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Abstract

Using the integrable spin chain picture we study the one-loop anomalous dimension of certain single trace scalar operators of
N =4 SYM expected to correspond to semi-classical string statéglBnx S° with three large angular momentdy, Jo, J3)
on $°. In particular, we investigate the analyticity structure encoded in the Bethe equations for various distributions of Bethe
roots. In a certain region of the parameter space our operators reduce to the gauge theory duédtdefl thteing with two
large angular momenta and in another region to the duals afitti@ar string with angular momentum assignmet J/, J/),
J > J’. In between we locate a critical line. We propose that the operators above the critical line are the gauge theory duals of
the circular elliptic string with three different spins and support this by a perturbative calculation.
0 2004 Elsevier B.VOpen access under CC BY license,

PACS 02.30.Rz; 11.15.-g; 11.15.Pg; 11.25.Hf; 75.10.Im

Keywords: AdS/CFT correspondence; Spinning strings; Integrable syst8&($) spin chain,\' =4 SYM

1. Introduction

Recent development, triggered by the pp-wave/BMN correspondence [1], has led to new insights on the
duality between string theory and gauge theory and has in particular revealed interesting novel integrability
structures in both kind of theories [2—-11]. The progress has been made by focusing on a simple set of observables
which, according to the original AAS/CFT correspondence [12], should be closely related, namely the energy
spectrum of single string states AdSs x $° and anomalous dimensions of local single trace operatoké of4
SYM. Here the string states are characterized by various quantum numbers such as angular momenta and thest
should match the representation labels of the corresponding operators. Following the formulation of the pp-
wave/BMN correspondence efficient techniques for evaluating anomalous dimensivhs-df SYM operators
were developed [13]. A further crucial step was the discovery of Minahan and Zarembo that the planar one-loop
dilatation operator in the scalar sector.®8f= 4 SYM could be identified as the Hamiltonian of an integrable
S0(6) spin chain [2]. The spin chain picture was later extended to the set of all operatafs=id SYM and
yielded an integrablPSU (2, 2|4) super spin chain [4,5]. On the string theory side it was realized that the classical
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energy of certain string states with several large angular momens$& emhibited an analytical dependence on
the parametex’ = A/J2 whereJ is the total angular momentum and wheris the squared string tension which,
via the AdS/CFT dictionary, is mapped onto the 't Hooft coupling consgép,tN. Furthermore, for these states
string quantum corrections were suppressed/asifi the limit J — oo, A’ = 1/J? fixed [14,15]} This led to
the suggestion that taking the limit — oo for fixed 1/, the term linear im’ in the small\A’ expansion of the
classical string energy would match the one-loop anomalous dimension of a gauge theory operator carrying the
same (largePO(6) representation labels as the string state [14,15]. In the spin chain picture, determining the one-
loop anomalous dimension amounts to solving a set of Bethe equations [18] and considering large representation
labels (i.e., long operators) corresponds to going to the thermodynamical limit.

Comparison of classical string energies and one-loop anomalous dimensions has been successfully carried out
in a number of cases, the prime example involving strings carrying two large angular mamhemts on S°. On
the gauge theory side two types of solutions of the Bethe equations were found [19] and these were identified as the
gauge theory dual of respectively a folded and a circular string [19,20] with the folded string being the one of lowest
energy. Expressions giving the one-loop anomalous dimension, respectivélyxthecontribution to the classical
energy as a function of the representation labels in a parametric form were found. These parametrizations involved
elliptic integrals and were shown to match at a functional level [10,21]. The situation where threg/spihs J3)
on $° are non-vanishing is less well understood. One particularly simple three spin circular string solution was
found a while ago [14,15]. It has two of its three spins equal, ig= J3 and is stable for large enough values
of J;. This solution is again parametrized in terms of elliptic functions and its gauge theory dual was identified
in [17]. The generic case of (rigid) strings with thrdiéferent S° spin quantum numbers was studied in [10] where
it was shown that the relevant sub-sector of the stringnodel could be mapped onto an integrable Neumann
model. Further generalizations and relations to integrable models were found in [11]. The parallel gauge theory
analysis is so far lacking. A characteristic feature which distinguishes the three-spin solutions from the two-spin
ones is that whereas the latter are conveniently parametrized in terms of elliptic integrals the former generically
require the use ofiyper-elliptic integrals. There does, however, exist a class of three-spin solutions which are
still elliptic [10]. In reference [10] particular attention was paid to hyper-elliptic three spin solutions generalizing
respectively the folded and circular two-spin string. Of these three-spin solutions the circular one exists in an elliptic
version whereas the folded one does not [10]. Here, we shall study a class of holomorphic gauge theory operators
carrying generiSO(6) representation labeld1, J», J3). In a certain region of the parameter space (corresponding
to J3 = 0) the operators reduce to the gauge theory duals dbtHed two-spin string whereas in another one they
constitute the duals of thercular string with spin assignmen/, J’, J'), J > J' [17]. We will show that these
two different manifestations of the dual string are made possible through the existence of a line of critical points
in the parameter space. Furthermore, we propose that above the critical line the gauge theory operators studied are
the duals of the circular elliptic three-spin states of [10]. The proposal is supported by a perturbative calculation.

2. Thegeneral gaugetheory set-up

Gauge theory operators dual to rigid strings with three non-vanishing angular morants, Jz), on $°
are expected to be operators of the typé(Fx ) X /1Ky 2=k z/3=k | perm’s, k < min{Jy, J2, J3}, whereX,
Y and Z are the three complex scalars 8f = 4 SYM with SO(6) weights(1, 0, 0), (0, 1,0) and (0, 0, 1) and
where yx is the fermion withSO(6) weight (1/2,1/2,1/2). In the present Letter we shall work at one-loop
order, i.e., atO(1), where the dilatation generator only mixes the operators without fermionic constituents. We
shall thus be interested in diagonalizing the one-loop dilatation generator in the sub-set of operators of the type

1 several other types of string states with similar properties have been found. These include string states with non-vanishing angular momenta
on AdS; [10,11,14] as well as a class of so-called pulsating string solutions [16,17].
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Tr(X/1y/2773 4 perm’s or equivalently diagonalizing the Hamiltonian of the integraBI¥6) spin chain in the
appropriate sub-set of spin states. The spin chain picture is particularly convenient when considering operators
for which L = J1 + J2 + J3 — oo. Finding an eigenstate and corresponding eigenvalue d&@i6) spin chain
Hamiltonian consists in solving a set of algebraic equations for the Bethe roots. FD()espin chain there are

three different types of Bethe roots reflecting the fact that the Lie alggb@) has three simple roots. However,

for holomorphic operators only two of the three types of roots can be excited. Denoting the number of roots of the
two relevant types as; andny and the roots themselves aqj}’;.l:l and{uz,,-}’;?:1 the Bethe equations read

. L ni . no .
u1,j+l/2) Hul,j_ul,k—i_ll_[ul’j_uz’k_l/z
uati/2\" _ : /2 1)

uij—i/2 ey UG T ULE =T U — Uzt i/2
ni .
1—[ Ay 2
1— u j —uz i +i up j — Uik l/. @

uj — U2 —1i up j—uir+i/2

k) k=1
We shall assume that < L/2,n2 < n1/2. TheSO(6) representation implied by this choice of Bethe roots is given
by the Dynkin labelgni — 2ny, L — 2n1 4 np, n1]. In terms of the spin quantum numbers, assuming J, > J3
this corresponds t@Jo — J3, J1 — J2, J2 + J3] or J1 = L — n1, Jo = n1 — n2, J3 = np. A given solution of the
Bethe equations gives rise to an eigenvalue of the spin chain Hamiltonian, i.e., a one loop anomalous dimension
which is
A 1
Y= 82 ]X_; (u1,j)%+1/4 )

To enforce the cyclicity of the trace we have in additionto Egs. (1) and (2) the following constraint
uij+i/2
1= 4
l_[(ul j— i/j2) “)
In the thermodynamical limiL — oo all roots are®(L) and it is convenient to re-scale them accordingly. Doing

so, taking the logarithm of the Bethe equations and imposing the limit oo one is left with a set of integral
equations.

3. Thepresent gaugetheory set-up

Let us define
ni n2
= —, = —. 5
o= P=7 ©)
Then the spin quantum numbers are given(lyy; J2, J3) = (1 — )L, (@ — B)L, BL). We shall assume that the
Bethe roots{ul,,-}’;.lz1 are distributed as in the case of the folded two spin string solution of reference [19], i.e.,
they live on two arches in the complex plafie,andC_, which are each others mirror images with respect to zero.
Each arch is symmetric around the real axis and neither one intersects the imaginary axis. For this configuration
the constraint (4) is fglfilled (b_ufil is required to be even). Furthermore, let us assume that the{t@gt#}zzl live
on some curvé; not intersectingy or C_.
Performing the above mentioned manipulations relevant for the thermodynamical limit we can write the two

Bethe equations as in [17]

1—2nm=2][ "(“/)+2f L“/),—fd’”(”), wely. (6)

u Uu—u u-+t+u Uu—u
Cy Cy C
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/ / /
2nm2=2][du/p2(u) _/dM/M _/du’ o) , uely, )
u—u' u—u u—+u
Co C+ Cy

wherem and my are integers which reflect the ambiguities coming from the different possible choices of
branches for the logarithm and whefemeans that the integral has to be understood in the principal value sense.
Furthermorep» (1) ando (1) are root densities describing the continuum distributiomf,};fil and the subset

of {u1, ,-}’;.1:1 with positive real part, respectively. The densities are normalized as

%:/U(u)du, ﬂ:/pz(u)du. (8)
C2

Cy

We shall shortly see that the mode numheractually has to vanishRather than working with the densities we
prefer to work with the resolvent® (1) and W2 (u) defined by

W) = / du/;(_”u) Wa(u) = / du 22, ©)

)
/ u— u/
C+ Cz

The resolvents are analytic in the complex plane except for a cut respectively@langdC,. In the continuum
language the one-loop anomalous dimensjaris given by

A o(u) A
V= amer /du w2z 4n?L W. (10)
Cy

Not only are the resolvents technically more convenient. It appears that they are indeed objects with a direct
physical interpretation. For instanc®,(u) is the generating function of all the higher conserved charges of the
spin chain [22]. It would be interesting to gain a similar understanding/:).

One possible configuration for the roc{tsz’j}’fzzl is that they lie in an interval—ic, ic] on the imaginary
axis [17]. In Ref. [17] the case— oo was studiec'f and the corresponding string state was identified as the circular
string of [14] with spin assignmenif, J', J'), J > J'. Here we shall analyze the genericase. Our strategy when
solving the Bethe equations will be the same as that of reference [17]. We will expi@3sn terms ofo (1) by
means of Eq. (7) and use the resulting expression to elimjgdte from Eg. (6). We see thai (1) only enters
Eq. (6) via the corresponding resolvent. Thus we do not need to detepatimeitself. Rewriting Eq. (7) as

][du/ p2(u )/ =mmy+ /dl/M u ey, (12)
u

u— u2 —y'2’
C Ct

we recognize the saddle point equation of the Hermitian one-matrix model with the terms on the right-hand side
playing the role of the derivative of the potential. Thus we can immediately write down a contour integral expression
for the resolvent, see, for instance [23]

do 1 [u?24¢2 , oo
C C

+

2 This is natural from the spin chain point of viewras can be interpreted as a discrete momentum associated with thewggt}s:fzzl and

all momentum is known to be carried by the rogig, j}’;.lz 1 (cf. Eq. (3)).
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where the contouf encircles the interval—ic, ic] but not the various other singularities of the integrand.
Interchanging the order of integrations in the last term we can write this as

, o u , o) [u?+ c?
Wz(u)=m2n+][du i ][du 2w\ i (13)
e s

The parameter can be expressed in terms®fand 8 by making use of the asymptotic behaviourW$ () as
u — o0o. One has

Wo(u) ~ E, asu — oo, (14)

u

which immediately gives
0=mom, (15)
o o(u)u

== — | du———. 16
F=3 ] e (16)

+

We notice the following two limiting cases of Eq. (13) which serve as a consistency check of our solution

|imO Wo(u) =0, (17)
lim Wa(u) = ][ FIAACeN (18)
c—00 u-+u

Cs

Here the last expression coincides with the one obtained in reference [17]. As noted in respectively [19] and [17] the
integral equation (6) reduces to that of #hén) model on a random lattice [24] with= —2 forc — 0 andn = —1
for ¢ — oo. The O (n) model on a random lattice can be solved exactly for any valueafd the solution is for
genericn parametrized in terms of elliptic functions [25]. However, a simplification occurs at the so-called rational
points wheren = 2 cosmp/q) with p andg co-prime integers [26,27]. The reason why elliptic integrals appear
can most easily be understood by rewriting the integral equation @ thg¢ model in terms of the resolvemt ()
which, as mentioned above, is analytic in the complex plane except for a cut along the ebntdine relevant
integral equation involve® (1) as well asW (—u). Effectively, one thus hatsvo cuts and that is what leads to the
elliptic structure for generic values of For details we refer to [25].

We can conveniently rewrite the expression (13)Wé(u) as

1 ,o(u) u? + 2 1 ,o(u) u?+c?
Wz(u)zé][duu_u/ 1= w2+ c? +§][duu+u’ 1+ w?2+4c2)
C C

+ +

Inserting this expression fa¥,(«) in Eq. (6) we get the following integral equation for general

1 1 , o) u2 4 (2
;—2nm=§][du — 3+ R

C.

1 o) u? + 2
= [ du 3=\ ) 19
+2/ uu+u’( u'?24c2 (19)
C

+

with u € C. We can trade the square roots in Eq. (19) for extra poles (or rather cuts) by performing a change of
variables, obtaining an integral equation which exposes the analyticity structure of the problem in a simpler manner.
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The relevant changes of variables are different for small and for lasgel the resulting integral equations show
that there is a phase transition taking place at some intermediate valu€la$ explains why the string state dual
to the operator considered does not need to be of the same typesfdr (folded) as for — oo (circular).

4. Thecase of small ¢
For ¢ small a convenient change of variables is

u_p2+62 ,_q2+6‘2

= 20
2ip " 2iq (20)

which is well-defined as — 0 but not as: — co. With this change of variables we get

[ 24 .2 2_ 2
62 +u/2 = q(p2 62)’ (21)
cc+u p(gc—c?)

and we see that the limit— 0 is as we wish. Inserting the change of variables (20) into the integral equation (19)
we get withdu o (1) =dq p(q)

2
p : ][ q p 2 2 p
P tizm={dgp@) { L2 2 } (22)
p?+c? J q?—c?lc?—qp p—q p+q c*+qp

Ci

with p e C; whereC, is the contour for the transformed roatsThe boundary equation (16) turns into
2, .2
o q°+c
——_ |4 L 23
p=3 / qp(q)qz_c2 (23)
Cr
and the expression fgr becomes

X p(9)q*
YT TR /dq (q%+c?)?’ 9

Cy

Here it is convenient to define a resolvent by

2

q 1

- (25)
q>—c2p—q

W(p) = /dq o (q)

Cy

Again, W(p) is analytic in the complex plane except for a cut along the confouand we can express the
anomalous dimensiony, throughW (p) as

a [ p?—c?
y = —a—pz( 2 (W(p) — W(—m))

(26)

p=ic

Apart from the functior (p) the integral equation (22) involvé¥ (— p), W (c2/p) andW (—c?/p). This integral
equation can be viewed as a “super-position” of that of the u&a) model on a random lattice [24] and that

of the plaquette model studied in [28]. In particular, we see that we effectively have four different cuts. In other
words, the presence of the Bethe ro{us,j};fzzl has the effect of introducing an extra pair of “mirror” cuts in

the integral equation for the Bethe roc@tsl,j};flzl. Denoting the end points of the cdf asa andb = —a* and
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writing symbolicallyC = [a, b] (knowing thatC,. is not a straight line) the other cuts dreb, —al, [¢?/a, ¢2/b)
and[—c?/b, —c?/a]. Such a 4-cut integral equation generically has a solution in terms of hyper-elliptic integrals.
However, since the weight of the additional cuts can be written in the foea? cospr/q) with p andg co-

prime integers g = 1, ¢ = 3) we expect to have a situation which generalizes the above mentioned rational points
of the O(n) model on a random lattice. This indicates that the solution can be at most elliptic. As the present
parametrization is designed to study the system for small valuesvefcan assume that| < |a| = |b|. Then the
cuts[c?/a, c?/b] and[—c2/b, —c?/a] are “inside” (i.e., closer to the origin than) the cligs b] and[—b, —al].
When ¢ — 0 these inner cuts shrink to zero and disappear. In this limit we recove® the= —2) model of
reference [19]. Asc| — |a| (or B — (B.(a))-) the two sets of cuts approach each other and a singularity occurs.
Eq. (22) looses its meaning, an obvious sign being the divergence of the pregatigf — c2). As mentioned
above, this explains why the string state dual to the gauge theory operator considered does not need to be of the
same type for small and for large

5. Thecaseof largec

To study the case whetes large, let us return to Eq. (19) and choose another change of variables. In this case
we set

2ip , 2ig
= 55, U = ——>—>5,
1+ p?/c? 1+4q%/c?
which we notice is well-behaved as— oo but singular ag — 0. Now, we find

2+u?  (1-p?/A(1+q?%/c?) 28)
2+u?2 1+ p?/c(1—q?%/cd)

In accordance with the remark just above, this formula gives rise to the correct asymptotic expanmsioras
but not asc — 0. In the new variables the integral equation (19) reads, uith (1) = dq p(g)

(27)

u

1+ 2 C2
2p
2/.2 2 2 2 2
1 1+qg°/c“\|1=gqp/c®  2/c(p—q)  1/c(p+q)  2(1+gqp/c°)
— A dqp(Q) 2,2 + 2 2 + s (29)
2) 1-g%/c p+q 1+gqp/c 1-gp/c P—q
Cy

wherep e C, with .. being the contour for the transformed rogtsThe boundary equation (16) turns into

a 1 2ig
R N -1 30
B=5 c/ A yn et (30)
Cy

and the expression for reads

1 27.2\2
/ dq p(q)E L/ (31)

6]2

A
T
Ct+
This time a natural definition of the resolvent is
1+ qz/cz) 1+ gp/c?

1-4%/c?) p—q

W(p) = / dq p<q>( , (32)

Cy
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andy can be expressed as

()
Y= 16m2L ap p p

Once again, apart fron¥ ( p) the integral equation involves (— p), W(c2/ p) andW (—c?/ p). Hence, we discover
that the effect of the Bethe roo(:az,,-}’;zz1 has been to introduce an extra pair of “mirror cuts” in the integral

equation for{ul,,-};flzl so that the density(¢) now effectively obeys a 4-cut integral equation. Also in this case
the integral equation shares some features with both the one 6f(ihlenodel on a random lattice [24] and the one
of the plaquette model of [28]. Furthermore, due to the weights of the various cuts we expect to have a situation
which generalizes the rational points of tbign) model and thus a solution which is at most elliptic. Denoting
the end points of the cuf, asa andb = —a* and writing symbolicallyC, = [a, b] (still knowing thatC. is

not a straight line) the other cuts areb, —al, [¢?/a, ¢?/b] and[—c?/b, —c%/a]. The present parametrization
is designed to study the case wherés large. Therefore, let us considet > |a| = |b|. In this case the cuts
[c?/a, ¢?/b] and[—c?/b, —c?/a] are “outside” (i.e., further from the origin than) the cligs b] and[—b, —al.
Whenc — oo the two outer cuts move out to infinity and disappear. In this limit we recover the sitnfale- —1)
integral equation studied in Ref. [17]. Whan — |a| (or 8 — (B.(«))+) the two sets of cuts approach each other
and for|c| = |a| a singularity occurs. This coincides with the divergence of the pre-fattey2/c2)/(1— g2/c?).

. (33)
p=0

6. Perturbative expansion for g ~ a/2

Let us define

Ezz_ﬂv (34)

and let us consider « «, 8. In terms of angular momenta we havg, J2, J3) = (1—a)L, (¢/2+ €))L, (a/2 —
€)L) or

1
=—(Jo— . 35
€ oL (Jo — J3), J1> Jo, J3 (35)

The operator in question is expected to be the gauge theory dual of a slightly perturbed version of the circular three-
spin state of [14,15] which has angular mome@taJ’, J'), J > J'. Obviously, a small value of corresponds to
a large value of. Expanding the expression (13) for largeve get

Wo(u) = ][du’ o) ! fdu’u/a(u’). (36)

u+u T 22
Cy Cy

Inserting this into the integral equation (6) and making use of the boundary equation (16) gives

1 / /
——2nm—i=2][du/M+/du/U(u), uely. (37)
u 2c u—u u—+u

C. C,

This equation can again be recognized as the saddle point equation @fithenodel on a random lattice for
n = —1, with the terms on the left-hand side playing the role of the derivative of the potential. In terms of the
resolvent of Eq. (9) the equation reads

Wu+i0)+Wu—i0) — W(—u)=V'(u), uecCy, (38)
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where
, 1 €
Vuy=—-—-2n|\m+-—1|\. (39)
u 4c
The asymptotic behaviour o¥ («) is
W(u) ~ l + e_c’ asu — oo. (40)
2u u?
Defining
W) =W, (u) + Ws(u), (41)

whereW, (u) andW;(u) are respectively the regular and the singular paivef), we have

W, (1) = %(2v/(u) + V' (—u)). (42)

Furthermore, by analyticity considerations [27] (see also [17]) one can shoW}lat has to fulfill the following
cubic equation

(W () = Ru(u) Wi () — Ra(u) =0, (43)
where
2 € 2 1
Ri(u) =4n (m + R) + ﬁ’

2 @ 1\, , e \%1
RQ(M)ZW"F E—g 8 m+H ;

Solving Eq. (43) perturbatively for largewe get a relation betweenandc. It reads

1 me
— = 44
drc a(l—3a/d) (44)
Next, solving Eq. (43) perturbatively for smallwe get an expression for (cf. Eq. (10))
A e \2 ram? 2¢2
=— — ) = 1 . 45
Y (m+47rc> 2L ( +a(1—3a/4)> (45)
We can express as
J1
=1-——=1—j 46
o 7 J1, (46)
which leads to the following expression fpr
Am? 2 4
=—\(1-,1+8 . 47
y=g(1-a+el o +0() (@)

Using the formalism of [10] one can derive in parametric form an expression for the semi-classical energy of a
three-spin circular string of elliptic type with winding number Using the same notation for the angular momenta
as above the result reads [29]

4K
72 E(r)

am?
E=L+—

57 ((E@))® + jat — 1)(K<z>)2)], (48)
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wheret is determined as a function efand j; from the following equation

H772 tE(r) %

_1 1 E@ L [1 1 K@) +K(t)} (49)

with K(¢) and Er) being the elliptic integrals of the first and the second kind, respectively. Solving Eq. (49) for
in terms of j; to leading order ire and inserting the solution in Eq. (48) one finds that to the given ordetlie
A-dependent part of precisely agrees with the expression foin Eq. (47), i.e.,

2

E=L 4"
o 2L

(1 — j1+8€? + o(e“)>. (50)

1+3j1

Thus, we propose that the dual of the operator considered here is the three-spin circular elliptic string of [10].
It would of course be interesting to reproduce Eqgs. (48) and (49) from an exact solution of the integral equation (29).

7. Conclusion

We have studied a class of single trace scalar, holomorphic gauge theory operators with Besteaaie
assignmentJy, J2, J3) = (1 — o)L, (@ — B)L, BL) in the limit L — oo with @ € [0,1/2] and 8 € [0, «/2].
Analyzing the relevant Bethe equations we have exposed the analyticity structure of the problem of determining
the one-loop anomalous dimension of these operators. In particular, we have located a line of critical points in the
parameter spacg, = B.(«), which explains why the nature of the dual string, as observed, does not need to be
the same fop — 0 andg8 — «/2. Furthermore, we have proposed thatfos S8.(«) the gauge theory operators
studied are the duals of the circular elliptic three-spin string of [10] and supported this by a perturbative calculation.
It would of course be interesting to identify the dual string state als@fars.(«). The only candidate available
at the moment seems to be the hyper-elliptic three-spin state of [10] which generalizes the two-spin folded string
of [15]. As we have seen there exists a mechanism encoded in the Bethe equations which effectively leads to the
appearance of extra cuts but it seems that the Bethe root configurations studied here are still not general enough
to lead to a true hyper-elliptic structure. In the integrable Neumann model the hyper-elliptic structure is reflected
by the appearance of two integer winding number like parameters. The corresponding (but not identical) degrees
of freedom of the folded string are the number of foldings and the number of so-called bend points. The folded
three-spin rigid string of [10] needs to have at least one bend-point. In the case of the two-spin folded string it
is known that the parameter in Eq. (6) counts the number of foldings [20,21] but it is not obvious how bend
points would manifest themselves on the gauge theory side. A detailed understanding of the nature of the operators
studied forg < B.(x) and their relation to semi-classical string states requires an exact solution of the integral
equation (22) and we hope to report on this in the future [30]. An exact expression for the resolvent associated with
the density of Bethe rootg: ; }’;1:1 would not only give us access to the one-loop anomalous dimension of our
gauge theory operators but also to the infinite set of conserved higher charges [22]. In this connection it should be
mentioned that one might envisage a more direct way of comparing gauge theory and string theory results, namely
by directly deriving the relevant string sigma model from the spin chain. So far this has only been accomplished
for the simple case of th8U(2) sub-sector of th&O(6) integrable spin chain [31]. Another interesting line of
investigation which has also only been pursued in a sub-sector not including the operators considered here is the
derivation of the dilatation operator to higher loop orders [3,32,33] and the formulation of the corresponding Bethe
ansatz [34].
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