed χ2 and neglected and only retaining a subset of

O(1/Λ4) corrections is not basis independent.

Restricting to a ‘WHZ pole parameter’ program the number of parameters in a LO

global constraint program in the Warsaw basis are estimated in table 1.

10.3 ‘WHZ pole parameter’ counts

The parameter counts in the case of the nf = 1, 3 SMEFT are given in table 5. The only

subtlety is in the counting of the (L̄L)(L̄L) operators. The expression for the shift in the
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Class Parameters

1 CW ∈ R 1

3 {CHD, CH�} ∈ R 2

4 {CHG, CHW , CHB, CHWB} ∈ R 4

5 {CuH , CdH} ∈ R ∼ 2

6 {CuW , CuB, CuG, CdW , CdB, CdG} ∈ R ∼ 6

7 {C(1)
Hl , C

(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHe, CHu, CHd} ∈ R, ∼ 7

8 (L̄L)(L̄L) {Cll, Cll} ∈ R 2

Total Count ∼ 24

Table 6. Parameter counts in the U(3)5 SMEFT for a ‘WHZ pole parameter’ program. The pa-

rameter counts that are approximate also rely on expanding numerically in the Yukawa eigenvalues.

Class Parameters

1 CW ∈ R 1

3 {CHD, CH�} ∈ R 2

4 {CHG, CHW , CHB, CHWB} ∈ R 4

5 {CuH , CdH} ∈ R ∼ 2

6 {CuW , CuB, CuG, CdW , CdB, CdG} ∈ R ∼ 6

7 {C(1)
Hl , C

(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHe, CHu, CHd} ∈ R, ∼ 13

{∆C(1)
Hq,∆C

(3)
Hq,∆CHu,∆CHd} ∈ R

8 (L̄L)(L̄L) {Cll, Cll} ∈ R 2

Total Count ∼ 30

Table 7. Parameter counts in the MFV SMEFT for a ‘WHZ pole parameter’ program. The

parameter counts that are approximate rely on expanding numerically in the Yukawa eigenvalues.

For ∆C
(1)
Hq,∆C

(3)
Hq the notation corresponds to two spurion insertions as defined in eq. (4.41).

extracted value of the Fermi constant in the general SMEFT is

−4GF√
2

= − 2

v2
T

+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
. (10.10)

However, due to the self-Hermitian nature of the operator Qll, if follows that C ll
µeeµ

= C ll
eµµe

.

Further,the diagonal entries of the self Hermitian operator C
(3)
Hl ∈ R. This leads to the

parameter counts given in table 5. The parameter counts for the U(3)5-SMEFT and MFV-

SMEFT in each operator Class are given in table 6 and table 7 respectively.
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10.4 Selection/identification cuts in a pole program

A detailed study of efficient experimental cuts to pursue a WHZ pole parameter program

is beyond the scope of this work. In this section, we discuss the plausibility of enforcing

stronger narrow width selection cuts at LHC to enable this effort. We then illustrate

numerically the effect of such selections on L(6) parameter dependence. Our purpose is to

demonstrate an application of the Model files, and to numerically illustrate how the scaling

rules in eq. (10.5) translate into simulated results.

10.4.1 Narrow width phase space selection cuts for Z

The general prospects for isolating the near on-shell region of phase space for the W,Z

to enable a SMEFT program are strong at LHC, and consistent with standard particle

identification strategies. For example, enforcing a quasi-narrow ΓZ selection cut using `+`−

or J J final states is standard in many LHC searches with an identified Z. Historically

Z identification used a dilepton invariant mass cut [113] of ∼ 10 ΓZ in ATLAS [113] and

∼ 12 ΓZ in CMS [114]. Recent studies at higher operating energies have used tighter cuts

∼ ±{3 ΓZ , (3 + 0.01 p``T )} for selecting {e+e−, µ+µ−} final states and ∼ ±7 ΓZ selection for

JJ final states in a search at
√
s = 13 TeV for heavy resonances decaying into diboson

pairs reported by ATLAS [115]. Similar results from CMS [116] use comparable criteria.

Although wider selection criteria have also been utilized at ATLAS and CMS, for example

in refs. [117–120] we strongly encourage the development of analyses to enable cleaner

SMEFT interpretations of LHC data in a pole parameter program, through optimized

narrow width selection cuts.

The effect of further select cuts is non-trivial and requires dedicated experimental

studies. For example, high pT selection cuts on the width of a reconstructed Z is important,

with a narrow peak persisting for a boosted on-shell Z and a broader peak from off-shell

production of a Z dictated by the pT cut selected. Detailed numerical studies are called

for with realistic detector simulations and all selection criteria imposed. We note that

preliminary studies indicate that the narrow boosted on-shell peak is a subdominant, but

non-negligible, source of ∼ 20% of total events in Z → e+e−. when pT (e) > 100 GeV is

enforced on each electron.

The near resonance numerical suppression of interest in collider SMEFT studies de-

grades linearly with the width of this cut and we advocate enforcing even stronger selection

criteria when a narrow resonance is present. This is an important alternative experimen-

tal strategy to systematically develop that is currently understudied. To our knowledge,

intrinsic detector energy resolution is not a barrier to significantly tighter selection cuts of

this form, as it is < ΓZ for identified leptons.

10.4.2 Narrow width phase space selection cuts for W

Enforcing selection criteria for a narrow width region of phase space for W → q̄ q decays is

also feasible. An example is the use of ∼ ±8 ΓZ selection for JJ final states at
√
s = 13 TeV

in ref. [115]. For {W,Z} using JJ selection cuts of ∼ ±7 ΓB is chosen due to the degradation

of the reconstructed boson mass as a function of jet pT [121]. Tighter selection criteria
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for JJ invariant mass cuts can be imposed at the cost of rejecting high pT jet events.

Inspection of ref. [121] (figure 7) indicates that a tighter cut of ∼ ±5 ΓB is feasible when

vetoing high pT jet events > 1 TeV.

More subtle is W → `ν where transverse variables are used. The scaling that fol-

lows from eq. (10.5) on resonance domination of the populated phase space still applies

when transverse variables are used, even though no resonance peak is reconstructed exper-

imentally. Enforcing a narrow width condition using transverse variables19 considering the

uncertainties involved in ~Emiss
T reconstruction and pileup is a challenge. Define the final

state ` and ν in the boosted W frame in a plane orthogonal to the z collision axis as

pµ` =

√
p2
i

2
(γ − α sin θ cos θ,−α+ γ sin θ cosφ, sin θ sinφ, cosφ)T , (10.11)

pµν =

√
p2
i

2
(γ + α sin θ cos θ,−α− γ sin θ cosφ,− sin θ sinφ,− cosφ)T (10.12)

where {θ, φ} are defined relative to the z collision axis and the boost factor is defined as

α =
√

1− γ2 = |pWT |/
√

(p` + pν)2. It follows that a narrow width region of phase space

condition (
√

(p` + pν)2 −mW )2 ' Γ2
W corresponds to

m2
T + 2|p`T |2

(
1 +

2 |pνT |
|p`T |

cos θ`ν

)
' m2

W

(
1 +

ΓW
mW

− 2
|pνT |2
m2
W

)
. (10.13)

Typical selection criteria for W leptonic decays are |pνT | > 25 GeV and mT >

40 GeV [113–116]. The lower bound on mT is limited by QCD backgrounds. As such, to

enforce a near on-shell region of phase space |p`T | . 40 GeV leptons with a minimized |pνT | is
preferred. The uncertainty on the missing energy reconstruction ∆|pνT | ∼ 15 GeV ∼ 7 ΓW
is the basic limiting factor. Reducing this uncertainty is limited by pile up at

√
s = 13 TeV

energies in the RunII collision environment, see ref. [122–124]. Dedicated studies to op-

timize selecting for near on-shell W boson decays in W → `ν decays are warranted, but

pessimism on strongly enforcing these selection cuts is reasonable. Due to these challenges,

the numerical illustrations below utilize JJ final states for isolating the W boson resonance

region of phase space.

10.5 Numerical illustration

This section provides a simple numerical demonstration of the arguments in section 10,

employing the SMEFTsim package and MadGraph5. We present a basic analysis of the

impact of pole vs. non-pole parameters for three LHC processes that receive significant

resonant contributions in the SM when narrow width regions of phase space are selected for:

(i) pp→ `+`−, ` = {e, µ},

(ii) pp→ q̄q `+`−, q 6= t, b, with the quark pair QCD produced (non-resonant),

(iii) pp→ qu q̄d `
+`−, qu = {u, c}, qd = {d, s}, with the quark pair EW produced.

19See section 3.2.1 for the variable definitions.
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Figure 5. Illustrative subset of the diagrams contributing to the three processes studied in sec-

tion 10.5. The dots indicate the (possible) insertion of one of the three operators considered in the

analysis.

Figure 5 shows a sample of the diagrams that contribute to these processes in our study:

process (i) is Drell-Yan production that is resonant for m(`+`−) ' mZ . In process (ii)

the EW production of the quark pair is subdominant compared to the gluon-mediated

diagrams and, for the sake of cleanliness in the analysis, it is forbidden at the generation

level, setting the interaction order limit QED<=2 in MadGraph5. As a consequence, this

process has only one resonant structure corresponding to the Z peak in the invariant mass

distribution of the lepton pair. Finally, process (iii) serves an illustration for processes with

two resonances, around mW in the (quq̄d) mass spectrum and around mZ in the dilepton.

The QCD contributions are conveniently removed in this case when generating events in

MadGraph5, requiring QCD=0.

We choose 3 representative operators of the Warsaw basis: Q
(1)
Hl , whose Wilson co-

efficient belongs to the category of pole parameters and the two four-fermion operators

Qqe, Q
(1)
qq , that give (q̄q)(q̄q) and (q̄q)(¯̀̀ ) contact interactions respectively. We adopt the

U(3)5-SMEFT (for Q
(1)
qq so that only the flavour contraction Q

(1)
qq
pptt

is retained) and use the

{α̂em, m̂Z , ĜF } input scheme.

For each process we generate one event sample for the SM production and one for

each interference term with one of the three effective operators considered, included one

by one.20 The operator Q
(1)
qq is included only in process (iii).

20The authors are well aware that one at a time operator analyses are generally not representative of

consistent IR limits in the SMEFT [125]. For our numerical illustration, we reluctantly consider a one at a

time operator analysis acceptable to examine the numerical result of the scaling arguments underlying the

pole parameter program.
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Process Specifications in MadGraph5

SM int. order
wz,ww,wh =

auto

mmll = 40

mmllmax = 120

mmjj = 40

mmjjmax = 120

(i)
√ √

(ii) QED <= 2
√ √

(iii) QCD = 0
√ √ √

Table 8. Details of the options specified in MadGraph5 for the generation of events for each of

the processes considered (see text for details).

The processes are generated in MadGraph5 using the UFO model from set A for the

U(3)5 symmetric case and with the {α̂em, m̂Z , ĜF } scheme. Restriction cards are employed

to set all the fermion masses and Yukawa couplings to zero (with the exception of those

of the top and bottom quarks) and to fix the values of the Wilson coefficients. In the

SM limit all of them are vanished, while for the operator insertions the corresponding

coefficient is set to Ci = 1 with Λ = 1 TeV. Interaction order limitations are used both to

produce cleaner signals and to isolate the interference term in the case of L(6) insertions.

Specifications of the first class are QED<=2 for process (ii) and QCD=0 for process (iii), that

reduce the number of relevant SM diagrams as explained above. The interference is instead

isolated21 using the recently introduced MadGraph5 syntax NP^2==1.

Each event sample contains 104 events and it is produced setting the widths of the

W,Z, h bosons for automatic evaluation in MadGraph5 and restricting the phase space

with broad kinematic cuts on the invariant masses of fermion pairs, as summarized in

table 8. The invariant mass of the lepton pair in the final state is always required to be in

the region between 40 and 120 GeV and the invariant mass of the (quq̄d) pair is required to

be in the same window for process (iii). This selection allows a more efficient scan of the

near-resonant regions of the parameter space.

The invariant mass spectra of the relevant fermion pairs are extracted analyzing the

event samples with ROOT [126]. In the case of the SM–L(6) interference terms, the his-

tograms are further rescaled by |σ(Ci, int.)|/σ(SM) so that their bin content can be directly

compared to that of the SM distributions. In this way all the histograms have the same

(arbitrary) normalization, which is such that the SM production has 104 events in the

kinematic region for which the events were generated.

The resulting distributions for the interference terms are shown in the lower panels

of figures 6–8 (colored lines) and can be easily compared. The figures also show, for

reference, the error band on the complete distribution for the SM case (grey band). The

latter is estimated bin-by-bin as22 ∆Nk =
√
Nk where Nk is the number of events in the

21The estimate of the interference term obtained with this procedure is more accurate and numerically

stable than the estimate obtained e.g. generating the full process with LSM + L(6) and subsequently sub-

tracting the pure SM contribution.
22In our analysis the SM distribution has two sources of uncertainty: a statistical uncertainty due to

analyzing a finite event sample and an error on the overall normalization of the distribution, stemming

from the uncertainty in the determination of the total cross-section in MadGraph5. The latter, however,

is an effect of order ∼ 8 ‰ and can be safely neglected.
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Figure 6. Left: invariant mass distribution of the `+`− pair from Drell-Yan production (pro-

cess (i)). Right: invariant mass distribution of the `+`− pair from process (ii). The top panels show

the complete spectra obtained in the SM limit and in the presence of one effective operator with

Ci/Λ
2 = 1 TeV−2 (only the interference term is retained in these cases). The black and blue lines

are overlapping in the right figure. The lower panels show the absolute size of the pure SM–L(6)

interference term for each operator (colored lines) compared to the statistical uncertainty on the

SM distribution (grey band).

bin k. Finally, the top panels show the total predictions for the SM and for the SM + one

operator, obtained as the sum of the SM and interference histograms. Note that, while

in the lower panel we plot the absolute size of the interference terms, in the upper panel

its sign is kept into account. In particular, the interference is always negative for Cqe and

positive in all the other cases. The normalization of the histograms is arbitrary and such

that the SM production has 104 events in the kinematic region for which the events were

generated.

10.5.1 Results for processes (i) and (ii)

Processes (i) and (ii) are both singly-resonant in the SM, and they show a particularly

clean enhancement/suppression effect of the L(6) contributions in the distributions in near

the resonant region of phase space.

As shown in figure 6, in both cases the impact of the “pole operator” Q
(1)
Hl is enhanced

around the Z peak. On the other hand, the four-fermion operator Qqe has a very small im-

pact overall, which, with the statistics presented here, is always smaller than the statistical

uncertainty on the SM production alone. It is worth noting that, around the Z resonance,

it undergoes a further suppression, that can be appreciated as a dip in the curve in the low

panels of figure 6.

The relative suppression of the Qqe vs. Q
(1)
Hl operator emerging around a B boson

resonance can be quantified as N(Cqe)/N(C
(1)
Hl ), where N(Ci) is the number of events in

the region |m(f̄f)−mB| ≤ ΓB for the interference spectrum of a the operator Qi. In this
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Figure 7. Invariant mass spectrum of the quq̄d pair in process (iii) before (left) and after (right)

applying a narrow selection cut on m(`+`−) to isolate the Z peak. The top panels show the

complete distributions obtained in the SM limit and in the presence of one effective operator with

Ci/Λ
2 = 1 TeV−2 (only the interference term is retained in these cases). The black, yellow and blue

lines are overlapping in both figures. The lower panels show the absolute size of the pure SM–L(6)

interference term for each operator (colored lines) compared to the statistical uncertainty on the

SM distribution (grey band).

case, N(Ci) is given by the number of entries for the bins between 89 and 93 GeV of the

interference histograms. The numbers obtained in this way are summarized in table 9.

This gives ∼ 1/620 and ∼ 1/570 for processes (i) and (ii) respectively (see table 9), which

is consistent with the estimate of eq. (10.5).

10.5.2 Results for process (iii)

Because process (iii) can present two resonances, both the invariant mass spectra of the

quq̄d (figure 7) and dilepton (figure 8) pairs are analyzed. For each pair we show the results

obtained directly from the generated sample vs. after applying an additional narrow cut

on the invariant mass of the complementary fermion pair: in one case (figure 7, right) we

select 89 GeV < m(`+`−) < 93 GeV to isolate the Z peak and observe its impact on the

(quq̄d) spectrum, while in the other (figure 8, right) we select 78 GeV < m(quq̄d) < 93 GeV

to isolate the W+ peak and observe its impact on the m(`+`−) distribution.

While these cuts do not have a visible impact on the total spectra, they significantly re-

duce the size of the pure interference term for one four-fermion operator: selecting resonant

`+`− pairs suppresses the contribution of Qqe, while selecting resonant quq̄d pairs removes

that of Qqq. This effect is clearly visible in the lower panel of figure 7 (8), comparing the

blue (yellow) curves in the left and right plots.

As for processes (i) and (ii), the enhancement of the interference term for C
(1)
Hl close

to the resonance is clearly visible in the lower panels of figures 7, 8 and the impact of

four fermion operators is smaller than the error band of the SM distribution. The extra
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Figure 8. Invariant mass spectrum of the `+`− pair in process (iii) before (left) and after (right)

applying a narrow selection cut on m(quq̄d) to isolate the W+ peak. The top panels show the

complete distributions obtained in the SM limit and in the presence of one effective operator with

Ci/Λ
2 = 1 TeV−2 (only the interference term is retained in these cases). The black, yellow and blue

lines are overlapping in both figures. The lower panels show the absolute size of the pure SM–L(6)

interference term for each operator (colored lines) compared to the statistical uncertainty on the

SM distribution (grey band).

Process Resonant region N(Cqe)/N(C
(1)
Hl ) N(C1

qq)/N(C
(1)
Hl )

(i) 89. ≤ m(`+`−) ≤ 93 GeV 1/620 -

(ii) 89. ≤ m(`+`−) ≤ 93 GeV 1/566 -

(iii) 89. ≤ m(`+`−) ≤ 93 GeV 1/344 1/109

78. ≤ m(quq̄d) ≤ 82 GeV 1/109 1/392

both resonances 1/333 1/388

Table 9. Approximate ratios of the number of events contained in the central peak regions of the rel-

evant invariant mass spectra determined by the pure SM–Ld=6 interference of non-pole (Cqe, C
(1)
qq )

vs pole (C
(1)
Hl ) parameters in the three processes considered. The values can be compared with the

order of magnitude estimate of eq. (10.5), that gives ΓBmB/ḡ2v̄
2
T ≈ 1/220(250) for B = Z(W ).

suppression of the four-fermion operators, instead, is less evident and can only be seen as

a tiny dip in the central bins of the m(`+`−) distributions for Cqe (figure 8, lower panels).

Finally, the relative suppression of the Qqe and Q
(1)
qq vs. Q

(1)
Hl operators is quantified

by the ratios N(Cqe)/N(C
(1)
Hl ), N(C

(1)
qq )/N(C

(1)
Hl ) summarized in table 9. The ratios found

for this process are of the same order of magnitude as those for processes (i) and (ii) and

consistent with the estimate of section 10. The values ∼ 1/110 obtained for the C
(1)
qq /C

(1)
Hl

ratio with cuts on m(`+`−) and for the Cqe/C
(1)
Hl ratio with cuts on m(quq̄d) essentially

reflect the ratio of the cross-sections obtained for the interference terms, as the selection is

ineffective in these cases. Restricting to the relevant resonant region induces an additional

suppression of a factor 3–4. This effect is also observed in processes (i) and (ii).
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11 Conclusions

In this paper we have advanced the SMEFT physics program on multiple fronts. We

have developed and reported the SMEFTsim package, a set of FeynRules implemen-

tations of the general SMEFT, the U(3)5-SMEFT and the MFV-SMEFT theories as de-

fined in sections 2, 3, 4. We have provided these results in two input parameter schemes,

{α̂ew, m̂Z , ĜF } or {m̂W , m̂Z , ĜF } in all three cases. We have supplied two code sets based

on this theoretical outline for validation purposes.

We have also systematically developed a theoretical framework of a WHZ pole param-

eter program in the SMEFT as a key application to pursue with the SMEFTsim package.

The idea is to maximally exploit numerical suppressions in the scattering and interference

of the SMEFT corrections to the SM in addition to the power counting of the EFT. These

IR effects come about due to approximate symmetries and the use of near on shell regions

of phase space enforced with selection cuts at hadron colliders. Rather ironically, a key

complaint against EFT methods at hadron colliders — an excess of parameters, can be

arguably overcome using stronger versions of the very selection cuts that underlie stan-

dard particle identification of narrow bosons of the SM in such environments. We have

advanced this argument and numerically demonstrated the impact of the pole parameter

scaling using the SMEFTsim package interfaced with MadGraph5. Although our results

do not rise to the level of realistic selection cuts at LHC with full detector effects included,

we believe they are sufficient and promising enough to strongly motivate the initiation of

a systematic pole parameter approach to data analysis at LHC.

The enormous data rate at LHC in RunII and in the high luminosity run is such that

stronger selection cuts sacrificing pure rate in favour of cleaner SMEFT motivated mea-

surements, at lower energies, are of interest and reasonable to consider and develop. Such

cuts can enable a systematic program of constraining physics beyond the SM using power-

ful EFT techniques, that are already argued to be relevant by the lack of beyond the SM

resonances discovered to date at LHC. The number of parameters present in such WHZ

pole parameter efforts is manageable, and the SMEFTsim package allows the systematic

study and optimization of selection cuts to develop this program, examining quantitatively

how neglected terms are suppressed with tight or weak selection cuts. We strongly encour-

age the LHC experimental collaborations to study and develop a pole parameter SMEFT

approach to LHC measurements using the tools provided, in addition to standard searches

already in place.
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Figure 9. One loop corrections due to ψ2XH dipole operators on the fermion two point function.

The insertion of the L(6) operators is indicated with a black dot, and the counterterm matrix with

a “x”.
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A Parameter tuning and experimental constraints on Class 5, 6 opera-

tors

Operators of Class 6 (ψ2XH) in the Warsaw basis can also contribute anomalous three

point interactions, in addition to operators of the form 〈H|LSM|H〉. In this appendix we

examine the constraints on these operators due to naturalness concerns and some experi-

mental considerations. In section 4 the insertion of a SM Yukawa matrix in this operator

Class is made to formally restore U(3)5 flavour symmetry. One can utilize one loop cor-

rections in the LSMEFT to examine the theoretical support of this approach and establish

if flavour diagonal interactions due to ψ2XH operators with CψX 6∝ yi, with yi a Yukawa

coupling, introduce a significant tuning of parameters in the SMEFT. Consider the one

loop diagrams shown in figure 9 calculated in dimensional regularization with d = 4 − 2ε

in MS. The divergence structure of these diagrams for the operator CeB is given by

iAε = −ψ̄(0)
L i /D ψ

(0)
L

(
1

16π2ε

3 vm` ḡ1CeB

2
√

2

)
− ψ̄(0)

R i /D ψ
(0)
R

(
1

16π2ε

3 vm` ḡ1CeB

2
√

2

)
−iψ̄(0)

L ψ
(0)
R

(
m2
` CeB v

16π2 ε

)(
9 ḡ1

2
√

2

)
− iψ̄(0)

L ψ
(0)
R

(
v3CeB
16π2ε

)
(9ḡ3

1 − 3 ḡ2
2 ḡ1)

4
√

2
(A.1)

The counterterms are introduced as

ψ
(0)
L/R =

√
ZψL/R ψ

(r)
L/R, Q

(0)
i = Zij Q

(r)
j . (A.2)

The contribution to the chiral wavefunction renormalization factors cancels the divergences

in the first line of eq. (A.1), while the counterterm for CeH reported in ref. [10] (see

figure 9 c) exactly cancels the divergences in the second line once the SMEFT wavefunction

renormalization is taken into account. The finite terms follow the same pattern and a shift

to the light fermion mass is present that is not proportional to yi

(iAfinite)m`→0 = −i v
3CeB

4
√

2
(3ḡ3

1 − ḡ2
2 ḡ1)

(
1

16π2

)(
1 + 3 log

µ2

m2
Z

)
ψ̄L ψR + · · · (A.3)

Similar corrections are present for all the fermion masses in the SMEFT, generated by the

dipole operators QeW , QuW , QuB, QdW , QdB. It follows that if

−v
2CeB

4
(3ḡ3

1 − ḡ2
2 ḡ1)

(
1

16π2

)(
1 + 3 log

µ2

m2
Z

)
� y`, (A.4)
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then a tuning of parameters would be present to obtain the Yukawa coupling y` inferred

from the observed fermion masses. Taking µ ∼ TeV one finds

δy`(TeV) ' 3× 10−5CeB
[TeV]2

Λ2
(A.5)

as a correction to the effective Yukawa coupling. Numerically as

ye(µ < TeV) ' 3× 10−6, yµ(µ < TeV) ' 6× 10−4, yτ (µ < TeV) ' 0.01, (A.6)

yu(µ < TeV) ' 6× 10−4, yc(µ < TeV) ' 4× 10−5, yt(µ < TeV) ' 1, (A.7)

yd(µ < TeV) ' 3× 10−5, ys(µ < TeV) ' 6× 10−4, yb(µ < TeV) ' 0.02, (A.8)

dipole operators do not have to be ∝ yi to avoid this tuning of parameters.

Operators of Class 5 directly lead to a tree level contribution to an effective Yukawa

interaction for Λ ∼ TeV that are numerically

3CeHv
2

2
√

2 Λ2
∼ 0.06CeH

[TeV]2

Λ2
� ye,µ, (A.9)

3CdHv
2

2
√

2 Λ2
∼ 0.06CdH

[TeV]2

Λ2
� yd,s, (A.10)

3CuHv
2

2
√

2 Λ2
∼ 0.06CuH

[TeV]2

Λ2
� yu,c, (A.11)

which implies expanding around a U(3)5 symmetric limit in the SMEFT by inserting a

SM Yukawa matrix for Class 5 operators reduces parameter tuning. This then requires

a U(3)5 limit of the SMEFT be taken consistently in the counterterm matrices, which

requires the insertion of a SM Yukawa matrix for Class 6 operators in the U(3)5-SMEFT

and MFV-SMEFT.

Finally, utilizing the SMEFT Lagrangian formalism, dipole operators can be directly

related to a shift to a measured anomalous magnetic moment

δai = −4mi v√
2

Re

[
CeB
ii

ḡ1
−
CeW

ii

ḡ2

]
+ · · · (A.12)

The muon anomalous magnetic moment is highly constrained [41] δaµ . 288(63)(49)×10−11

which argues for the neglect of the flavour symmetric component of this dipole interaction

operator Wilson coefficient when i = µ, but this conclusion does not hold for all L(6) dipole

interaction terms. Experimental constraints on CψX
rs

, with r 6= s are significant in some

cases, but not for all possible flavour transitions, see the recent discussion in refs. [127–130].

Furthermore, the separation of flavour diagonal and flavour off diagonal interactions

of the dipole operators is a scale dependent distinction, flavour mixing is extensive in

the SMEFT RGE (see refs. [10, 35]), and the scales of the experimental constraints are

separated from the scales used to probe these interactions at the LHC. The general neglect

of all Class 6 operators does not seem to be supported due to experimental constraints in

the SMEFT at this time.
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1 : X3

QG fABCGAνµ GBρν GCµρ

QG̃ fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD
(
H†DµH

)∗(
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GAµνG
Aµν

QHG̃ H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

QHB̃ H†H B̃µνB
µν

QHWB H†τ IHW I
µνB

µν

Q
HW̃B

H†τ IH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσ
µνer)τ

IHW I
µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GAµν

QuW (q̄pσ
µνur)τ

IH̃ W I
µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GAµν

QdW (q̄pσ
µνdr)τ

IHW I
µν

QdB (q̄pσ
µνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl (H†i

←→
D I
µH)(l̄pτ

Iγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D I
µH)(q̄pτ

Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγ
µlt)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Qeu (ēpγµer)(ūsγ
µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet)

Qlu (l̄pγµlr)(ūsγ
µut)

Qld (l̄pγµlr)(d̄sγ
µdt)

Qqe (q̄pγµqr)(ēsγ
µet)

Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q
(1)
lequ (l̄jper)εjk(q̄ksut)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄ksσ

µνut)

H†i
←→
D µH≡H†iDµH−(iDµH

†)H

H†i
←→
D I
µH≡H†iτ IDµH−(iDµτ

IH†)H

Table 10. The L(6) operators built from Standard Model fields which conserve baryon number, as

given in ref. [10, 19, 34, 35]. The operators are divided into eight Classes: X3, H6, etc. Operators

with +h.c. in the table heading also have Hermitian conjugates, as does the ψ2H2D operator

QHud. The subscripts p, r, s, t are flavour indices which are suppressed on the left hand sides of the

sub-tables.
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[66] A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints

on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

[67] S. Bethke et al., Workshop on Precision Measurements of alphas, Munich Germany (2011)

[arXiv:1110.0016] [INSPIRE].

[68] G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the

Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

[69] A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories,

JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

– 51 –

https://doi.org/10.1103/PhysRevLett.108.151804
https://arxiv.org/abs/1203.0293
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0293
https://doi.org/10.1103/PhysRevLett.108.151803
https://arxiv.org/abs/1203.0275
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0275
https://arxiv.org/abs/1701.07240
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.07240
https://doi.org/10.1103/PhysRevD.88.052018
https://arxiv.org/abs/1307.7627
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7627
https://doi.org/10.1016/j.physrep.2005.12.006
https://arxiv.org/abs/hep-ex/0509008
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0509008
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1103/PhysRevLett.114.191803
https://arxiv.org/abs/1503.07589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07589
https://doi.org/10.1007/BF02859738
https://doi.org/10.1007/BF02859738
https://inspirehep.net/search?p=find+J+%22NuovoCim.,16,705%22
https://doi.org/10.1103/PhysRevLett.10.531
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,10,531%22
https://doi.org/10.1143/PTP.49.652
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,49,652%22
https://doi.org/10.1103/PhysRevLett.51.1945
https://doi.org/10.1103/PhysRevLett.51.1945
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,51,1945%22
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,7,172%22
https://doi.org/10.1007/JHEP02(2013)046
https://arxiv.org/abs/1210.4553
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4553
https://doi.org/10.1007/JHEP12(2016)052
https://arxiv.org/abs/1605.07114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.07114
https://doi.org/10.1007/JHEP08(2017)123
https://arxiv.org/abs/1706.03783
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.03783
https://arxiv.org/abs/1110.0016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0016
https://doi.org/10.1146/annurev.nucl.012809.104534
https://arxiv.org/abs/1002.0900
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0900
https://doi.org/10.1007/JHEP07(2015)018
https://arxiv.org/abs/1503.07872
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07872


J
H
E
P
1
2
(
2
0
1
7
)
0
7
0

[70] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model

and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].

[71] C. Jarlskog, A Basis Independent Formulation of the Connection Between Quark Mass

Matrices, CP-violation and Experiment, Z. Phys. C 29 (1985) 491 [INSPIRE].

[72] A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via

FEYNRULES, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].

[73] R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an
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