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The semi-nunatak Kilen is a key area to understand the setting of the Cretaceous sedimentary basin in eastern North Greenland. The basin geometry 
has been obscured by later N–S compression and inversion of presumable Palaeocene–Eocene age. A 3D restoration of the Cretaceous basin is 
presented based on new oblique photogrammetry and field data combined with published data. The 3D restoration focuses on the main faults and a 
well constrained mid-Cretaceous horizon. The restoration shows that the horizon was offset down-to-the-ENE by several NNW–SSE-striking normal 
faults and highlights the similarity of the pre-folding basin to a normal rifted margin. The northwestern part of the restored area comprises five fault 
blocks divided by four NNW–SSE-striking normal faults dipping to the ENE, whereas the southeastern part consists of a single large fault block 
deformed by minor antithetic faulting. Minimum offsets on exposed normal faults are between 780 and 1200 m, and the fault blocks are between 1.5 
and more than 10 km in width. The restoration and interpretation of the Cretaceous basin at Kilen as extensional opens for a similar interpretation for 
NNW–SSE-oriented faults affecting Mesozoic sediments elsewhere in the Wandel Sea Basin which were previously interpreted as having formed in a 
strike-slip setting. The basin restored at Kilen has several similarities to basins on the southwestern Barents Sea margin, especially the Bjørnøya Basin, 
located just 100–200 km east of Kilen in pre-North Atlantic opening times. The two basins were separated by the Stappen High and the basin at Kilen 
could be the western part of a successful rift that eventually resulted in the opening of the North Atlantic.
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3D restoration of a Cretaceous rift basin in Kilen,  
eastern North Greenland

Introduction

The Mesozoic structural evolution of the Wandel 
Sea Basin in eastern North Greenland has for a long 
time been regarded as a product of mid-Cretaceous 
transtension and deposition in isolated pull-apart basins 
(Håkansson & Pedersen, 1982, 2001, 2015; Pedersen, 
1988; Håkansson & Stemmerik, 1989). This tectonic 
phase was named the “mid Cretaceous Kilen Event” by 
Pedersen (1988). 

The semi-nunatak Kilen in the eastern part of the 
Wandel Sea Basin is a key area to understand the 
Mesozoic basin evolution since it has the most 
complete Mesozoic sedimentary succession in the 
basin. According to Håkansson & Pedersen (1982, 
2015), Mesozoic deposition on Kilen was controlled 
by dextral transtension resulting in the formation of 
several pull-apart basins culminating in end-Cretaceous 
transpression. Recently, Svennevig et al. (2016a)  
presented an alternative structural interpretation of 
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Kilen suggesting that the area was rather subjected to a 
phase of post-Coniacian ENE–WSW extension followed 
by N–S compression of possibly Palaeocene–Eocene 
age. This structural model allows for a new and simpler 
view of the Mesozoic Wandel Sea Basin as a rift basin 
dominated by extensional faults; in line with basins along 
the conjugate southwestern Barents Sea margin such as 
the Bjørnøya, Sørvestnaget and Tromsø basins (Faleide et 
al., 2008; Gernigon et al., 2014).

This paper explores the implications of this new tectonic 
model for Mesozoic basin evolution by presenting a 
pre-folding 3D reconstruction of the basin at Kilen 
using the structural model of Svennevig et al. (2016a). 
The reconstruction focuses on the main faults and uses 
a single, well constrained, mid-Cretaceous horizon as 
a marker. While the emphasis is on restoration of the 
Kilen basin, the results may have broader implications 
for Mesozoic sedimentation elsewhere in the Wandel Sea 
Basin and further examination of the Mesozoic evolution 
of eastern North Greenland is needed in order to better 
understand this part of the De Geer Zone.

Geological setting

The Carboniferous to Palaeogene Wandel Sea Basin 
(Dawes & Soper, 1973) in eastern North Greenland 
stretches from Kap Washington in northernmost 

Greenland to Holm Land along the east coast (Fig. 1; 
Håkansson et al., 1981; Håkansson & Stemmerik, 1989), 
and shares a common geological history with basins in 
Arctic Canada, Svalbard and the western Barents Sea 
(Soper et al., 1982; Håkansson & Stemmerik, 1989; 
Piepjohn & von Gosen, 2001; Gosen & Piepjohn, 2003; 
Stemmerik & Worsley, 2005; Piepjohn et al., 2015, 2016).

Sediments of the Wandel Sea basin rest on Proterozoic–
Silurian rocks deformed during the Ellesmerian and 
Caledonian orogenies (Surlyk, 1991). Deposition was 
controlled by three major structural elements: the Harder 
Fjord Fault Zone to the north, the Trolle Land Fault Zone 
and the East Greenland Fault Zone to the south (Fig. 1; 
Håkansson & Stemmerik, 1989). The Trolle Land Fault 
Zone in eastern Peary Land is the southwesternmost 
of a series of at least five, 7–10 km-spaced, NNW–SSE-
striking faults forming the Trolle Land Fault System (Zink-
Jørgensen, 1994; Zink-Jørgensen & Håkansson, 1994). It 
initiated during the Late Carboniferous (Stemmerik et al., 
1996) and is believed to continue to Amdrup Land in the 
southeast where faults of similar orientation have been 
mapped (Fig. 1; Håkansson & Stemmerik, 1989; Stemmerik 
et al., 2000). In pre-Atlantic opening times, these faults 
were parallel to the Billefjorden and Lomfjorden fault 
zones on the conjugate Svalbard margin (Soper et al., 1982; 
Håkansson & Stemmerik, 1989; Stemmerik & Håkansson, 
1991; Faleide et al., 1993; Piepjohn & von Gosen, 2001; 
Gosen & Piepjohn, 2003; Leever et al., 2011). 

Figure 1. Simplified geology of the Wandel Sea Basin showing the major structural elements and the distribution of Upper Palaeozoic to Palae-
ogene sedimentary rocks. Modified from Håkansson & Stemmerik (1989) and Stemmerik et al. (2000) with schematic faults from Kilen modi-
fied from Svennevig et al. (2016a). Dykes are simplified from Bengaard & Henriksen (1984). Abbreviations: KCTZ – Kap Cannon Thrust Zone, 
TLFZ – Trolle Land Fault Zone, TLFS – Trolle Land Fault System, EGFZ – East Greenland Fault Zone, HFFZ – Harder Fjord Fault Zone.
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difficult (Fig. 2; Håkansson et al., 1993, 1994a; Svennevig 
et al., 2016a). Initial mapping and dating of key units 
resulted in the recognition of 23 lithostratigraphic units 
of Jurassic–Cretaceous age and an Upper Palaeozoic 
mélange unit (Pedersen, 1989; Håkansson et al., 1993, 
1994a). More recent fieldwork by the Geological Survey 
of Denmark and Greenland (GEUS) (Bojesen-Koefoed 
et al., 2014) has indicated the need for a stratigraphic 
revision and a more simplified stratigraphic scheme is 
applied here to divide the succession into five units cf., 
Svennevig et al. (2016a) (Fig. 3). The presence of thick 
Upper Palaeozoic deposits below the Mesozoic strata is 
inferred based on the occurrence of the tentatively dated, 
Carboniferous gypsum mélange unit in central-west 
Kilen (Håkansson et al., 1993) exposed in the core of an 
anticline (Svennevig et al., 2016a, b), and the presence 
of thick Upper Palaeozoic deposits to the northwest 
at Station Nord and in the southwest at Amdrup Land 
(Stemmerik et al., 1996). 

Håkansson & Pedersen (2015) view the structural 
evolution of Kilen as dominated by three transtensional 
phases resulting in five local pull-apart basins. Their 
“Ingeborg Event” (Pedersen, 1988) is only indirectly 
detected as a structural background to the Jurassic 
basin formation. The Aptian–Albian “Ghost event 2” is 
inferred by the presence of strata of this age, whereas 
the Cenomanian–Turonian “Kilen Event” (Pedersen, 
1988) is based on the observation of mesoscale normal 
faults and the interpretation of subvertical strike-
slip faults bordering Upper Cretaceous sedimentary 
rocks. Post-depositional compression was interpreted 
to be transpressive and dominated by strike-slip faults 
(Håkansson et al., 1993; Pedersen & Håkansson, 1999; 
Gosen & Piepjohn, 2003).

An alternative model for Kilen is presented here based on 
mapping from oblique photogrammetry combined with 
3D modelling, fieldwork and integration of previous data 
(Svennevig et al., 2016a). In this model, a series of NNW–
SSE-trending normal faults is interpreted to be the result 
of post-Coniacian ENE–WSW extension (D1) followed 
by N–S compression of possibly Palaeocene–Eocene 
age (D2), folding the faults passively (Figs. 2 & 4; Table 
1). In Kilen Fjelde, two thrust sheets were recognised 
belonging to the D2 phase: the upper Hondal Elv Thrust 
Sheet comprises mainly Upper Cretaceous strata whereas 
the lower Kilen Thrust Sheet includes Carboniferous to 
Upper Cretaceous strata (Figs. 2 & 4). The thrust sheets 
are separated by a subhorizontal detachment fault, the 
Central Detachment (CD, Fig. 2). The younger on older 
relationship across the Central Detachment is interpreted 
to reflect basin inversion and presence of an unexposed 
D1 normal fault to the northeast (NN, Fig. 2; Svennevig 
et al., 2016a). D1 structures include three NNW–SSE-
striking down-to-the-ENE normal faults (I–III, Fig. 
2). On Gåseslette, a single frontal thrust and three back 
thrusts called the Gåseslette Thrusts (GT) are associated 
with the D2 phase (Figs. 2 & 4). D1 structures include 

Upper Carboniferous–Triassic deposition took place 
in a fairly simple system of grabens and half-grabens 
referred to as the North Greenland–Svalbard Rift 
Basin (Håkansson & Stemmerik, 1989; Stemmerik 
& Håkansson, 1989, 1991). In contrast, the Jurassic–
Cretaceous basin evolution is regarded as more complex 
due to tectonic overprinting and difficulty in correlating 
scattered outcrops (Håkansson et al., 1991). Håkansson & 
Stemmerik (1989) suggested that all Upper Jurassic and 
Cretaceous sediments were deposited in basins formed 
by strike-slip tectonics and transtension in the “Wandel 
Hav strike-slip mobile belt” (WHSSMB) of Håkansson 
& Pedersen (1982). Recently, Håkansson & Pedersen 
(2015) further extended this structural regime back 
into Late Permian times and suggested six generations 
of transtension resulting in twenty Late Permian–Late 
Cretaceous pull-apart basins exposed across the Wandel 
Sea Basin. Soper & Higgins (1991) challenged the 
existence of the WHSSMB since no substantial strike-
slip has been demonstrated along faults in the Wandel 
Sea Basin, and Gosen & Piepjohn (2003) did not find 
any structural evidence for Jurassic and Late Cretaceous 
strike-slip deformation and pull-apart basins. 

The Jurassic–Cretaceous succession includes Upper 
Jurassic (Oxfordian) – Lower Cretaceous (Valanginian) 
sedimentary rocks both in eastern Peary Land and at 
Kilen (Håkansson et al., 1991). The succession is thicker, 
stratigraphically more complete and generally composed 
of deeper-water facies at Kilen as compared to eastern 
Peary Land (Håkansson et al., 1991; Dypvik et al., 2002). 
Lower Cretaceous (Aptian–Albian) marine deposits 
are mainly preserved at Kilen with small down-faulted 
outliers in the northwest part of the basin (Håkansson 
et al., 1991). Upper Cretaceous strata occur in scattered 
outcrops across the basin with the thickest and most 
complete succession at Kilen (Håkansson et al., 1991).

Late compressive deformation in the Wandel Sea Basin 
has been debated and referred to transpressive dextral 
strike-slip movements by Håkansson & Pedersen (1982, 
2001, 2015), Pedersen & Håkansson (1999), Gosen & 
Piepjohn (2003) & Piepjohn et al. (2015, 2016) whereas 
Soper et al. (1982), Soper & Higgins (1991), Lyberis & 
Manby (1999), Manby & Lyberis (2000) and Guarnieri 
(2015) have suggested pure compression. The proposed 
age of deformation ranges from pre-opening Late 
Cretaceous – earliest Palaeocene (Håkansson & Pedersen, 
1982; Håkansson, 1988; Pedersen & Håkansson, 1999; 
Manby & Lyberis, 2000; Guarnieri, 2015) to Palaeocene–
Eocene (Soper et al., 1982; Soper & Higgins, 1991; Gosen 
& Piepjohn, 2003).

Kilen

The more than 3000 m-thick succession of Mesozoic 
siliciclastics at Kilen is faulted and folded, and the poor 
quality of the outcrops over large areas makes correlation 
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a series of minor antithetic normal faults called the 
Southern Normal Faults (SN), indicating the presence 
of a larger, unexposed normal fault to the southwest (LS; 
Svennevig et al., 2016b).

3D modelling

The compressional structures (D2) have been restored 
through 3D modelling to examine the architecture 
resulting from the extensional phase (D1). The 
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geological interpretation of Svennevig et al. (2016a). To 
simplify the 3D model, restoration focuses on the main 
faults (Fig. 2; Table 1) and a regionally recognisable 

restoration was carried out in the software Move 2014.2 
from Midland Valley using the workflow described in 
Svennevig et al. (2015) and the detailed 3D model and 

Figure 3. Overview of the informal lithostratigraphical units of Kilen Fjelde (A) and Gåseslette (B). The thicknesses in metres are from 
Svennevig et al. (2016a); ages are from Håkansson et al. (1993, 1994a), Dypvik et al. (2002) and Alsen et al. (2017). Modified from Svennevig 
et al. (2016a).
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mid-Cretaceous horizon corresponding to the top of 
the Hondal and Galadriel Fjeld unit in Kilen Fjelde and 
the top of the Kangoq Ryg unit at Gåseslette (Figs. 2 & 4; 
Electronic Supplement; cf., Svennevig et al., 2016a). 

Restoring the 3D model

The restoration of the basin consists of three steps: 1) 
restoring major thrusts (D2); 2) unfolding the mid-
Cretaceous horizon and the D2-folded D1 faults; and 3) 
extrapolating the unfolded horizon and faults to form a 
coherent 3D model. 

Step 1: Restoring major reverse faults
The major reverse faults associated with D2 (Fig. 2; 
Table 1) have been restored assuming a generalised 
basal detachment below the Kilen Thrust Sheet (BD, 
Table 1; cf., Svennevig et al., 2016a). In the southern part 
of the Kilen Thrust Sheet at Gåseslette, the D2 faulting 
is mainly accommodated by the frontal Gåseslette 
Thrust (GT, Table 1). This thrust has been merged with 
the constructed basal detachment (BD), and the strata 
above the fault have been restored by aligning the mid-
Cretaceous horizon on either side of the thrust. To the 
north, in Kilen Fjelde, D2 faulting is represented by 
the Central Detachment (CD, Table 1). It is interpreted 
to link up with an unexposed, D2-inverted, D1 

normal fault to the northeast below the ice sheet: the 
Northern Normal Fault (NN, Table 1). The fault trace 
of the Northern Normal Fault has been constructed at 
a minimum distance from Kilen as a linear fault trace 
following the general NNW–SSE orientation of basin-
forming faults in the Wandel Sea Basin (Håkansson & 
Stemmerik, 1989; Zink-Jørgensen, 1994; Stemmerik et al., 
2000) and parallel to normal faults at Kilen (Svennevig et 
al., 2016a). The 3D fault plane is constructed with a dip 
of 44° similar to the pre-folding dip of normal Fault I. 
The Central Detachment has been extended to the north 
using a generalised strike of 175° and dip of 6° to the 
east and linked to the Northern Normal Fault. Assuming 
tectonic transport from north to south (Lyberis & 
Manby, 1999; Manby & Lyberis, 2000; Gosen & Piepjohn, 
2003; Guarnieri, 2015; Svennevig et al., 2016a), the strata 
of the Hondal Elv Thrust Sheet have been restored along 
the Central Detachment towards the north and down 
the inverted northern normal fault. This results in a 
minimum tectonic transport of the Hondal Elv Thrust 
Sheet along the Central Detachment of 15 km. 

To constrain the vertical movement of the Hondal Elv 
Thrust Sheet along the inverted Northern Normal Fault, 
the thermal history of Kilen Fjelde has been addressed 
based on data in Håkansson et al. (1994b) and Pedersen 
& Håkansson (1999). Additional thermal data can be 
found in Stemmerik et al. (1997). From the locality 

Table 1. Overview of inferred (I) and observed (O) faults on Kilen based mainly on Svennevig et al. (2016a, b). The faults are also showed in Figs. 
2 and 4.

Name Type Abbrevi
ation Description Structural 

Phase
Inferred/
Observed

Minimum 
offset Reference

Fault I Normal I Westernmost folded normal fault exposed in 
the Kuglelejet anticline. D1 O 1200 m (Svennevig et al., 

2016a)

Fault II Normal II Central folded normal fault. Zig-zag fault 
trace exposed throughout Kilen Fjelde. D1 O 780 m (Svennevig et al., 

2016a)

Fault III Normal III Eastern folded normal fault. Poorly exposed,  
mainly inferred from stratigraphic separation. D1 I ? (Svennevig et al., 

2016a)

Southern 
Normal Faults Normal SN

Series of minor faults interpreted to be 
antithetic normal faults to an unexposed 
larger normal to the W (LS).

D1 O Several 100 
m

(Svennevig et al., 
2016b)

Northern 
Normal fault Normal NN

Normal fault inferred to be present to the 
NE of Kilen from the younger on older 
stratigraphic relationship across the CD.

D1 I 500 m
This paper, 
(Svennevig et al., 
2016a)

Large southern 
normal fault Normal LS

The SE extrapolation of Fault I inferred by 
the presence of the reverse listric fan com-
prising the SN.

D1 I ?
This paper, 
(Svennevig et al., 
2016a)

Central 
Detachment

Reverse, 
sub-horizontal CD

Detachment in Kilen Fjelde separating Upper 
Cretaceous strata of the Hondal Elv Thrust 
Sheet from Triassic – lowermost Upper 
Cretaceous strata of the Kilen Thrust Sheet.

D2 O 1500 m
This paper, 
(Svennevig et al., 
2016a)

Basal 
Detachment

Reverse,  
sub- horzontal BD

Basal detachment inferred from the 
geometry of the folds and the thickness of 
the known sediments.

D2 I ?
This paper, 
(Svennevig et al., 
2016a)

Gåseslette 
Thrusts Reverse, steep GT

Large south-verging frontal thrusts and 
three back thrusts visible in aerial photos on 
Gåseslette. 

D2 O

Main thrust 
1250 m, 
Backthrusts 
740 m 

(Svennevig et al., 
2016a)
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These are estimated depths as the bed thicknesses at the 
sample sites are poorly constrained. The difference of 
500 m is believed to represent the down-throw along the 
Northern Normal Fault.

Step 2: Unfolding the folded faults and mid-Cretaceous 
horizon
For each of the fault blocks a datum plane was 
constructed through the core of the deepest syncline in 
the mid-Cretaceous horizon. Each of the fault blocks was 
then unfolded to this surface. Normal faults I, II and III 
are unfolded along with the strata of fault block 1. On 
Gåseslette, the datum is tilted by 10°W to account for the 
10° westward plunge of fold axes in this area (Svennevig 
et al., 2015, 2016a).

descriptions in the sample database (Table 2) it is possible 
to place the samples in an N–S transect roughly along the 
F–F’ section trace (Fig. 2). A step in the thermal maturity 
across the Central Detachment is not directly observable 
(Fig. 5) but the strata now recognised to be the Hondal 
Elv Thrust Sheet generally have higher Rmax values 
averaging 2.25 compared to 2.08 in the Kilen Thrust 
Sheet (Table 2; Håkansson et al., 1994b). Mathiesen et 
al. (1997) produced a Rmax/depth chart for eastern 
Amdrup Land, 40 km southwest of Kilen, with a gradient 
of 0.53 Rmax/km. Applying this gradient to the lower 
Upper Cretaceous samples of the Hondal Elv Thrust 
Sheet gives a burial depth of 3.3 km while the uppermost 
Lower Cretaceous samples of the Kilen Thrust Sheet in 
northern Kilen were covered by 2.8 km of sediments. 

Table 2. Vitrinite data (Rmax) from Håkansson et al. (1994b) with locality and sample descriptions from the GEUS sample database translated 
from Danish. The data are plotted in Fig. 5. Thrust sheets are from (Svennevig et al., 2016a).
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Early Cretaceous 2.07 0.1 Shale, silty Kilen S of Camp 5. x4 179223
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Figure 5. Vitrinite data (Rmax) for Kilen Fjelde adapted from Håkansson et al. (1994b) showing the thermal maturity of sediments. Although 
the samples are not given with geographical coordinates, from the locality descriptions in the GEUS sample database (Table 2) it was possible to 
place them on a relative N–S transect through Kilen Fjelde roughly along the F–F' section trace (Fig. 2). The Hondal Elv and the Kilen Thrust 
Sheets along with the Central Detachment (CD) are shown on the diagram relative to the samples. Sample 216135 is disregarded as it is a loose 
hand sample collected in a scree according to the sample description (Table 2).
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Step 3: Extrapolating the horizon and the faults 
To form a coherent 3D model, the restored patches of 
the mid-Cretaceous horizon and the faults have been 
extrapolated linearly along the basin trends beyond 
their relatively small extent. Fault I is extended along 
strike towards the southeast and linked up with the large 
southern normal fault (LS, Table 1).

Geometry of the restored geology

The restored pre-folding geology of Kilen is characterised 
by fault blocks separated by NNW–SSE-striking and 
ENE-dipping faults (Fig. 6; Electronic Supplement). The 
northeastern part consists of five, 1.5 – 8 km-wide, fault 
blocks separated by three well constrained normal faults; 
Faults I, II and III and the inferred Northern Normal 
fault. Fault I has the largest offset of minimum 1200 m, 
Fault II has a minimum offset of 780 m, while the offset 
on Fault III is unknown (Svennevig et al., 2016a). The 
offset of the Northern Normal Fault is estimated to 500 
m based on vitrinite data (Fig. 6A). In the southeastern 
part of the area a single larger fault block is deformed by 
a series of relatively small antithetic faults interpreted to 
be a reverse listric fan (cf., Gibbs, 1984) to the unexposed 
southern continuation of Fault I or II (LS, Fig. 6B, 
Table 1; Svennevig et al., 2016a). The southeastern 
continuation of the Northern Normal fault is assumed to 
be the northeast termination of the fault block (Fig. 6B). 
The fault block thus has a minimum width of 10 km. A 
10° westward plunge of fold axes on Gåseslette is here 
interpreted to reflect a 10°W pre-folding dip of the strata 

in this area and could be due to a large-scale rollover 
anticline or rotation of the larger southern fault block 
during extension.

Discussion

The Kilen Cretaceous basin has been restored using 
3D modelling of data obtained from integrated oblique 
photogrammetry and field data (Svennevig et al., 2015, 
2016a). A series of NNW–SSE-striking normal faults 
has been visualised. This geometry resembles a rift 
basin architecture (e.g., Gibbs, 1984; Bosworth, 1985; 
Peacock et al., 2000) and structures observed in analogue 
models of rift basins (McClay et al., 2002). Based on 
this, we suggest that the restored faults and fault blocks 
at Kilen are part of a Cretaceous rift basin (Fig. 7) that 
has been obscured by later inversion and extensive ice 
and sea cover (Fig. 1). The more than 600 m-thick, Upper 
Cretaceous Nakkehoved Formation (Nielsen, 1941; 
Dawes, 1976; Håkansson, 1979) northeast of Kilen may 
be a more distal part of the basin, although very little is 
known of this area and the age is poorly constrained.

This interpretation is in contrast to previous views on 
the Mesozoic evolution of Kilen involving strike-slip 
movement and being composed of five, isolated pull-
apart basins separated by inferred strike-slip faults as part 
of the “Wandel Hav Strike Slip Mobile Belt” ( Håkansson 
& Pedersen, 1982, 2015; Pedersen & Håkansson, 1999).

Timing of normal faulting 

The D1 normal faults predate D2 compression of 
presumed Palaeocene–Eocene age (Svennevig et al., 
2016a), and since Coniacian sediments of the Hondal Elv 
Thrust Sheet were down-faulted (D1) before they were 
inverted along the Central Detachment (D2), movements 
along fault I–III can be dated to post-Coniacian times 
suggesting that Coniacian sediments are pre- or synrift. 
The Cretaceous succession at Kilen is more than 2 km 
thick of which up to 1500 m are of Aptian–Albian age. 
Aptian–Albian and older activity on the faults can be 
inferred based on the thickness variation of units of 
this age across fault II (Pedersen, 1989; Svennevig et 
al., 2016a) indicating multiphase rifting. Faults with 
similar orientation are described from other localities 
in the Wandel Sea Basin as having been active during 
Late Palaeozoic and Early Mesozoic times (Fig. 1; Zink-
Jørgensen, 1994; Stemmerik et al., 1996, 2000), and it is 
likely that the normal faults on Kilen were also active 
in pre-Cretaceous times. Thórarinsson et al. (2015) 
dated NW–SE-striking dykes in Peary Land to c. 85 Ma 
(Santonian) indicating NE–SW extension at that time. 
These dykes are parallel to faults of the Trolle Land Fault 
System (Fig. 1) and their age falls within the possible age-
span of post-Coniacian movement on the normal faults 
observed on Kilen.

5 km
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A: Kilen Fjelde

NESW
B: Gåseslette
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II III
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SN

I NN

1000 m
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Figure 6. Cross-sections through the restored 3D model in (A) Kilen 
Fjelde and (B) Gåseslette. Stippled lines are inferred whereas full 
lines are observed. The cross-sections are also shown in the restored 
3D model in the Electronic Supplement. Abbreviations as in Table 1.
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Bjørnøya than to Svalbard. This is in agreement with Late 
Cretaceous global plate reconstructions (Müller et al., 
2016) where Kilen is close to the southwest Barents Sea 
(Fig. 7). In contrast, thin-skinned folding and thrusting 
is reported from both Svalbard (e.g., Braathen & Bergh, 
1995) and Kilen (Svennevig et al., 2016a) but only 
relatively minor inversion is observed on the southwest 
Barents Sea margin (Gabrielsen et al., 1997), in line with 
global plate reconstructions (Müller et al., 2016) where 
Kilen in Palaeocene–Eocene times was close to Svalbard.

Implications for the Wandel Sea Basin

The reconstruction of the strata at Kilen is only a small 
window into the Wandel Sea Basin. Our work on Kilen 
allows for an alternative interpretation for the NNW–
SSE-oriented faults affecting Mesozoic sediments 
elsewhere in the Wandel Sea Basin (Fig. 1). NNW–SSE-
striking horsts and grabens are known from the Upper 
Palaeozoic of Amdrup Land (Stemmerik et al., 2000) 
and faults with a similar strike and fault spacing occur 
in the Trolle Land Fault System in eastern Peary Land 
(Bengaard & Henriksen, 1984; Zink-Jørgensen, 1994; 
Zink-Jørgensen & Håkansson, 1994; Stemmerik et al., 
1996).

Comparison to the conjugate margin and 
surrounding basins

Deep Cretaceous basins and Late Cretaceous–Palaeocene 
normal faulting are also known from the southwest 
Barents Sea margin (Gabrielsen et al., 1990; Faleide et al., 
1993, 2008, 2010; Clark et al., 2013; Gernigon et al., 2014; 
Safronova et al., 2015). Breivik et al. (1998) reported 
significant Late Cretaceous–Early Palaeogene normal 
faulting along the southwestern margin of the Barents 
Sea with offsets of up to 1 km on individual faults and a 
cumulative offset of 9 km based on recognition of a ‘mid’ 
Cretaceous reflector. The thick Cretaceous sedimentary 
package and the possible Aptian–Albian and post-
Coniacian activity on the Kilen faults resemble the 
pattern observed on the conjugate southwest Barents Sea 
margin in the Harstad, Tromsø, Bjørnøya, Sørvestnaget 
and Hammerfest basins (Gabrielsen et al., 1990). In 
particular, the northern part of the Bjørnøya Basin 
(Gabrielsen et al., 1990; Clark et al., 2013; Gernigon et 
al., 2014) has a strong resemblance to the basin at Kilen 
and the two areas were only 100–200 km apart in pre-
opening times (Fig. 7; Müller et al., 2016).

In contrast, Cretaceous basins are not observed on the 
northwest Barents Sea margin north of Bjørnøya and 
offshore Svalbard (Faleide et al., 2008; Anell et al., 2014), 
and large-scale Mesozoic normal faulting is not recorded 
on Svalbard. Large, Late Palaeozoic lineaments of the 
Billefjorden and Lomfjorden fault complexes were not 
reactivated during the Late Mesozoic (Haremo et al., 
1990; Dypvik et al., 1991; McCann & Dallmann, 1996). 

The northern part of the offshore Danmarkshavn Basin 
50 km to the south of Kilen (Fig. 7) is poorly constrained 
due to a lack of seismic data and thus its relationship 
to the Wandel Sea Basin is uncertain. Thick Cretaceous 
packages controlled by NNE–SSE-striking structures 
are described from the southern and central parts of the 
basin (Hamann et al., 2005).

The outlined Mesozoic history of Kilen seems to be more 
similar to the southwest Barents Sea margin south of 

200 km
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Svalbard

Late Cretaceous 90 Ma

Norway

Barents Sea
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Figure 7. Late Cretaceous (90 Ma) plate reconstruction (Müller et 
al., 2016) produced in Gplates 1.5 (Boyden et al., 2011) showing 
present-day coastlines along with Cretaceous rift basins (green) 
and faults simplified from Faleide et al. (2015) and this study. Note 
the pre-opening proximity of Kilen (Ki) to the southwest Barents 
shelf and the Bjørnøya Basin (BB). The red stippled line marks the 
approximate zone of later oceanic opening. The Palaeocene–Eocene 
compression on either margin is not restored. Abbreviations: WSB 
– Wandel Sea Basin, Ki – Kilen, HFFZ – Harder Fjord Fault Zone, 
EGFZ – East Greenland Fault Zone, DB – Danmarkhavn Basin, 
BFZ – Billefjorden Fault Zone, LFZ – Lomfjorden Fault Zone, SH 
– Stappen High, BB – Bjørnøya Basin, TB – Tromsø Basin, HfB – 
Hammerfest Basin, SB – Sørvestnaget Basin, HB – Harstad Basin.
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Viewed in a plate reconstruction context, the Cretaceous 
basin at Kilen can be interpreted as a basin that developed 
between Greenland to the west and the Stappen High 
to the east, today on the conjugate Barents Sea margin 
(Fig. 7). The Late Cretaceous of Kilen might thus be the 
western side of a successful rift that eventually resulted in 
the opening of the North Atlantic and in that framework 
Kilen is an eastern North Greenland equivalent to the 
Bjørnøya Basin. 

Conclusions

We present a restoration of a 3D structural model of 
Kilen revealing a Cretaceous rift basin highlighted by a 
mid-Cretaceous horizon offset by several down-to-the-
ENE normal faults. The restoration is based on mapping 
from oblique photogrammetry, ground observations and 
previously published data. 

The interpretation of a Cretaceous rift basin at Kilen 
points to an alternative explanation for NNW–SSE-
oriented faults affecting Mesozoic sedimentary rocks 
elsewhere in the Wandel Sea Basin, suggesting rather that 
they are normal faults formed during extension.

The Cretaceous history of the eastern North Greenland 
margin as exposed on Kilen is more similar to the 
southwest Barents Sea margin south of Bjørnøya than 
to Svalbard and in particular to the Bjørnøya Basin, 
which is in accordance with Late Cretaceous plate 
reconstructions. The two basins were separated by the 
Stappen High and the basin at Kilen could thus be the 
western part of a successful rift that eventually was split 
in two by the later opening of the North Atlantic.
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