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Abstract

Dairy cows experience dramatic changes in host physiology from gestation to lactation

period and dietary switch from high-forage prepartum diet to high-concentrate postpartum

diet over the transition period (parturition +/- three weeks). Understanding the community

structure and activity of the rumen microbiota and its associative patterns over the transition

period may provide insight for e.g. improving animal health and production. In the present

study, rumen samples from ten primiparous Holstein dairy cows were collected over seven

weeks spanning the transition period. Total RNA was extracted from the rumen samples

and cDNA thereof was subsequently used for characterizing the metabolically active bacte-

rial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA

and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bac-

terial community was dominated by three phyla, showing significant changes in relative

abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum

35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from

prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript

number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in

accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative

abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a

significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative

abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis

of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total

abundance of metabolically active methanogens over the transition period. According to T-

RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibac-

ter and Methanosphaera (represented by the T-RFs 39 and 267 bp), represented more than

70% of the metabolically active methanogens, showing no significant changes over the tran-

sition period; minor T-RFs, likely to represent members of the order Methanomassiliicoc-

cales and with a relative abundance below 5% in total, decreased significantly over the
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transition period. In accordance with the T-RFLP analysis, the mcrA transcript amplicon

sequencing revealed Methanobacteriales to cover 99% of the total reads, dominated by the

genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomas-

siliicoccales order covered only 0.2% of the total reads. In conclusion, the present study

showed that the structure of the metabolically active bacterial and archaeal rumen commu-

nities changed over the transition period, likely in response to the dramatic changes in physi-

ology and nutritional factors like dry matter intake and feed composition. It should be noted

however that for the methanogens, the observed community changes were influenced by

the analyzed gene (mcrA or 16S rRNA).

Introduction

The peri-parturition transition phase of dairy cows is characterized by dramatic changes in

host physiology and nutrient metabolism, imposing great challenges to the animals [1], and

different feeding strategies have been explored to reduce e.g. the incidence of rumen acidosis

in the immediate postpartum period [2]. DNA-based studies have reported changes of the

dairy cow rumen microbiota over the transition period and the correlations between specific

members of the rumen microbiota and e.g. milk phenotype and rumen VFA profile[3–5].

However, there is still a lack of RNA-based studies investigating the dynamics of the metaboli-

cally active members of the rumen microbiota over the transition period.

It is anticipated that there is a positive correlation between ribosomal RNA (rRNA) content

and metabolic activity of microbial cells[6,7]. A comparison between DNA (16S rRNA

gene) and RNA (16S rRNA) clone libraries revealed distinct phylotypes of a marine bacterial

community for the two approaches[8], thus indicating that the most abundant members of a

community may not necessarily be the most active or vice versa. The majority of published

molecular investigations on the rumen microbiota are DNA-based indicating that there is still

limited knowledge about the structure and function of the metabolically active rumen micro-

biota. Kang et al (2013) reported, however, certain Proteobacteria and uncultured methanogens

to be more dominating in RNA-based than in DNA-based ribosomal 16S analyses of the rumen

microbiota of cows fed grain-based diets[9]. Analyzed by qPCR, increasing proportions of die-

tary corn silage showed no effect on dairy cow rumen microbiota at the DNA level, however at

the RNA level, higher amounts of Prevotella transcripts were observed for cows fed high corn

silage rations [10]. The metabolically active rumen microbiota of dairy cows has further been

addressed in studies focusing on diet-induced alterations [10,11] and the successional coloniza-

tion of fresh perennial ryegrass in the rumen[12]. The rumen microbiota of beef steers, analyzed

by total RNA-sequencing as well as 16S rRNA and rRNA gene amplicon-sequencing, revealed

unique microbial taxa specific to each approach, where e.g. the bacterial families Desulfovibrio-
naceae, Elusimicrobiaceae, and Sphaerochaetaceae were detected only with total RNA and 16S

rRNA amplicon sequencing, but not with 16S rRNA gene amplicon sequencing[13].

The rumen archaeal community has received special attention in particular with respect to

the methanogens being a major source of anthropogenic methane emissions. DNA-based

studies have enhanced our understanding of the rumen microbial ecology of the methanogenic

archaea residing in different animal species[14–16], however, according to a RNA-based

study, an uncultivated methanogen clade contributed one-third of RNA-derived methyl coen-

zyme-M reductase subunit A (mcrA) sequences, whereas the clade was not observed in DNA-

derived sequences[9]. Furthermore, another RNA-based work (metatranscriptomics) found

Rumen metabolically active bacterial and archaeal communities
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significant differences in the expression of methanogenesis pathway genes between high meth-

ane yield and low methane yield sheep, whereas DNA-based analysis showed no difference

between the two[17]. Finally, a metatranscriptomic investigation showed that transcripts (16S

rRNA and methyl coenzyme M reductase) of the poorly characterized Thermoplasmata
(Methanomassiliicoccales) archaea were reduced upon dietary supplementation with rapeseed

oil in lactating cows, whereas Methanobacteriales transcripts were unaffected by the dietary

treatment[18]. Thus, RNA-based analyses may have different perspectives from DNA-based

analysis when evaluating the rumen archaeal community.

In a parallel study, we investigated the community composition of rumen Bacteria and

methanogenic Archaea of dairy cows over the transition period by DNA based analyses (man-

uscript in preparation). The aim of the present study was to investigate the community compo-

sition of the metabolically active rumen Bacteria and Archaea over the transition period in

dairy cows by RNA (cDNA) based techniques. This was done using high throughput sequenc-

ing (Illumina MiSeq) of transcript amplicons, using universal prokaryotic 16S rRNA primers

for targeting Bacteria and Archaea as well as mcrA primers for targeting methanogenic

Archaea, specifically. The methanogenic Archaea were further analyzed by mcrA-targeted

T-RFLP analysis and quantification (qPCR) of total methanogenic archaea (mcrA gene

transcript numbers) and two major methanogen orders, Methanobacteriales and Methanomas-
siliicoccales (16S rRNA gene transcript numbers). To our knowledge, this is the first study

reporting the dynamics of the rumen metabolically active bacterial and archaeal communities

in dairy cows over the transition period.

Materials and methods

Animals, diets and rumen sampling

The animal experimental protocol was approved by The Animal Experiments Inspectorate,

Danish Veterinary and Food Administration, Ministry of Environment and Food of Denmark

(Approval number 2016-15-0201-00959). Ten primiparous Holstein cows with a close pre-

dicted calving date were maintained in the same rearing environment at a research farm (Dan-

ish Cattle Research Centre; www.DKC-Foulum.dk). Before calving, all the cows were housed

together in a barn with straw padding and fed ad libitum with a low grain pre-partum diet (S1

Table). After calving, they were transferred to a barn equipped with an automatic milking

robot (VMS, DeLaval, Tumba, Sweden) for lactating cows where they were fed ad libitum with

a high-grain post-partum diet and a limited amount of concentrate was delivered while milk-

ing. Individual dry matter intake was recorded over throughout the experimental period (S1

Fig). All cows always had free access to drinking water. Rumen samples from each cow were

collected in the morning between 9 am and 10 am orally with a flora scoop (Guelph, Canada)

[19]. To minimize rumen-sampling variation, the same person collected all samples, following

an outlined procedure [19], recognizing however that the location of the flora scoop may still

have differed somewhat from sampling to sampling. The cows were sampled once a week for

seven consecutive weeks spanning the transition period. Approximately 40 mL rumen sample

(rumen fluid mixed with fine particles) were withdrawn and poured into a 50 mL polypropyl-

ene centrifuge tube and transferred on ice to the laboratory. A homogeneous subsample con-

taining rumen fluid and fine feed particles of 1.2 mL was snap frozen in liquid nitrogen, and

stored at -80˚C until further analysis.

RNA extraction and cDNA synthesis

Snap frozen rumen samples were thawed at room temperature and 250 μL of homogenously

mixed subsample were applied for RNA extraction according to a standard phenol-chloroform

Rumen metabolically active bacterial and archaeal communities
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bead-beating procedure originally published by Paulin et al.[20]. Raw RNA extracts were puri-

fied with NucleoSpin RNA clean up XS kit according to the manufacturer’s instructions

(Macherey-Nagel, Duren, Germany) and 2 μL of Riboblock RNase inhibitor (Thermo Fisher

Scientific, MA, USA) was added to the purified RNA sample (30 μL) to minimize RNA degra-

dation. Genomic DNA was removed from the RNA extracts using DNase I kit (Thermo Fisher

Scientific, MA, USA) according to manufacturer’s instructions. The removal of all contaminat-

ing DNA was confirmed by PCR amplification of the RNA extracts with universal bacterial

16S rRNA gene primer (Forward 5’- CGG YCC AGA CTC CTA CGG; Reverse 5’- TTA
CCG CGG CTG CTG GCA C) resulting in no product being formed. The purification of

DNase treated RNA was performed with the MEGAclear kit (Life Technologies, Carlsbad, CA)

according to manufacturer’s instructions. Total RNA extracts were quantified by using Qubit

RNA broad range (20-1000ng) assay kit (Life Technologies, Carlsbad, CA). The reverse-tran-

scription of RNA (10 μL) to single-strand cDNA was conducted by using the High-capacity

cDNA reverse transcription kit (Life Technologies, Carlsbad, CA) according to manufacturer’s

instructions and synthesized cDNA template was stored at—20˚C until further analysis.

16S rRNA transcript amplicon sequencing

The cDNA template was adjusted to a concentration of 10 ng/μL using Rnase-free water. Uni-

versal prokaryotic primers 341F (5’-CCT AYG GGR BGC ASCAG) [21]and modified 806R

(5’-GGA CTA CNN GGG TAT CTA AT)[22], were used to amplify the V3-V4 region of 16S

rRNA gene. The PCR mixture consisted of 1 × Accuprime™ PCR Buffer II (15 mM MgCI2), 0.3

U AccuPrime™ Taq DNA polymerase, 0.5 μM of each primer (10 pmol/ μL), 2 μL diluted tem-

plate and water to a total of 20 μL (Life Technologies, Carlsbad, USA). The PCR incubation

conditions consisted of an initial activation of the hot-start polymerase at 94˚C for 2 min, fol-

lowed by 30 cycles of 94˚C for 20s, 56˚C for 20s and 68˚C for 30s, and final extension at 68˚C

for 5 min. The PCR products (20 μL) were purified with 15 μL AMPure XP Beads (Beckman

Coulter, Inc.). The purified PCR products were checked to be of the expected size on an aga-

rose gel and then diluted to equimolar concentration (Approx. 5 ng/μL). Indexes and adaptors

were attached to the PCR products with Nextera DNA library preparation kit (Illumina, San

Diego, CA) through a second PCR step. The PCR products were purified again with AMPure

XP Bead (Beckman Coulter, Inc.) and equal-molar concentration of PCR product was pooled

and sequenced as 250 bp paired-end reads using Illumina MiSeq platform (Illumina, San

Diego, CA). Raw sequence files were deposited in NCBI Sequence Read Archive (SRA) under

accession No. SRP082151.

16S rRNA transcript amplicon sequencing data analysis

An average number of 68,806 reads were generated for this study. The sequence data analysis

was performed with the LotuS (Less operational taxonomic units Scripts) pipeline[23]. Within

LotuS the demultiplexing and quality-filtering of sequences were carried out with sdm options,

where strict filtered high-quality reads (minimum sequence length of 230 bp and minimum

average quality score of 27) were used for OTU clustering while less strict filtered mid-quality

reads (minimum length of 230 bp and minimum average quality score of 20) were used for

estimating OTU abundance. Sequences with homo-nucleotide numbers over 8 were discarded.

Filtered reads were clustered into OTUs using UPARSE pipeline [24] and a representative

sequence from each OTU was assigned taxonomy using RDP classifier[25], according to

SILVA 16S rDNA database[26]. From the aligned sequences, a phylogenetic tree was con-

structed using the gamma model of sequence evolution in FastTree2[27]. The output OTU

table (OTU.biom) file and phylogenetic tree (Tree.tre) file from LotuS pipeline were used as

Rumen metabolically active bacterial and archaeal communities
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input for the QIIME pipeline (version 1.9.0) [28]to calculate alpha diversity indexes, where the

richness (Chao1 index), the number of distinct OTUs (Observed species) and the phylogenetic

diversity (PD whole tree) were estimated. To get an overview of the shifts of rumen metaboli-

cally active bacterial community, principal coordinate analysis (PCoA) was implemented on

the weighted UniFrac distance matrix as suggested by Hamady and Knight[29]. The statistical

significance of weekly-based sample groups was tested on the weighted UniFrac distance

matrix using the ANOSIM method[30].

Quantification of total methanogen and two major methanogen orders by

qPCR

For the quantifications of total methanogenic archaea and two major orders of methanogens

(Methanobacteriales and Methanomassiliicoccale s), mcrA gene primer and order specific 16S

rRNA gene primers were used for qPCR amplification of cDNA (S2 Table). Triplicates of

each sample were prepared and all PCR reactions were performed on a 384-well plate and

run on a ViiA 7 real-time PCR system (Thermo Fisher Scientific, Waltham, MA). Each PCR

reaction contained a total volume of 10 μL PCR mixture, including 5 μL of iTaqTM Universal

SYBR Green Supermix (Bio-rad, CA,USA), 1 μL of each forward and reverse primer (10

pmol μL-1), 2.5 μL of ddH2O and 0.5 μL of cDNA template. The amplification condition con-

sisted of: denaturation at 95˚C for 25 s followed by 40 cycles of denaturation at 95˚C for 15 s,

annealing at 60˚C for 35 s and extension at 72˚C for 30 s. Total methanogen abundance was

quantified by mcrA gene specific primer and a standard curve was made by ten-fold serial

dilutions of DNA extracts from Methanomassiliicoccus luminyensis pure culture purchased

from Leibniz-institute DSMZ GmbH (Braunschweig, Germany). To quantify the 16S rRNA

copy number of two major methanogen orders, Methanobacteriales and Methanomassiliicoc-
cales, individual standard curves were made by ten-fold serial dilutions of DNA extracts from

Methanobrevibacter ruminantium and Methanomassiliicoccus luminyensis pure cultures,

respectively, which were purchased from Leibniz-institute DSMZ GmbH (Braunschweig,

Germany). Standard curves with an amplification efficiency between 85% and 100% and R

square value greater than 0.99 were accepted for subsequent calculation of transcripts

numbers.

T-RFLP analysis of mcrA transcripts

For amplifying the cDNA templates, mcrA gene specific fluorescently labeled primers (forward

primer 5’-GGT GGT GTM GGD TTY ACH CAR TA modified from Steinberg and Regan

et al. (2008) [31]and reverse primer 5’-FAM CGT TCA TBG CGT AGT TVG GRT AGT) was

used. Four replicates of each sample were prepared and each PCR reaction contained a total

volume of 20 μL, including 2 μL 10× AccuPrimeTM PCR buffer II (Invitrogen, CA, USA), 1

μL of each primer (10 μM), 0.12 μL Taq DNA polymerase, 13.88 μL of water and 2 μL of

cDNA templates. The PCR amplification procedure consisted of: an initial activation at 94˚C

for 2 min, followed by 35 cycles of denaturation at 94˚C for 20 s, annealing at 56˚C for 20 s

and extension at 68˚C for 30 s, and final extension at 68˚C for 5 min. Pooled PCR products for

each sample were purified using QIAquick PCR purification kit (Qiagen GmbH, Hilden, Ger-

many) following the manufacturer’s instructions. Purified PCR amplicons were digested using

endonuclease TaqI (New England Biolabs, Ipswich, MA). Digested PCR fragments were pre-

cipitated and mixed with 0.2 μL Megabase ET900-R size standard (GE Healthcare, Bucking-

hamshire, UK) and quantified on an ABI 3730XL Capillary Sequencer (Life Technologies,

Carlsbad, CA).
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mcrA transcript amplicon sequencing

Sequencing library was constructed from cDNA templates by using a two-step PCR procedure

targeting the mcrA transcripts. The first PCR reaction was conducted in triplicates for each

sample; the preparation of PCR mixture and the PCR reaction condition were identical to the

aforementioned T-RFLP procedure. The PCR products were purified with AMPure XP Beads

(Beckman Coulter, Inc.) and then pooled PCR products for each sample were processed

according to a standard Illumina MiSeq protocol (Illumina, San Diego, CA). Briefly, amplicon

primers with overhang (Forward overhang: 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAG-GGTGGT GTMGGDTTYACHCARTA; Reverse overhang: 5’ GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAG-CGTTCATBGCGTAGT TVGGRTAGT) were used to amplify the mcrA
amplicons from the first PCR run, followed by the purification of PCR products with AMPure

XP Beads (Beckman Coulter, Inc.) and subsequently, the addition of dual indices and Illumina

sequencing adapters with a Nextera DNA library preparation kit (Illumina, San Diego, CA).

Equimolar concentrations of individual samples were pooled and sequenced on Illumina

MiSeq platform (Illumina, San Diego, CA) using the 250 bp paired end protocol.

mcrA transcript amplicon sequencing data analysis

A total of 1,139,525 sequences were generated from 70 samples. After the removal of primers

and adaptors (Cutadapt version 1.9.1), paired end reads were merged by USEARCH[32]. The

merged reads with an average read length of 424 bp were quality filtered based on a maximum

expected error of 1.0. Further analysis was performed on QIIME platform (QIIME 1.9.1) [28]

with a combined sequence file from all the samples. A custom database was constructed by

downloading all mcrA gene sequences from the FunGene Pipeline version 8.1[33]. OTUs were

generated from the combined sequence file using the (pick_otus.py) script in QIIME with

UCLUST OTU picking method[32], and a cut-off value of 84% was applied for species level,

as recommended by Yang et al. (2014)[34]. The taxonomy assignment of representative

sequences from each OTU was performed with the assign_taxonomy.py script using default

method against our custom mcrA gene sequences collection. For those sequences without clear

taxonomic assignments, a further blasting against the NCBI nucleotide database was per-

formed and the top hits with an identity value greater than 85% were retained. Thereafter, tax-

onomic information from the blast analysis was added to the OTU-table for the calculations of

alpha diversity (Chao1, Observed species and PD whole tree) and beta diversity, for which

principal coordinate analysis (PCoA) was performed on the weighted UniFrac distance matrix

[29]. The statistical significance of weekly-based sample groups was tested on the weighted

UniFrac distance matrix using the ANOSIM method[30].

Phylogeny of dominant methanogen OTUs

To visualize the phylogeny of dominant OTUs, with a total sequence number great than 5956

across all samples, representative mcrA sequences from 22 Methanobacteriales-related OTUs

and 14 Methanomassiliicoccales-related OTUs were picked out, and a phylogenetic tree was

constructed with maximum likelihood method in MEGA6[35].

Statistical analysis

The seventy samples (7 from each of 10 cows) were grouped into weeks relative to their actual

calving date, leading to seven sample groups; three weeks before parturition (w-3), two weeks

before parturition (w-2), one week before parturition (w-1), the first week after parturition

(w1), the second week after parturition (w2), the third week after parturition (w3) and the

Rumen metabolically active bacterial and archaeal communities
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fourth week after parturition (w4). Consequently, these seven groups from w-3 to w4 consisted

of 10, 9, 10, 10, 9, 9 and 13 samples, respectively. Since animals were sampled multiple times

and the individual animals were sampled in different sample weeks, the assumption of inde-

pendence of residuals within animals and between sample weeks was tested by fitting linear

mixed models using PROC MIX command in SAS (SAS 9.3, SAS Institute Inc.). Fixed effects

were assessed by F tests and random models by log-likelihood ratio tests. The model that fit

the data best, included “Weeks relative to parturition” as a fixed effect, and animals and sample

weeks were considered as random effects. The relative abundance of bacteria taxa was calcu-

lated as the sequence number in a specific OTU divided by the total sequence numbers

detected in an individual sample. Similarly, the relative abundance of T-RFs was calculated as

the peak height of individual T-RFs divided by the total peak heights within each sample. The

relative abundance of microbial taxa and T-RFs were considered as dependent variables.

When the fixed effect “Weeks relative to parturition” was significant (P-value� 0.05), a further

least square means t-test was carried out to compare the seven weekly groups and turkey’s was

used as a multiple comparison adjustment of the P-values. P-values� 0.05 were considered as

significant and P-values between 0.05 and 0.10 represented a trend.

Results

Bacterial 16S rRNA transcript amplicon profile

A total of 5,647 OTUs were identified from the bacterial 16S rRNA transcript profile. There

were 435 OTUs ubiquitously present in all the prepartum samples, 213 OTUs ubiquitously

present in all the postpartum samples and 160 OTUs shared between the prepartum and post-

partum samples (Fig 1). Of the 275 OTUs specific to the prepartum microbiome, they were

taxonomically associated with Ruminococcaceae (76 OTUs), Prevotellaceae (23 OTUs), Lach-
nospiraceae (21 OTUs), unclassified Clostridiales (16 OTUs) and Bacteroidales (12 OTUs).

Meanwhile, of the 53 OTUs specific to the postpartum microbiome, they were taxonomically

Fig 1. Distribution (Venn diagram) of OTUs among the 16S rRNA transcript amplicons. The OTUs

identified in the 16S rRNA transcript amplicon library of all the prepartum (435) and postpartum samples (213)

are included in the Venn diagram and grouped as OTUs either unique to or shared between the prepartum

and postpartum microbiome.

https://doi.org/10.1371/journal.pone.0187858.g001
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associated with Lachnospiraceae (20 OTUs), Prevotellaceae (10 OTUs) and Ruminococcaceae
(4 OTUs). Across the transition period, predominant genera of the metabolically active rumen

bacterial community consisted of unclassified Ruminococcaceae (22.3%) and Lachnospiraceae
(7%), Ruminococcus (6.9%), Prevotella (6.6%) and Ruminobacter (3.2%).

The active bacterial community in the rumen consisted of twenty phyla, of which Firmicutes
(46.91%), Bacteroidetes (19.97%), Proteobacteria (15.97%), Spirochaetes (1.58%) and Fibrobac-
teres (1.52%), were the most abundant five phyla with a median relative abundance value

shown in brackets (Fig 2). Firmicutes was the most abundant phylum, showing a significant

decrease in relative abundance from ~57% in the prepartum period to ~35% in the postpartum

period, as did the dominant Clostridia class and the Clostridiales order of this phylum (Table 1).

As the most abundant family of the Firmicutes phylum and the Clostridiales order, Ruminococ-
caceae showed a significant decrease from the highest relative abundance of ~44% in the pre-

partum period to the lowest relative abundance of ~22% in the postpartum period. The

Ruminococcaceae family was further classified into five genera, including Ruminococcus (5.81%-

7.96%), Clostridium IV (0.41%-2.92%), Saccharofermentans (0.80%-1.17%), Flavonifractor
(0.11%-0.21%) and a large group of unclassified Ruminococcaceae (13.29%-31.63%). Clostrid-
ium IV and unclassified Ruminococcaceae showed significant decreases in relative abundance

from 2.92% to 0.41%, and 31.63% to 13.29% respectively, whereas the remaining three genera

showed no significant changes over the transition period. Lachnospiraceae (7.24%-10.34%) was

another dominant family of the Firmicutes phylum, along with unclassified Lachnospiraceae
(5.69%-8.23%), showing significant increases in relative abundance over the transition period;

five dominant genera of this family, including Butyrivibrio, Lachnospiraceae_incertae_sedis,
Blautia, Pseudobutyrivibrio, and Moryella, were low in relative abundance (less than 1%) and

showed no significant changes over the transition period. A large group of unclassified

Fig 2. Phylum level composition of the active bacterial and archaeal communities. Relative abundance (percent

reads out of total reads) of eighteen bacterial phyla and two archaeal phyla identified among the 16S rRNA transcript

amplicons. Bars represent Weekly based sample groups.

https://doi.org/10.1371/journal.pone.0187858.g002
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Table 1. Relative abundance1 (%) of major bacterial and archaeal taxa in the rumen of dairy cows across the transition period.

Taxonomic level3 Time period relative to parturition2 SEM P-value4

K P C O F G W-3 W-2 W-1 W1 W2 W3 W4

Archaea

Euryarchaeota 2.63 3.94 2.53 2.20 2.46 2.24 2.37 0.009 0.75

Methanobacteria 2.09 3.19 2.14 1.82 2.15 1.98 2.12 0.007 0.80

Methanobacteriales 2.09 3.19 2.14 1.82 2.15 1.98 2.12 0.007 0.80

Methanobacteriaceae 2.09 3.19 2.14 1.82 2.15 1.98 2.12 0.007 0.80

Methanobrevibacter 1.81 2.67 1.74 1.36 1.63 1.56 1.69 0.007 0.80

Methanosphaera 0.18 0.29 0.25 0.33 0.43 0.34 0.35 0.001 0.12

Unclassified_Methanobacteriaceae 0.10 0.23 0.15 0.13 0.09 0.08 0.08 0.001 0.47

Thermoplasmata 0.44 0.33 0.22 0.16 0.08 0.07 0.08 0.002 0.22

Thermoplasmatales 0.44 0.33 0.22 0.16 0.08 0.07 0.08 0.001 0.22

Unclassified_Thermoplasmatales 0.43 0.30 0.21 0.14 0.07 0.06 0.08 0.001 0.18

Unclassified_Euryarchaeota 0.10 0.42 0.17 0.22 0.22 0.18 0.17 0.002 0.52

Bacteria

Firmicutes 57.0a 53.1ab 45.1bc 47.6abc 35.4c 38.6c 42.8abc 0.038 < 0.01

Clostridia 54.8a 50.9ab 42.9bc 45.6abc 33.6c 36.2c 40.8abc 0.035 < 0.01

Clostridiales 54.3a 50.5ab 42.6bc 45.4abc 33.3c 35.9c 40.5abc 0.036 < 0.01

Ruminococcaceae 43.7a 39.5ab 32.7bc 33.2bc 22.1c 22.8c 28.9bc 0.035 < 0.001

Ruminococcus 7.82 6.82 5.81 6.17 6.07 7.96 7.20 0.007 0.16

Clostridium IV 2.92a 2.33ab 2.45ab 1.84abc 0.61c 0.41c 1.17bc 0.004 < 0.01

Saccharofermentans 1.17 0.96 0.80 0.88 0.68 0.90 0.86 0.001 0.12

Flavonifractor 0.17 0.11 0.13 0.20 0.15 0.21 0.16 0.000 0.35

Unclassified_Ruminococcaceae 31.6a 29.3ab 23.5bc 24.1bc 14.6c 13.3c 19.6bc 0.031 < 0.0001

Lachnospiraceae 7.36b 8.06ab 7.24b 9.70a 9.12ab 10.3a 9.10ab 0.006 < 0.01

Butyrivibrio 0.54 0.54 0.58 0.66 0.59 0.84 0.60 0.001 0.26

Lachnospiraceae_incertae_sedis 0.31 0.50 0.37 0.39 0.39 0.43 0.52 0.001 0.42

Blautia 0.23 0.28 0.28 0.39 0.37 0.32 0.29 0.000 0.03

Pseudobutyrivibrio 0.19 0.22 0.16 0.17 0.16 0.20 0.17 0.000 0.48

Moryella 0.06 0.06 0.05 0.05 0.04 0.07 0.06 0.000 0.57

Unclassified_Lachnospiraceae 5.99b 6.42ab 5.69b 7.90a 7.43ab 8.23a 7.32ab 0.005 < 0.01

Unclassified_Clostridiales 3.17a 2.88ab 2.56abc 2.39bc 1.96c 2.05c 2.26c 0.002 < 0.01

Unclassified_Firmicutes 1.96 1.74 1.75 1.46 1.31 1.66 1.54 0.002 0.10

Bacteroidetes 21.7 19.2 18.4 18.9 20.7 20.9 19.01 0.019 0.15

Bacteroidia 15.5 14.9 13.6 15.2 17.5 17.7 15.69 0.014 0.09

Bacteroidales 15.5 14.9 13.6 15.2 17.5 17.7 15.69 0.014 0.09

Prevotellaceae 6.13b 7.14b 6.57b 9.30ab 12.6a 12.3a 9.85ab 0.008 < 0.001

Prevotella 4.26c 5.13c 4.66c 6.53c 9.55a 9.42ab 6.77bc 0.007 < 0.001

Paraprevotella 0.41 0.47 0.42 0.75 0.38 0.56 0.45 0.001 0.21

Unclassified_Prevotellaceae 1.40b 1.48b 1.43b 1.93ab 2.53a 2.26ab 2.53a 0.003 < 0.01

Porphyromonadaceae 6.69a 5.10ab 4.49ab 3.53b 2.69b 3.50b 4.06b 0.008 < 0.01

Unclassified_Bacteroidales 2.66a 2.74ab 2.58ab 2.35abc 2.23abc 1.84bc 1.77b 0.004 < 0.01

Unclassified_Bacteroidetes 6.05 4.09 4.54 3.64 3.13 3.07 3.20 0.007 0.19

Proteobacteria 6.87b 13.6b 24.1ab 20.6ab 32.8a 28.3ab 26.4ab 0.056 < 0.01

Gammaproteobacteria 4.52b 11.7ab 22.0ab 19.1ab 31.6a 26.7ab 24.7ab 0.057 < 0.01

Aeromonadales 3.06 6.45 5.05 4.66 4.25 3.79 4.25 0.013 0.19

Succinivibrionaceae 3.06 6.45 5.05 4.66 4.25 3.79 4.25 0.014 0.19

Ruminobacter 1.98 4.57 3.69 3.37 3.39 2.51 2.84 0.012 0.29

(Continued )
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Lachnospiraceae significantly increased from the lowest relative abundance of 5.69% in the pre-

partum period to the highest relative abundance of 8.23% in the postpartum period.

The Bacteroidetes phylum represented by the Bacteroidia class and the Bacteroidales order

showed no significant changes over the transition period; nevertheless, two large families of

this phylum, Prevotellaceae and Porphyromonadaceae, showed different patterns where the for-

mer increased significantly from ~6% to ~12% and the latter decreased significantly from ~7%

to ~3% over the transition period. Prevotella (4.26%-9.55%) and Paraprevotella (0.38%-0.75%)

were the predominant genera of the Prevotellaceae family; The Prevotella genus showed a sig-

nificant increase in relative abundance from 4.26% to 9.55% over the transition period,

whereas the Paraprevotella genus showed no significant change. Although with an overall low

relative abundance, unclassified Prevotellaceae increased significantly from 1.4% in the prepar-

tum period to 2.53% in the postpartum period.

The Proteobacteria phylum, dominated by the Gammaproteobacteria class, showed a signifi-

cant increase from the lowest relative abundance of ~7% in the prepartum period to the high-

est relative abundance of ~33% in the postpartum period. The most abundant family of the

Aeromonadales order (3.06%-6.45%), Succinivibrionaceae, showed no significant changes over

the transition period, as did the two dominant genera, Ruminobacter (1.98%-4.57%) and Succi-
nivibrio (0.41%-0.97%). With a low relative abundance (less than 1%), Succinimonas showed a

significant decrease from the highest relative abundance of 0.88% in the prepartum period to

the lowest relative abundance of 0.34% in the postpartum period. Despite changes in the classi-

fied groups, a significant increase in relative abundance was observed for the unclassified Gam-
maproteobacteria (1.39%-27.32%) and a significant decrease from 1.26% to 0.68% over the

transition period was observed for the unclassified Proteobacteria.

The least abundant bacteria phyla, Fibrobacteres and Spirochaetes, including lower taxo-

nomic groups within these phyla, showed no significant changes over the transition period.

Table 1. (Continued)

Taxonomic level3 Time period relative to parturition2 SEM P-value4

K P C O F G W-3 W-2 W-1 W1 W2 W3 W4

Succinimonas 0.66ab 0.88a 0.82ab 0.54ab 0.37ab 0.34b 0.52ab 0.001 0.02

Succinivibrio 0.41 0.97 0.51 0.73 0.47 0.92 0.88 0.002 0.12

Unclassified_Gammaproteobacteria 1.39b 5.21b 16.8ab 14.4ab 27.3a 22.9ab 20.4ab 0.065 0.01

Alphaproteobacteria 0.68 0.48 0.61 0.44 0.26 0.45 0.34 0.002 0.27

Unclassified_Alphaproteobacteria 0.62 0.44 0.57 0.31 0.23 0.39 0.31 0.001 0.27

Unclassified__Proteobacteria 1.26a 1.03ab 1.13ab 0.80b 0.68b 0.82ab 1.01ab 0.001 0.01

Fibrobacteres 2.06 1.71 1.25 1.81 1.44 1.82 1.35 0.003 0.24

Fibrobacter 2.06 1.71 1.25 1.81 1.44 1.82 1.35 0.003 0.24

Spirochaetes 1.57 1.54 1.36 2.54 1.49 2.37 2.51 0.003 0.01

Treponema 1.48 1.43 1.28 2.45 1.45 2.31 2.41 0.003 0.01

Unclassified_Bacteria 6.75 5.70 5.77 5.06 4.53 4.79 4.68 0.006 0.06

1Number of sequences allocated to the individual taxa relative to the total number of sequences. For those sequences classified all the way from phylum to

genus level, intermediate taxonomic identifications were omitted. Those bacterial phyla with relative abundance lower than 1% were not shown.
2Sample numbers for each time period were: W-3(10),W-2(9),W-1(10),W1(10),W2(9),W3(9),W4(13).
3Different taxonomic levels were indicated by the first letter of each (K: Kingdom; P:Phylum; C:Class; O:Order; F:Family; G:Genus).
4P-value smaller than 0.05 indicates the significant effect of fixed factor ’weeks relative to parturition’.
a-cLeast squares means within a row with different superscripts differ significantly (P < 0.05); Mean standard error is presented

https://doi.org/10.1371/journal.pone.0187858.t001
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Diversity analysis of the active bacterial community

The species richness (Chao1) of the bacterial community decreased significantly over the tran-

sition period with the highest value (3708.15) in the three weeks before parturition (W-3) and

the lowest value (3045.70) in the third week after parturition (W3) (Table 2). The number of

observed species was significantly reduced in the last two weeks after parturition (W3 and W4)

compared with the three weeks before parturition (W-3). Similar decreases from the three

weeks before parturition (W-3) to the second and third week after parturition (W2 and W3)

were observed for the phylogenetic diversity (PD_whole_tree) of the active bacterial commu-

nity. Principal coordinate analysis (PCoA) showed dynamic shifts of the bacterial community

over the transition period, as seen when plotting the first two principal coordinates explaining

58% of the variation (Fig 3). The entire bacterial community showed significant shifts over the

transition period as evaluated by weighted UniFrac distance matrix based ANOSIM test

(R = 0.29, P-value = 0.001).

Archaeal 16S rRNA transcript amplicon profile

With the universal prokaryotic 16S rRNA gene primer targeting both the bacterial and

archaeal communities, nearly 3% of the total sequences were assigned to the Euryarchaeota
phylum of the Archaea domain (Fig 2). The Euryarchaeota phylum was composed of two

major orders, Methanobacteriales (80.6%-89.7%) and Methanomassiliicocca les (2.42%-14.8%),

showing no significant changes over the transition period (S2 Fig and Table 3). Within the

Methanobacteriales order, two predominant genera of the ruminal active archaeal community

were Methanobrevibacter (61.8%-69.8%) and Methanosphaera (8.16%-18.5%). Sequences

assigned to the Methanomassiliicocca les order (2.42%-14.8%) were further allocated to an

unclassified group. The Methanobacteriales order accounting for 80%-90% of the active

archaeal community was more abundant compared with the Methanomassiliicoccales order

which varied a lot in relative abundance ranging from 2% in the postpartum period to 15% in

the prepartum period. The 16S rRNA transcript profile of all archaeal taxa showed significant

changes over the transition period; the Methanobacteriales order and the Methanosphaera
genus increased significantly in relative abundance from ~80% to ~90%, and ~8% to ~18%,

whereas the Methanobrevibacter genus (from 69.8% to 61.8%) and the Methanomassiliicoccales

Table 2. Alpha diversity analysis of the rumen active methanogen and bacterial communities.

Item2 Weeks relative to parturition1 SEM P-value3

W-3 W-2 W-1 W1 W2 W3 W4

mcrA

Chao1 59.2 58.3 58.2 58.5 52.7 55.6 59.5 2.16 0.150

Observed_species 54.3 52.8 53.5 51.9 51.6 51.9 52.2 1.76 0.792

PD_whole_tree 2.19 2.21 2.25 2.17 2.19 2.19 2.20 0.08 0.709

Bacterial 16S rRNA

Chao1 3708a 3495ab 3424abc 3340abc 3135bc 3045c 3386abc 129.71 0.002

Observed_species 2993a 2695ab 2669ab 2553ab 2476ab 2372b 2700b 129.00 0.012

PD_whole_tree 171.3a 156.8ab 155.4ab 149.8ab 145.4b 140.1b 154.6ab 5.85 0.005

1Weekly based samples groups are indicated and sample numbers for each time period were: W-3(10), W-2(9), W-1(10), W1(10), W2(9), W3(9), W4(13).
2 Alpha diversity (Chao1, Observed species and PD whole tree) analysis was performed for the active methanogen community profiled by Illumina amplicon

sequencing of mcrA transcripts, and the active bacterial community profiled by Illumina amplicon sequencing of bacterial 16S rRNA transcripts.
3P-value smaller than 0.05 indicates the significant effect of fixed factor ‘Weeks relative to parturition’.
a-cLeast square means (t-test) within a row with different superscripts differ significantly (P < 0.05); Mean standard error is indicated.

https://doi.org/10.1371/journal.pone.0187858.t002
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Fig 3. Principal coordinate analysis (PCoA) of the active rumen bacterial community. The weighted UniFrac distance matrix was used for the

analysis of the bacterial 16S rRNA transcript amplicons. Weekly based sample groups are indicated by different colors.

https://doi.org/10.1371/journal.pone.0187858.g003

Table 3. Community structure of the active methanogen community as revealed by Illumina amplicon sequencing of mcrA and bacterial 16S rRNA

transcripts.

Item2 Weeks relative to parturition1 SEM P-value3

W-3 W-2 W-1 W1 W2 W3 W4

mcrA

Methanobacteriales 98.9 98.8 98.9 98.8 95.6 98.9 98.8 0.01 0.301

Methanobrevibacter 86.3a 81.3a 79.5a 69.8b 66.4b 70.4b 67.1b 2.10 < 0.001

Methanosphaera 12.6b 17.6b 19.4b 29.0a 29.2a 28.6a 31.7a 2.20 < 0.001

Methanomassiliicoccales 0.01 0.01 0.01 0.03 0.03 0.05 0.07 0.00 -

Archaeal 16S rRNA

Methanobacteriales 80.6b 82.8ab 83.8ab 84.7ab 88.3a 89.7a 89.2ab 0.02 0.033

Methanobrevibacter 67.4ab 69.8a 67.6ab 61.8b 66.5ab 68.3ab 68.1b 0.02 0.017

Methanosphaera 9.96bc 8.16c 10.9bc 18.4a 18.5a 17.8a 17.5ab 0.02 < 0.001

Methanomassiliicoccales 14.8a 11.6a 10.3ab 6.81bc 4.92c 2.42c 2.47c 0.01 < 0.001

1 Weekly based samples groups are indicated and relative abundance (%) of individual methanogen group at the order and genus levels are displayed.
2 The proportion of unassigned reads is not shown in the mcrA profile due to its low number. It should be noted that archaeal 16S rRNA transcripts

accounted for approx. 3% of the total 16S rRNA transcripts and were treated as 100% below.
3P-value smaller than 0.05 indicates the significant effect of fixed factor ‘Weeks relative to parturition’.
a-cLeast squares means within a row with different superscripts differ significantly (P < 0.05); Mean standard error is presented.

https://doi.org/10.1371/journal.pone.0187858.t003
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order (from 14.8% to 2.42%) decreased significantly over the transition period, as reflected by

their highest and lowest values (Table 3).

Quantifications of total methanogen and two major methanogen orders

by qPCR

The total mcrA transcript number showed no significant changes over the transition period

(Fig 4). The 16S rRNA transcript number of Methanomassiliicoccales showed a decreasing

trend over the transition period (Fig 4). Furthermore, Methanobacteriales showed a signifi-

cantly lower 16S rRNA copy number of in the third week before parturition (W-3) in compari-

son with the remaining six weeks (Fig 4).

T-RFLP analysis of mcrA transcripts

Seven dominant T-RFs were detected across all seventy samples, accounting for more than

89% of the total peak height. Among these dominant T-RFs (39, 105, 154, 267, 297, 385 and

Fig 4. Quantification of total methanogen and two major methanogen orders by qPCR. Total mcrA transcript number, 16S rRNA transcript number

of the Methanomassiliicoccales order and 16S rRNA transcript number of the Methanobacteriales order are quantified by qPCR. Fold change in

transcript copy number was calculated relative to the third week before parturition (W-3). For Methanobacteriales 16S rRNA transcript number, the first

group (W-3) was significant lower than the remaining six groups (P < 0.05), as marked by the asterisk.

https://doi.org/10.1371/journal.pone.0187858.g004
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475 bp), T-RFs 39 and 267 bp were the most abundant two fragments with a similar mean rela-

tive abundance of 38%, followed by T-RFs 475 (5%), 105 (3.6%) and 385 bp (3.3%); T-RFs 154

and 297 bp were the least abundant fragments (less than 1%) (Table 4). Across the entire study

period, the most abundant five T-RFs showed no significant changes, whereas the least abun-

dant two T-RFs, T-RF 154 and 297 bp, significantly decreased in relative abundance. Com-

pared with the same analysis of mcrA gene (DNA) which produced 12 T-RFs (manuscript in

preparation), mcrA transcripts (cDNA) gave us a smaller number of T-RFs (only seven here).

Moreover, T-RFs 202 and 210 bp were present in DNA detection while absent from cDNA

detection. Principal component analysis (PCA) of T-RFs profile showed no clear shifts of the

active methanogen community over the transition period (S3 Fig).

mcrA transcript amplicon profile

A total of 85 OTUs were generated from the mcrA transcript profile after filtering out OTUs

with sequence numbers lower than 3. The OTUs were taxonomically associated with two

major orders of the active methanogen community, of which Methanobacteriales accounted

for nearly 99% of the total sequences and Methanomassilii coccales was relatively low (less than

0.1% of total sequences). The most abundant genera observed were Methanobrevibacter (75%),

Methanosphaera (24%) and a Methanomassiliicoccales-r elated genus (less than 1%); their

respective mean relative abundance are shown in brackets (Table 3). On the other hand, there

were nearly 1% of the total sequences unassigned. Although the Methanobacteriales order

showed no significant change over the transition period, the Methanobrevibacter genus of this

order showed a significant decrease from the highest relative abundance of 86.3% in the pre-

partum period to the lowest abundance of 66.4% in the postpartum period. The Methano-
sphaera genus on the other hand, showed a significant increase from the lowest relative

abundance of 12.6% in the prepartum period to the highest relative abundance of 31.7% in the

postpartum period.

Diversity analysis of the active methanogen community

No significant change was observed for the three indicators of alpha diversity (chao1, observed

species and PD_whole_tree) according to mcrA transcript amplicon profile (Table 2). How-

ever, weighted UniFrac distance matrix based principal coordinate analysis (PCoA) indicated

Table 4. Relative abundance1 (%) of predominant terminal-restriction fragments (T-RFs) from mcrA transcript T-RFLP profiles across the transi-

tion period.

T-RFs (bp) Weeks relative to parturition2 SEM P-value3

W-3 W-2 W-1 W1 W2 W3 W4

39 37.3 38.0 36.7 39.5 38.1 38.2 39.2 1.10 0.359

105 3.71 3.44 3.39 3.40 3.86 3.95 3.24 0.45 0.844

154 0.9a 0.91a 0.87a 0.55ab 0.51ab 0.43b 0.41b 0.11 0.000

267 37.4 37.9 36.7 39.3 37.9 37.8 38.8 1.09 0.475

297 1.47a 1.35a 1.04ab 0.57bc 0.43c 0.49bc 0.21c 0.16 < 0.001

385 3.93 4.08 3.21 2.59 2.79 3.09 1.78 0.47 0.003

475 5.01 4.51 4.77 4.11 5.66 5.99 3.90 0.69 0.061

1Relative abundance is calculated as individual peak (T-RF) height relative to total peak height in each sample.
2Weekly based samples groups are indicated and sample numbers for each time period were: W-3(10), W-2(9), W-1(10), W1(10), W2(9), W3(9), W4(13).
3P value smaller than 0.05 indicates the significant effect of fixed factor ‘Weeks relative to parturition’.
a-cLeast squares means within a row with different superscripts differ significantly (P < 0.05); Mean standard error is presented.

https://doi.org/10.1371/journal.pone.0187858.t004

Rumen metabolically active bacterial and archaeal communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0187858 November 8, 2017 14 / 24

https://doi.org/10.1371/journal.pone.0187858.t004
https://doi.org/10.1371/journal.pone.0187858


a clear shift of the active methanogen community along the first principal coordinate (77%), as

demonstrated by ANOSIM test (R = 0.28, P = 0.001) (Fig 5).

Phylogeny of the active methanogen community

The most abundant 22 OTUs related to the Methanobacteriales order were clustered into three

clades on the phylogenetic tree, namely Methanosphaera clade, Methanobrevibacter ruminan-
tium clade and Methanobrevibacter gottschalkii clade (Fig 6). Six Methanomassiliicoccales
related OTUs were clustered into one clade, however the gastrointestinal tract (GIT) clade and

environmental clade were proposed in a recent report regarding the phylogeny of Methano-
massiliicoccales [36] (Fig 6).

Discussion

The rumen active bacterial community

In line with the statement of ‘core microbiomes’ in previous studies[5,37–39], we here propose

a core microbiome of rumen active bacteria composed of 22 genera ubiquitously present in

the 16S rRNA dataset of all rumen samples, with Ruminococcus, Prevotella, Ruminobacter,
Fibrobacter and Butyrivibrio being the most dominant. Overall, Firmicutes (~46% of total

reads) was the most abundant phylum followed by Bacteroidetes and Proteobacteria with

Fig 5. Principal coordinate analysis (PCoA) of the active rumen archaeal (methanogen) community.

Weighted UniFrac distance matrix was used for the PCoA analysis of the archaeal (methanogen) community, and

mcrA transcript amplicon profile (A) and archaeal 16S rRNA transcript amplicon profile (B) based analysis were

presented, respectively. Weekly based sample groups are indicated by different colors.

https://doi.org/10.1371/journal.pone.0187858.g005
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Fig 6. Phylogeny of the Methanobacteriales-related OTUs and Methanomassiliicoccales-related OTUs.

Representative mcrA sequences from the most abundant Methanobacteriales-related OTUs (22 OTUs) and

Methanomassiliicoccales-related OTUs (6 OTUs) were picked out for the construction of the phylogenetic tree,

and reference mcrA gene sequences were downloaded from the NCBI nucleotide database. The tree was

created using the Neighbor-joining method with 500 re-assemblies; bootstrap values greater than 50 are

shown. Three Methanobacteriales clades are indicated by different symbols: the Methanosphaera clade

(squares), the Methanobrevibacter ruminantium clade (triangles) and the Methanobrevibacter gottschalkii

clade (circles). The Methanomassiliicoccales clade is indicated by filled squared.

https://doi.org/10.1371/journal.pone.0187858.g006
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similar abundances (~20%). By comparative microarray and qPCR analysis of DNA and RNA

derived materials, Proteobacteria was reported as the most active group of the rumen bacterial

community in beef steers[9], and amplicon sequencing of bacterial 16S rRNA revealed Proteo-
bacteria as the predominant phylum, accounting for approx. 46% of the rumen bacterial com-

munity in beef steers[13]. The discrepancy between the present and the previous studies

regarding the Proteobacteria proportion might be due to differences in diets and animal

breeds; grain-based diet were fed to adult Brahman-cross steers [9] and high-energy finishing

diet were fed to ten-month crossbred beef steers[13]. In the present study, a significant

increase in the proportion of Proteobacteria was observed from the prepartum (6–8%) to the

postpartum (32–33%) period in the 16S rRNA dataset, suggesting that Proteobacteria could be

favored and more active in the rumen bacterial community of animals fed high-concentrate

diets. Additionally, we observed decreasing trends from the prepartum to the postpartum

period for unclassified Bacteroidales and Ruminococcaceae, suggesting that unclassified Bacter-
oidales and Ruminococcaceae are more active in animals fed the prepartum diet. This is in

accordance with a DNA-based study, where unclassified Bacteroidales and Ruminococcaceae
were reported to be abundant groups in animals fed forage-based diets[37].

Diversity of the rumen active bacterial community

Over the transition period, we observed a decreased bacterial diversity at the RNA as well as

the DNA level. It has been reported that high concentrate diets support low bacterial diversity

and, vice versa, high forage diets support high bacterial diversity in the rumen[40,41]. There-

fore, dietary shifts over the transition period are likely to be responsible for the decreased bac-

terial diversity observed here. In line with our observations, a DNA based study showed a

decrease in the rumen bacterial diversity (Chao1 and Shannon diversity indexes) from the pre-

partum to the postpartum period[5]. This could imply that host physiological stage may be

also involved in the alteration of bacterial diversity. Collectively, we revealed the shifts of the

rumen bacterial community over the transition period in both the DNA and RNA based

approach, as illustrated by the beta-diversity analysis (PCoA plot),

The rumen active archaeal community

Euryarchaeota was the most dominant archaeal phylum in the prokaryotic 16S rRNA profile.

Further, in accordance with DNA based approaches[14,15,42], the RNA based approach in

the present study revealed Methanobacteriales and Methanomassilii coccales as the two major

archaeal orders and Methanobrevibacter and Methanosphaera, both Methanobacteriales, as the

major genera. The dominance of these two orders was further verified by qPCR (16S rRNA

transcript numbers). The RNA amplicon sequencing of prokaryotic 16S rRNA and mcrA
revealed similar archaeal community structure as the DNA based amplicon sequencing (man-

uscript in preparation); a finding that was further supported by the T-RFLP profiles generated

from mcrA gene sequences (DNA) and mcrA transcripts (RNA), indicating accordance

between presence and activity of the archaeal community members.

Phylogenetic analysis of mcrA sequences revealed three clades of the order Methanobacter-
iales, Methanobrevibacter gottschalkii clade, Methanobrevibacter ruminantium clade and

Methanosphaera, contributing more than 95% to the rumen active methanogen communities.

This observation is comparable with results from DNA (16S rRNA gene) based analysis[15].

The order Methanobacteriales consisted of Methanobrevibacter and Methanosphaera (< 5%) in

a DNA based study, accounting for > 98% of the rumen archaeal communities in dairy cows

[43]. The dominance of Methanobacteriales has further been reported in several earlier studies

[15,42,44].
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According to the RNA amplicon sequencing (prokaryotic 16S rRNA) results, the Metha-
nomassiliicoccales accounted for 2.4%-15% of the total archaeal 16S rRNA, similar to the

DNA level proportion (10.4%) reported in New Zealand sheep and cattle[15]. However, the

Methanomassiliicoccales comprised a very low proportion (< 1%) of the mcrA transcript

amplicons as well as the T-RFLP profile of mcrA transcripts, indicating the Methanomassilii-
coccales order to be low in abundance. This shows that there is a discrepancy between the

proportion of Methanomassiliicoccales-rela ted 16S rRNA and mcrA. The mcrA gene, encod-

ing the alpha-subunit of the methyl-coenzyme M reductase, has been chosen as a marker for

methanogens [45] and has been widely used in clone library based analyses to characterize

the community structure of methanogens[46,47]. However, the use of the mcrA gene for tax-

onomy and phylogeny based work is questionable mainly because a comprehensive mcrA
gene reference database is still not available. Thus, Methanomassiliicoccale s was detected in

the methanogen communities of anaerobic digester as evaluated by the archaeal 16S rRNA

gene profile, but was not detected when the mcrA gene was used as a phylogenetic marker

[48]. Therefore, it still seems critical to use the mcrA gene as a phylogenetic marker for the

classification of the Methanomassiliicoccales group. Although less representative in the mcrA
sequencing profile, Methanomassiliicoccales-related OTUs can be classified into two clades in

the present study, namely the gastrointestinal tract (GIT) and the environmental clade, as

previously suggested[36]. The poor detection of this group seems unlikely to be caused by the

sequencing depth, since the Illumina MiSeq platform rendered higher mcrA read numbers

(approx. 16,000) than 454 pyrosequencing platform (approx. 5,000) [48]. The detection of

Methanomassiliicoccales related species in the rumen were largely influenced by different

sequencing and analysis methods and the Methanomassiliicoccales group was undetected by

Illumina amplicon sequencing of archaeal 16S rRNA gene and Illumina metagenomics

sequencing of mcrA, as illustrated by Snelling et al. (2014)[14]. Overall, isolation and charac-

terization of Methanomassiliicoccales members are thus highly required for further investigat-

ing and defining their role in the rumen ecosystem.

Associative patterns of the rumen active methanogen community over

the transition period

The observation of a constant level (qPCR) of total methanogens across the transition period is

in line with an investigation across animal species and diets [42] as well as comparison

between high and low methane emitters[17]. Compared with the T-RFLP profile, more shifts

were revealed by the RNA amplicon sequencing of prokaryotic16S rRNA and mcrA, due to

the massive amount of information provided by the next generation sequencing technology.

The Methanobrevibacter genus, dominated by typical formate-, H2- and CO2-utilizing

hydrogenotrophs, decreased in relative abundance of the active Archaea across the transition

period. Methanobrevibacter phylotypes have been reported to be predominantly present in the

rumen of cattle fed on high fibrous diets containing wheat straw[46]. The production of H2 is

strongly associated with the degradation of fibrous plant material, therefore affecting the activ-

ity of methanogens[49]. Thus, in our case, the low forage content in the postpartum diet might

be responsible for the decrease in relative abundance of Methanobrevibacter. Methanosphaera,

on the other hand, was more abundant in the postpartum period. Representative Methano-
sphaera members, like Methanosphaera stadtmanae, are hydrogen-dependent methylotrophs,

producing methane by reducing methanol with hydrogen as electron donor. The opposite

trends observed for the Methanobrevibacter and Methanosphaera genera suggest that there

might be competition for H2 between these two groups. Additionally, it has been reported that

Methanosphaera stadtmanae was significantly more abundant in the rumen of beef cattle fed
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low forage diet[50]. The shift from a high-forage prepartum diet to a low-forage postpartum

diet might explain the observed increase in Methanosphaera. Besides, the postpartum diet con-

tained 11.19% sugar beet pellets which could be an abundant source of pectin for the produc-

tion of methanol, supporting the growth of Methanosphaera species. The significant decrease

of the Methanomassiliicoccales group was likely due to the dietary supplementation of 11.19%

of 10.5% rapeseed fat in the postpartum diet, as supported by a previous study[18].

Diversity of the rumen active methanogen community

The same dominant archaea were present in the rumen methanogen communities of farmed

sheep, cattle and red deer fed different diets[42]. There are several studies indicating that the

methanogen communities are resistant to dietary changes when shifting e.g. from a high

forage to a high grain diet[43,51]. This might explain our observation that there was no sig-

nificant change in the alpha diversity indexes (chao1, observed species and phylogenetic

diversity) in the RNA amplicon sequencing profile of mcrA. However, the observed shifts in

beta diversity analysis as illustrated by PCoA plot and the dynamic shifts in the community

composition of methanogen communities might be due to the low abundance OTUs. It has

been suggested that there are diet- and ruminant- species-based differences in the archaeal

community structure[42]. The differences in methanogen community composition could

result from differences in animal species, animal age, diet type, and environment[52]. By

using 16S rRNA gene clone library methods, Wright et al. (2004) found the effect of diet on

the diversity of the methanogen community. The diversity of the methanogen communities

was higher in multiparous cows (higher Shannon index value) than in primiparous cows

[43], implying that age is also a factor influencing the diversity of rumen methanogen

community.

After calving, dairy cows appear to be in negative energy balance as indicated by a decrease

in blood glucose followed by an increase of non-esterified fatty acid and β-hydroxybutyrate

[53]. In accordance with this, we observed a dramatic increase in dry matter intake of dairy

cows after calving as well as a linear increase in ruminal capacity and dry matter fill has been

observed during the early lactation period[54]. These host physiology associated factors could

shape the rumen microbial community e.g. by affecting fast and slow growing microbes

distinctly.

We observed significant shifts of the rumen microbial community over seven consecutive

weeks during the transition period, with a relative low number of animals compared to other

studies[3–5]. Recognizing that the power of a study like the present could be increased by

including more animals, we are however always forced to take the principle of the three Rs’

(Replace, Reduce, Refine) into consideration. Moreover, to exclude potential biases related

to the flora scoop rumen sampling procedure, use of rumen fistulated animals could be

considered.

Conclusion

The rumen metabolically active bacterial community of dairy cows were analyzed over the

transition period by RNA amplicon sequencing (Illumina MiSeq) of prokaryotic 16S rRNA.

Firmicutes (35%-57%) was the most abundant phylum of the rumen active bacterial commu-

nity. The most frequently detected genera, Ruminococcus, Ruminobacter and Fibrobacter, were

not only dominating active members of the rumen bacterial community but were also more or

less unaffected by the dietary shifts over the transition period. In response to the transition

period, members of the rumen active bacterial community of dairy cows showed different pat-

terns. RNA amplicon sequencing of 16S rRNA and mcrA was applied for characterizing the
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metabolically active rumen archaeal community, which was dominated by two major orders,

Methanobacteriales (mainly Methanobrevibacter and Methanosphaera) and Methanomassilii-
coccales, showing significant shifts over the transition period. However, the use of the mcrA
gene for taxonomy studies must be considered carefully since primer biases and database limi-

tations might lead to poor detection of e.g. the Methanomassiliicocca les members.

Supporting information

S1 Fig. Dry matter intake (DMI) over the transition period. Dry matter intake (kg/day) was

recorded daily for each cow. Data are presented as average value (+/- SE) of each week for all

cows pooled into weeks relative to parturition.

(JPG)

S2 Fig. Rumen active archaeal community composition at order and genus levels. The

archaeal 16S rRNA sequences comprised approx. 3% of the prokaryotic 16S rRNA amplicons.

The archaeal community was made up of four orders Nitrosphaerales, Thermoplasmatales,
Methanosarcinales and Methanobacteriales and the overall composition at the genus level is

shown. The bars represent the weekly based sample groups.

(TIF)

S3 Fig. Principal component analysis (PCA) of the relative abundance of predominant

T-RFs. The relative abundance of predominant T-RFs identified in the T-RFLP profile was

used for the analysis and weekly based sample groups indicated by different shapes either filled

or unfilled are shown.

(TIF)

S1 Table. Ingredients and chemical composition of the total mixed rations (TMR) fed pre-

partum and postpartum period.
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S2 Table. Primer pairs used for quantifying the absolute abundance of total methanogen

and specific methanogen groups.
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