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Abstract

Using the integrable spin chain picture we study the one-loop anomalous dimension of certain single trace scalar op
N = 4 SYM expected to correspond to semi-classical string states onAdS5 × S5 with three large angular momenta(J1, J2, J3)

on S5. In particular, we investigate the analyticity structure encoded in the Bethe equations for various distributions o
roots. In a certain region of the parameter space our operators reduce to the gauge theory duals of thefolded string with two
large angular momenta and in another region to the duals of thecircular string with angular momentum assignment(J, J ′, J ′),
J > J ′. In between we locate a critical line. We propose that the operators above the critical line are the gauge theory
the circular elliptic string with three different spins and support this by a perturbative calculation.
 2004 Elsevier B.V.

PACS: 02.30.Rz; 11.15.-q; 11.15.Pg; 11.25.Hf; 75.10.Im
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1. Introduction

Recent development, triggered by the pp-wave/BMN correspondence [1], has led to new insights
duality between string theory and gauge theory and has in particular revealed interesting novel inte
structures in both kind of theories [2–11]. The progress has been made by focusing on a simple set of obs
which, according to the original AdS/CFT correspondence [12], should be closely related, namely the
spectrum of single string states onAdS5 × S5 and anomalous dimensions of local single trace operators ofN = 4
SYM. Here the string states are characterized by various quantum numbers such as angular momenta
should match the representation labels of the corresponding operators. Following the formulation of
wave/BMN correspondence efficient techniques for evaluating anomalous dimensions ofN = 4 SYM operators
were developed [13]. A further crucial step was the discovery of Minahan and Zarembo that the planar o
dilatation operator in the scalar sector ofN = 4 SYM could be identified as the Hamiltonian of an integra
SO(6) spin chain [2]. The spin chain picture was later extended to the set of all operators inN = 4 SYM and
yielded an integrablePSU(2,2|4) super spin chain [4,5]. On the string theory side it was realized that the cla
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energy of certain string states with several large angular momenta onS5 exhibited an analytical dependence
the parameterλ′ = λ/J 2 whereJ is the total angular momentum and whereλ is the squared string tension whic
via the AdS/CFT dictionary, is mapped onto the ’t Hooft coupling constantg2

YMN . Furthermore, for these stat
string quantum corrections were suppressed as 1/J in the limit J → ∞, λ′ = λ/J 2 fixed [14,15].1 This led to
the suggestion that taking the limitJ → ∞ for fixed λ′, the term linear inλ′ in the smallλ′ expansion of the
classical string energy would match the one-loop anomalous dimension of a gauge theory operator car
same (large)SO(6) representation labels as the string state [14,15]. In the spin chain picture, determining th
loop anomalous dimension amounts to solving a set of Bethe equations [18] and considering large repre
labels (i.e., long operators) corresponds to going to the thermodynamical limit.

Comparison of classical string energies and one-loop anomalous dimensions has been successfully c
in a number of cases, the prime example involving strings carrying two large angular momenta(J1, J2) onS5. On
the gauge theory side two types of solutions of the Bethe equations were found [19] and these were identifi
gauge theory dual of respectively a folded and a circular string [19,20] with the folded string being the one o
energy. Expressions giving the one-loop anomalous dimension, respectively theO(λ′) contribution to the classica
energy as a function of the representation labels in a parametric form were found. These parametrizations
elliptic integrals and were shown to match at a functional level [10,21]. The situation where three spins(J1, J2, J3)

on S5 are non-vanishing is less well understood. One particularly simple three spin circular string soluti
found a while ago [14,15]. It has two of its three spins equal, i.e.,J2 = J3 and is stable for large enough valu
of J1. This solution is again parametrized in terms of elliptic functions and its gauge theory dual was ide
in [17]. The generic case of (rigid) strings with threedifferent S5 spin quantum numbers was studied in [10] wh
it was shown that the relevant sub-sector of the stringσ -model could be mapped onto an integrable Neum
model. Further generalizations and relations to integrable models were found in [11]. The parallel gaug
analysis is so far lacking. A characteristic feature which distinguishes the three-spin solutions from the t
ones is that whereas the latter are conveniently parametrized in terms of elliptic integrals the former gen
require the use ofhyper-elliptic integrals. There does, however, exist a class of three-spin solutions whic
still elliptic [10]. In reference [10] particular attention was paid to hyper-elliptic three spin solutions genera
respectively the folded and circular two-spin string. Of these three-spin solutions the circular one exists in an
version whereas the folded one does not [10]. Here, we shall study a class of holomorphic gauge theory o
carrying genericSO(6) representation labels(J1, J2, J3). In a certain region of the parameter space (correspon
to J3 = 0) the operators reduce to the gauge theory duals of thefolded two-spin string whereas in another one th
constitute the duals of thecircular string with spin assignment(J, J ′, J ′), J > J ′ [17]. We will show that these
two different manifestations of the dual string are made possible through the existence of a line of critica
in the parameter space. Furthermore, we propose that above the critical line the gauge theory operators s
the duals of the circular elliptic three-spin states of [10]. The proposal is supported by a perturbative calcu

2. The general gauge theory set-up

Gauge theory operators dual to rigid strings with three non-vanishing angular momenta,(J1, J2, J3), on S5

are expected to be operators of the type Tr((χχ)kXJ1−kY J2−kZJ3−k + perm’s), k < min{J1, J2, J3}, whereX,
Y andZ are the three complex scalars ofN = 4 SYM with SO(6) weights(1,0,0), (0,1,0) and (0,0,1) and
whereχ is the fermion withSO(6) weight (1/2,1/2,1/2). In the present Letter we shall work at one-lo
order, i.e., atO(λ), where the dilatation generator only mixes the operators without fermionic constituen
shall thus be interested in diagonalizing the one-loop dilatation generator in the sub-set of operators of

1 Several other types of string states with similar properties have been found. These include string states with non-vanishing angula
on AdS5 [10,11,14] as well as a class of so-called pulsating string solutions [16,17].
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Tr(XJ1YJ2ZJ3 + perm’s) or equivalently diagonalizing the Hamiltonian of the integrableSO(6) spin chain in the
appropriate sub-set of spin states. The spin chain picture is particularly convenient when considering o
for which L ≡ J1 + J2 + J3 → ∞. Finding an eigenstate and corresponding eigenvalue of theSO(6) spin chain
Hamiltonian consists in solving a set of algebraic equations for the Bethe roots. For theSO(6) spin chain there ar
three different types of Bethe roots reflecting the fact that the Lie algebraSO(6) has three simple roots. Howeve
for holomorphic operators only two of the three types of roots can be excited. Denoting the number of root
two relevant types asn1 andn2 and the roots themselves as{u1,j }n1

j=1 and{u2,j }n2
j=1 the Bethe equations read

(1)

(
u1,j + i/2

u1,j − i/2

)L

=
n1∏
k �=j

u1,j − u1,k + i

u1,j − u1,k − i

n2∏
k=1

u1,j − u2,k − i/2

u1,j − u2,k + i/2
,

(2)1=
n2∏
k �=j

u2,j − u2,k + i

u2,j − u2,k − i

n1∏
k=1

u2,j − u1,k − i/2

u2,j − u1,k + i/2
.

We shall assume thatn1 � L/2,n2 � n1/2. TheSO(6) representation implied by this choice of Bethe roots is gi
by the Dynkin labels[n1 − 2n2,L− 2n1 + n2, n1]. In terms of the spin quantum numbers, assumingJ1 � J2 � J3
this corresponds to[J2 − J3, J1 − J2, J2 + J3] or J1 = L − n1, J2 = n1 − n2, J3 = n2. A given solution of the
Bethe equations gives rise to an eigenvalue of the spin chain Hamiltonian, i.e., a one loop anomalous di
which is

(3)γ = λ

8π2

n1∑
j=1

1

(u1,j )2 + 1/4
.

To enforce the cyclicity of the trace we have in addition to Eqs. (1) and (2) the following constraint

(4)1=
n1∏
j=1

(
u1,j + i/2

u1,j − i/2

)
.

In the thermodynamical limitL → ∞ all roots areO(L) and it is convenient to re-scale them accordingly. Do
so, taking the logarithm of the Bethe equations and imposing the limitL → ∞ one is left with a set of integra
equations.

3. The present gauge theory set-up

Let us define

(5)α = n1

L
, β = n2

L
.

Then the spin quantum numbers are given by(J1, J2, J3) = ((1 − α)L, (α − β)L,βL). We shall assume that th
Bethe roots{u1,j }n1

j=1 are distributed as in the case of the folded two spin string solution of reference [19
they live on two arches in the complex plane,C+ andC−, which are each others mirror images with respect to z
Each arch is symmetric around the real axis and neither one intersects the imaginary axis. For this confi
the constraint (4) is fulfilled (butn1 is required to be even). Furthermore, let us assume that the roots{u2,j }n2

j=1 live
on some curveC2 not intersectingC+ or C−.

Performing the above mentioned manipulations relevant for the thermodynamical limit we can write t
Bethe equations as in [17]

(6)
1

u
− 2πm = 2

∫
−
C+

du′ σ(u′)
u− u′ + 2

∫
C+

du′ σ(u′)
u+ u′ −

∫
C2

du′ ρ2(u
′)

u− u′ , u ∈ C+,
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(7)2πm2 = 2
∫
−
C2

du′ρ2(u
′)

u− u′ −
∫
C+

du′ σ(u′)
u− u′ −

∫
C+

du′ σ(u′)
u+ u′ , u ∈ C2,

where m and m2 are integers which reflect the ambiguities coming from the different possible choic
branches for the logarithm and where

∫− means that the integral has to be understood in the principal value s
Furthermore,ρ2(u) andσ(u) are root densities describing the continuum distribution of{u2,j }n2

j=1 and the subse

of {u1,j }n1
j=1 with positive real part, respectively. The densities are normalized as

(8)
α

2
=

∫
C+

σ(u) du, β =
∫
C2

ρ2(u) du.

We shall shortly see that the mode numberm2 actually has to vanish.2 Rather than working with the densities w
prefer to work with the resolventsW(u) andW2(u) defined by

(9)W(u) =
∫
C+

du′ σ(u′)
u− u′ , W2(u) =

∫
C2

du′ ρ2(u
′)

u− u′ .

The resolvents are analytic in the complex plane except for a cut respectively alongC+ andC2. In the continuum
language the one-loop anomalous dimension,γ , is given by

(10)γ = λ

4π2L

∫
C+

du
σ(u)

u2 = − λ

4π2L
W ′(0).

Not only are the resolvents technically more convenient. It appears that they are indeed objects with
physical interpretation. For instance,W(u) is the generating function of all the higher conserved charges o
spin chain [22]. It would be interesting to gain a similar understanding ofW2(u).

One possible configuration for the roots{u2,j }n2
j=1 is that they lie in an interval[−ic, ic] on the imaginary

axis [17]. In Ref. [17] the casec → ∞ was studied and the corresponding string state was identified as the c
string of [14] with spin assignment(J, J ′, J ′), J > J ′. Here we shall analyze the genericc case. Our strategy whe
solving the Bethe equations will be the same as that of reference [17]. We will expressρ2(u) in terms ofσ(u) by
means of Eq. (7) and use the resulting expression to eliminateρ2(u) from Eq. (6). We see thatρ2(u) only enters
Eq. (6) via the corresponding resolvent. Thus we do not need to determineρ2(u) itself. Rewriting Eq. (7) as

(11)
∫
−
C2

du′ ρ2(u
′)

u− u′ = πm2 +
∫
C+

du′ σ(u′)u
u2 − u′2 , u ∈ C2,

we recognize the saddle point equation of the Hermitian one-matrix model with the terms on the right-ha
playing the role of the derivative of the potential. Thus we can immediately write down a contour integral exp
for the resolvent, see, for instance [23]

(12)W2(u) =
∮
C

dω

2πi

1

u −ω

√
u2 + c2

ω2 + c2

{
πm2 +

∫
C+

du′ σ(u′)ω
ω2 − u′2

}
,

2 This is natural from the spin chain point of view asm2 can be interpreted as a discrete momentum associated with the roots{u2,j }n2
j=1 and

all momentum is known to be carried by the roots{u1,j }n1
j=1 (cf. Eq. (3)).
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where the contourC encircles the interval[−ic, ic] but not the various other singularities of the integra
Interchanging the order of integrations in the last term we can write this as

(13)W2(u) = m2π +
∫
−
C+

du′ σ(u′)u
u2 − u′2 −

∫
−
C+

du′ u′σ(u′)
u2 − u′2

√
u2 + c2

u′2 + c2 .

The parameterc can be expressed in terms ofα andβ by making use of the asymptotic behaviour ofW2(u) as
u → ∞. One has

(14)W2(u) ∼ β

u
, asu → ∞,

which immediately gives

(15)0= m2π,

(16)β = α

2
−

∫
C+

du
σ(u)u√
u2 + c2

.

We notice the following two limiting cases of Eq. (13) which serve as a consistency check of our solution

(17)lim
c→0

W2(u) = 0,

(18)lim
c→∞W2(u) =

∫
−
C+

du′ σ(u′)
u+ u′ .

Here the last expression coincides with the one obtained in reference [17]. As noted in respectively [19] and
integral equation (6) reduces to that of theO(n) model on a random lattice [24] withn = −2 for c → 0 andn = −1
for c → ∞. TheO(n) model on a random lattice can be solved exactly for any value ofn and the solution is fo
genericn parametrized in terms of elliptic functions [25]. However, a simplification occurs at the so-called ra
points wheren = 2 cos(πp/q) with p andq co-prime integers [26,27]. The reason why elliptic integrals app
can most easily be understood by rewriting the integral equation of theO(n) model in terms of the resolventW(u)

which, as mentioned above, is analytic in the complex plane except for a cut along the contourC+. The relevant
integral equation involvesW(u) as well asW(−u). Effectively, one thus hastwo cuts and that is what leads to th
elliptic structure for generic values ofn. For details we refer to [25].

We can conveniently rewrite the expression (13) forW2(u) as

W2(u) = 1

2

∫
−
C+

du′ σ(u′)
u− u′

(
1−

√
u2 + c2

u′2 + c2

)
+ 1

2

∫
−
C+

du′ σ(u′)
u+ u′

(
1+

√
u2 + c2

u′2 + c2

)
.

Inserting this expression forW2(u) in Eq. (6) we get the following integral equation for generalc

1

u
− 2πm = 1

2

∫
−
C+

du′ σ(u′)
u− u′

(
3+

√
u2 + c2

u′2 + c2

)

(19)+ 1

2

∫
C+

du′ σ(u′)
u+ u′

(
3−

√
u2 + c2

u′2 + c2

)
,

with u ∈ C+. We can trade the square roots in Eq. (19) for extra poles (or rather cuts) by performing a ch
variables, obtaining an integral equation which exposes the analyticity structure of the problem in a simpler
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The relevant changes of variables are different for small and for largec and the resulting integral equations sh
that there is a phase transition taking place at some intermediate value ofc. This explains why the string state du
to the operator considered does not need to be of the same type forc → 0 (folded) as forc → ∞ (circular).

4. The case of small c

For c small a convenient change of variables is

(20)u = p2 + c2

2ip
, u′ = q2 + c2

2iq
,

which is well-defined asc → 0 but not asc → ∞. With this change of variables we get

(21)

√
c2 + u2

c2 + u′2 = q(p2 − c2)

p(q2 − c2)
,

and we see that the limitc → 0 is as we wish. Inserting the change of variables (20) into the integral equatio
we get withduσ(u) ≡ dq ρ(q)

(22)
p

p2 + c2 + iπm =
∫
−
C̃+

dq ρ(q)
q2

q2 − c2

{
p

c2 − qp
+ 2

p − q
+ 2

p + q
+ p

c2 + qp

}
,

with p ∈ C̃+ whereC̃+ is the contour for the transformed rootsq . The boundary equation (16) turns into

(23)β = α

2
−

∫
C̃+

dq ρ(q)
q2 + c2

q2 − c2 ,

and the expression forγ becomes

(24)γ = − λ

π2L

∫
C̃+

dq
ρ(q)q2

(q2 + c2)2
.

Here it is convenient to define a resolvent by

(25)W(p) =
∫
C̃+

dq ρ(q)
q2

q2 − c2

1

p − q
.

Again, W(p) is analytic in the complex plane except for a cut along the contourC̃+ and we can express th
anomalous dimension,γ throughW(p) as

(26)γ = − ∂

∂p2

(
p2 − c2

2p

(
W(p) − W(−p)

))∣∣∣∣
p=ic

.

Apart from the functionW(p) the integral equation (22) involvesW(−p), W(c2/p) andW(−c2/p). This integral
equation can be viewed as a “super-position” of that of the usualO(n) model on a random lattice [24] and th
of the plaquette model studied in [28]. In particular, we see that we effectively have four different cuts. In
words, the presence of the Bethe roots{u2,j }n2

j=1 has the effect of introducing an extra pair of “mirror” cuts

the integral equation for the Bethe roots{u1,j }n1
j=1. Denoting the end points of the cutC̃+ asa andb = −a∗ and
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writing symbolicallyC̃+ = [a, b] (knowing thatC̃+ is not a straight line) the other cuts are[−b,−a], [c2/a, c2/b]
and[−c2/b,−c2/a]. Such a 4-cut integral equation generically has a solution in terms of hyper-elliptic inte
However, since the weight of the additional cuts can be written in the formn = 2 cos(pπ/q) with p andq co-
prime integers (p = 1, q = 3) we expect to have a situation which generalizes the above mentioned rational
of the O(n) model on a random lattice. This indicates that the solution can be at most elliptic. As the p
parametrization is designed to study the system for small values ofc we can assume that|c| < |a| = |b|. Then the
cuts [c2/a, c2/b] and [−c2/b,−c2/a] are “inside” (i.e., closer to the origin than) the cuts[a, b] and [−b,−a].
When c → 0 these inner cuts shrink to zero and disappear. In this limit we recover theO(n = −2) model of
reference [19]. As|c| → |a| (or β → (βc(α))−) the two sets of cuts approach each other and a singularity oc
Eq. (22) looses its meaning, an obvious sign being the divergence of the pre-factorq2/(q2 − c2). As mentioned
above, this explains why the string state dual to the gauge theory operator considered does not need to
same type for small and for largec.

5. The case of large c

To study the case wherec is large, let us return to Eq. (19) and choose another change of variables. In th
we set

(27)u = 2ip

1+p2/c2 , u′ = 2iq

1+ q2/c2 ,

which we notice is well-behaved asc → ∞ but singular asc → 0. Now, we find

(28)

√
c2 + u2

c2 + u′2 = (1− p2/c2)(1+ q2/c2)

(1+ p2/c2)(1− q2/c2)
.

In accordance with the remark just above, this formula gives rise to the correct asymptotic expansion asc → ∞
but not asc → 0. In the new variables the integral equation (19) reads, withduσ(u)≡ dq ρ(q)

1+ p2/c2

2p
+ 2πmi

(29)= 1

2

∫
−
C̃+

dq ρ(q)

(
1+ q2/c2

1− q2/c2

){
1− qp/c2

p + q
+ 2/c2(p − q)

1+ qp/c2 + 1/c2(p + q)

1− qp/c2 + 2(1+ qp/c2)

p − q

}
,

wherep ∈ C̃+ with C̃+ being the contour for the transformed rootsq . The boundary equation (16) turns into

(30)β = α

2
− 1

c

∫
C̃+

dq ρ(q)
2iq

1− q2/c2 ,

and the expression forγ reads

(31)γ = − λ

16π2L

∫
C̃+

dq ρ(q)
(1+ q2/c2)2

q2
.

This time a natural definition of the resolvent is

(32)W(p) =
∫
C̃

dq ρ(q)

(
1+ q2/c2

1− q2/c2

)
1+ qp/c2

p − q
,

+
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(33)γ = λ

16π2L

∂

∂p

(
W(p) − W

(
−c2

p

))∣∣∣∣
p=0

.

Once again, apart fromW(p) the integral equation involvesW(−p), W(c2/p) andW(−c2/p). Hence, we discove
that the effect of the Bethe roots{u2,j }n2

j=1 has been to introduce an extra pair of “mirror cuts” in the integ

equation for{u1,j }n1
j=1 so that the densityρ(q) now effectively obeys a 4-cut integral equation. Also in this c

the integral equation shares some features with both the one of theO(n) model on a random lattice [24] and the o
of the plaquette model of [28]. Furthermore, due to the weights of the various cuts we expect to have a s
which generalizes the rational points of theO(n) model and thus a solution which is at most elliptic. Denot
the end points of the cut̃C+ asa andb = −a∗ and writing symbolicallyC̃+ = [a, b] (still knowing that C̃+ is
not a straight line) the other cuts are[−b,−a], [c2/a, c2/b] and [−c2/b,−c2/a]. The present parametrizatio
is designed to study the case wherec is large. Therefore, let us consider|c| > |a| = |b|. In this case the cut
[c2/a, c2/b] and [−c2/b,−c2/a] are “outside” (i.e., further from the origin than) the cuts[a, b] and [−b,−a].
Whenc → ∞ the two outer cuts move out to infinity and disappear. In this limit we recover the simpleO(n = −1)
integral equation studied in Ref. [17]. When|c| → |a| (or β → (βc(α))+) the two sets of cuts approach each ot
and for|c| = |a| a singularity occurs. This coincides with the divergence of the pre-factor(1+q2/c2)/(1−q2/c2).

6. Perturbative expansion for β ≈ α/2

Let us define

(34)ε = α

2
− β,

and let us considerε � α,β . In terms of angular momenta we have(J1, J2, J3) = ((1− α)L, (α/2 + ε)L, (α/2−
ε)L) or

(35)ε = 1

2L
(J2 − J3), J1 > J2, J3.

The operator in question is expected to be the gauge theory dual of a slightly perturbed version of the circul
spin state of [14,15] which has angular momenta(J, J ′, J ′), J > J ′. Obviously, a small value ofε corresponds to
a large value ofc. Expanding the expression (13) for largec we get

(36)W2(u) =
∫
−
C+

du′ σ(u′)
u+ u′ − 1

2c2

∫
C+

du′ u′σ(u′).

Inserting this into the integral equation (6) and making use of the boundary equation (16) gives

(37)
1

u
− 2πm− ε

2c
= 2

∫
−
C+

du′ σ(u′)
u− u′ +

∫
C+

du′ σ(u′)
u+ u′ , u ∈ C+.

This equation can again be recognized as the saddle point equation of theO(n) model on a random lattice fo
n = −1, with the terms on the left-hand side playing the role of the derivative of the potential. In terms
resolvent of Eq. (9) the equation reads

(38)W(u + i0)+ W(u− i0)− W(−u) = V ′(u), u ∈ C+,
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where

(39)V ′(u) = 1

u
− 2π

(
m + ε

4πc

)
.

The asymptotic behaviour ofW(u) is

(40)W(u) ∼ α

2u
+ εc

u2
, asu → ∞.

Defining

(41)W(u) = Wr(u)+ Ws(u),

whereWr(u) andWs(u) are respectively the regular and the singular part ofW(u), we have

(42)Wr(u) = 1

3

(
2V ′(u)+ V ′(−u)

)
.

Furthermore, by analyticity considerations [27] (see also [17]) one can show thatWs(u) has to fulfill the following
cubic equation

(43)
(
Ws(u)

)3 − R1(u)Ws(u)− R2(u) = 0,

where

R1(u) = 4π2
(
m + ε

4πc

)2

+ 1

3u2 ,

R2(u) = 2

27u3
+

(
α

2
− 1

3

)
8π2

(
m + ε

4πc

)2 1

u
.

Solving Eq. (43) perturbatively for largeu we get a relation betweenε andc. It reads

(44)
1

4πc
= mε

α(1− 3α/4)
.

Next, solving Eq. (43) perturbatively for smallu we get an expression forγ (cf. Eq. (10))

(45)γ = λα

2L

(
m + ε

4πc

)2

≈ λαm2

2L

(
1+ 2ε2

α(1− 3α/4)

)
.

We can expressα as

(46)α = 1− J1

L
≡ 1− j1,

which leads to the following expression forγ

(47)γ = λm2

2L

(
1− j1 + 8ε2 1

1+ 3j1
+O

(
ε4)).

Using the formalism of [10] one can derive in parametric form an expression for the semi-classical ener
three-spin circular string of elliptic type with winding numberm. Using the same notation for the angular mome
as above the result reads [29]

(48)E = L+ λm2

2L

[
4

π2

K(t)

E(t)

((
E(t)

)2 + j1(t − 1)
(
K(t)

)2)]
,
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of [10].
ion (29).

rmining
ts in the
to be
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ulation.
le
d string
ds to the
l enough
flected
degrees
folded

string it
end
operators
tegral
ted with
f our

hould be
, namely
plished
of
ere is the
g Bethe
wheret is determined as a function ofε andj1 from the following equation

(49)ε = 1

t
− 1

2
− E(t)

t K(t)
+ j1

[
1

t
− 1

2
− K(t)

t E(t)
+ K(t)

E(t)

]
,

with K(t) and E(t) being the elliptic integrals of the first and the second kind, respectively. Solving Eq. (49t
in terms ofj1 to leading order inε and inserting the solution in Eq. (48) one finds that to the given order inε the
λ-dependent part ofE precisely agrees with the expression forγ in Eq. (47), i.e.,

(50)E = L+ λm2

2L

(
1− j1 + 8ε2 1

1+ 3j1
+O

(
ε4)).

Thus, we propose that the dual of the operator considered here is the three-spin circular elliptic string
It would of course be interesting to reproduce Eqs. (48) and (49) from an exact solution of the integral equat

7. Conclusion

We have studied a class of single trace scalar, holomorphic gauge theory operators with generalR-charge
assignment(J1, J2, J3) = ((1 − α)L, (α − β)L,βL) in the limit L → ∞ with α ∈ [0,1/2] andβ ∈ [0, α/2].
Analyzing the relevant Bethe equations we have exposed the analyticity structure of the problem of dete
the one-loop anomalous dimension of these operators. In particular, we have located a line of critical poin
parameter space,β = βc(α), which explains why the nature of the dual string, as observed, does not need
the same forβ → 0 andβ → α/2. Furthermore, we have proposed that forβ > βc(α) the gauge theory operato
studied are the duals of the circular elliptic three-spin string of [10] and supported this by a perturbative calc
It would of course be interesting to identify the dual string state also forβ < βc(α). The only candidate availab
at the moment seems to be the hyper-elliptic three-spin state of [10] which generalizes the two-spin folde
of [15]. As we have seen there exists a mechanism encoded in the Bethe equations which effectively lea
appearance of extra cuts but it seems that the Bethe root configurations studied here are still not genera
to lead to a true hyper-elliptic structure. In the integrable Neumann model the hyper-elliptic structure is re
by the appearance of two integer winding number like parameters. The corresponding (but not identical)
of freedom of the folded string are the number of foldings and the number of so-called bend points. The
three-spin rigid string of [10] needs to have at least one bend-point. In the case of the two-spin folded
is known that the parameterm in Eq. (6) counts the number of foldings [20,21] but it is not obvious how b
points would manifest themselves on the gauge theory side. A detailed understanding of the nature of the
studied forβ < βc(α) and their relation to semi-classical string states requires an exact solution of the in
equation (22) and we hope to report on this in the future [30]. An exact expression for the resolvent associa
the density of Bethe roots{u1,j }n1

j=1 would not only give us access to the one-loop anomalous dimension o
gauge theory operators but also to the infinite set of conserved higher charges [22]. In this connection it s
mentioned that one might envisage a more direct way of comparing gauge theory and string theory results
by directly deriving the relevant string sigma model from the spin chain. So far this has only been accom
for the simple case of theSU(2) sub-sector of theSO(6) integrable spin chain [31]. Another interesting line
investigation which has also only been pursued in a sub-sector not including the operators considered h
derivation of the dilatation operator to higher loop orders [3,32,33] and the formulation of the correspondin
ansatz [34].
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