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ABSTRACT Biofilm infections exhibit high tolerance against antibiotic treatment.
The study of biofilms is complicated by phenotypic heterogeneity; biofilm subpopu-
lations differ in their metabolic activities and their responses to antibiotics. Here, we
describe the use of the bio-orthogonal noncanonical amino acid tagging (BONCAT)
method to enable selective proteomic analysis of a Pseudomonas aeruginosa biofilm
subpopulation. Through controlled expression of a mutant methionyl-tRNA synthe-
tase, we targeted BONCAT labeling to cells in the regions of biofilm microcolonies
that showed increased tolerance to antibiotics. We enriched and identified proteins
synthesized by cells in these regions. Compared to the entire biofilm proteome, the
labeled subpopulation was characterized by a lower abundance of ribosomal pro-
teins and was enriched in proteins of unknown function. We performed a pulse-
labeling experiment to determine the dynamic proteomic response of the tolerant
subpopulation to supra-MIC treatment with the fluoroquinolone antibiotic cipro-
floxacin. The adaptive response included the upregulation of proteins required for
sensing and repairing DNA damage and substantial changes in the expression of en-
zymes involved in central carbon metabolism. We differentiated the immediate pro-
teomic response, characterized by an increase in flagellar motility, from the long-
term adaptive strategy, which included the upregulation of purine synthesis. This
targeted, selective analysis of a bacterial subpopulation demonstrates how the study
of proteome dynamics can enhance our understanding of biofilm heterogeneity and
antibiotic tolerance.

IMPORTANCE Bacterial growth is frequently characterized by behavioral heteroge-
neity at the single-cell level. Heterogeneity is especially evident in the physiology of
biofilms, in which distinct cellular subpopulations can respond differently to stresses,
including subpopulations of pathogenic biofilms that are more tolerant to antibiot-
ics. Global proteomic analysis affords insights into cellular physiology but cannot
identify proteins expressed in a particular subpopulation of interest. Here, we report
a chemical biology method to selectively label, enrich, and identify proteins ex-
pressed by cells within distinct regions of biofilm microcolonies. We used this ap-
proach to study changes in protein synthesis by the subpopulation of antibiotic-
tolerant cells throughout a course of treatment. We found substantial differences
between the initial response and the long-term adaptive strategy that biofilm cells
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use to cope with antibiotic stress. The method we describe is readily applicable to
investigations of bacterial heterogeneity in diverse contexts.

KEYWORDS BONCAT, Pseudomonas aeruginosa, antibiotic resistance, biofilms,
proteomics

Compared to their planktonic counterparts, bacteria living in surface-associated
biofilms are more tolerant to a variety of stresses (1). Of clinical importance is the

increased antibiotic tolerance of biofilms, which impedes elimination of chronic infec-
tions. Phenotypic tolerance is distinct from genotypic resistance, though the evolution
of resistance can be promoted by the persistence of cells following treatment (2). The
opportunistic pathogen Pseudomonas aeruginosa serves as a model organism for study
of both biofilm physiology and antibiotic-tolerant infections. P. aeruginosa is a primary
contributor to chronic infections of the cystic fibrosis lung, where it forms biofilms that
are recalcitrant to the host immune system and antimicrobial therapies. Antibiotic
tolerance by these biofilm infections has been documented within the host (3) and
through in vitro biofilm studies (4).

Research on P. aeruginosa biofilms grown in vitro has revealed the importance of
spatial heterogeneity in their response to antibiotics; specific subpopulations survive
treatment while others do not (1, 5). For example, drug classes such as fluoroquinolones
(6), aminoglycosides (7), and �-lactams (8), which target active processes (DNA repli-
cation, translation, and peptidoglycan synthesis, respectively) kill growing cells within
the biofilm regions that have greater access to exogenous nutrients. Explanations for
the spatial segregation of these antibiotic responses include reduced penetration of
small-molecule antibiotics, decreased metabolic rates, and altered metabolism (1, 5).
Conversely, polymyxins and detergents, which disrupt cellular membranes, preferen-
tially kill dormant cells in the interiors of biofilm microstructures (6).

Measurements of mRNA or protein abundance can offer comprehensive and unbi-
ased views of a physiological response to antibiotics (9–11), but experimental chal-
lenges limit the investigation of tolerant biofilm subpopulations. Because only a subset
of cells exhibit tolerance, any analysis must distinguish tolerant cells from those that do
not survive treatment. Laser capture microdissection has been used to isolate biofilm
cells from spatially distinct regions of biofilms, and quantitative PCR (qPCR) and DNA
microarray analyses have been used to quantify differences in mRNA transcript abun-
dances between these regions (12, 13). This approach has been applied to the explo-
ration of biofilm heterogeneity in general, but not to the study of subpopulation-
specific responses to antibiotics. Global proteomic measurements have been widely
used to better understand biofilm physiology (14), but targeted selective approaches
have been limited.

An important recent advance has been the application of pulsed stable isotope
labeling with amino acids in cell culture (pSILAC) to quantify changes in protein
expression following adaptation of biofilm cells to challenge with antibiotics (15). Via
pulsed addition of an amino acid isotopolog, pSILAC can provide a means to distin-
guish, based on mass, proteins synthesized before and during the pulse (16). Chua et
al. characterized the long-term proteomic response of tolerant cells by treating biofilms
with the clinical polymyxin colistin for 8 h to allow nontolerant cells to die and then
labeling newly synthesized proteins with an extended (48-h) amino acid isotopolog
pulse. This approach ensured that labeled and identified proteins were synthesized
over the 2-day period by the tolerant subpopulation of interest. The results of this study
revealed the importance of type IV-mediated motility in the resistance of P. aeruginosa
biofilms to colistin.

To address the challenges posed by dynamic and heterogeneous responses, we
employed the bio-orthogonal noncanonical amino acid tagging (BONCAT) method for
selective proteomic analysis (17, 18). BONCAT relies on the incorporation into cellular
proteins of a noncanonical amino acid (ncAA) that bears a bio-orthogonal chemical
handle. Following incorporation, labeled proteins can be conjugated to an affinity tag
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and enriched from the pool of unlabeled proteins. Enriched proteins can be identified
and quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Like
pSILAC, BONCAT provides temporal selectivity; proteins synthesized during the ncAA
pulse are chemically distinct from preexisting proteins. However, a key advantage of
this enrichment-based method is that labeled proteins can be physically separated
from the rest of the proteome. MS-based protein identification is sensitive to the
complexity of the sample, such that proteins of low abundance often go unidentified;
therefore, reducing sample complexity can aid in the detection of proteins of interest.
We and others have shown the exquisite temporal sensitivity of BONCAT-based en-
richment in the context of dynamic proteome changes (19, 20). In bacteria, ncAA pulse
times as short as a few minutes have been used to quantify dynamic processes in Vibrio
harveyi (21, 22), Escherichia coli (23), and Bacillus subtilis (24), while extended pulse
times have been used to identify proteins synthesized at extremely low rates under
conditions of anaerobic survival in P. aeruginosa (25).

BONCAT labeling can target cellular subpopulations through the use of an ncAA that
is not incorporated into proteins by the endogenous translational machinery. Cells
expressing a mutant aminoacyl-tRNA synthetase (mRS) that has been engineered to
charge the ncAA to a cognate tRNA are labeled. Such noncanonical synthetases have
been developed for the methionine surrogates azidonorleucine (26) and 2-aminooctynoic
acid (27) and for the phenylalanine surrogate azidophenylalanine (28). By restricting
expression of the mRS to the cell type of interest, protein labeling can focus on a
subpopulation of cells within a complex heterogeneous system. Cell targeting can be
accomplished by genetically restricting the mRS gene to a species of interest (e.g.,
bacteria in the presence of host cells [27, 29]) or by placing mRS expression under
control of a cell-state-specific promoter (e.g., under reactive oxygen stress conditions
for E. coli [30]).

Here, we describe an adaptation of the BONCAT method for cell- and time-resolved
analysis of protein synthesis in heterogeneous bacterial biofilms. We direct cell-
selective labeling of proteins with the ncAA azidonorleucine (Anl) (see Fig. S1 in the
supplemental material) through controlled expression of a mutant form of the E. coli
methionyl-tRNA synthetase (designated NLL-MetRS [26]). By controlling expression of
NLL-MetRS with the promoter element for the stationary-phase sigma factor rpoS, we
restricted protein labeling to the inner P. aeruginosa biofilm subpopulation. We used
this approach to selectively analyze the dynamic proteomic response of biofilm cells
that are tolerant to ciprofloxacin.

(Parts of this work were conducted as B. M. Babin’s thesis project and are presented
in chapter 4 of his dissertation [31].)

RESULTS
The rpoS promoter enables cell-state-selective labeling. To selectively target

antibiotic-tolerant biofilm cells, we aimed to restrict BONCAT labeling by placing
NLL-MetRS expression under control of an endogenous, cell-state-selective promoter.
Because biofilm regions more tolerant to many antibiotics contain cells with decreased
metabolic rates, we reasoned that the use of a promoter whose activity increases
during planktonic stationary phase, when metabolic rates are similarly decreased,
would provide the desired selectivity. Cellular levels of the alternative sigma factor �38

are upregulated in response to a variety of stresses. In P. aeruginosa and other bacteria,
�38, which is encoded by the gene rpoS, is upregulated during the transition from
exponential to stationary phase during planktonic growth (32); we hypothesized that
the rpoS promoter would enable selective protein labeling.

We first evaluated the activity of the rpoS promoter in planktonic cells. We placed
the 1-kb region upstream of the endogenous rpoS gene 5= to gfp and transposed this
expression cassette to the Tn7 locus in P. aeruginosa PA14 to generate PrpoS:gfp
(Fig. 1A). Fluorescence imaging of PrpoS:gfp throughout growth from early exponential
phase (150 min following dilution) to late stationary phase (overnight) in LB medium
revealed the expected increase of promoter activity in high-cell-density, nutrient-
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depleted cultures (Fig. 1B). We observed cellular heterogeneity in the expression of
green fluorescent protein (GFP). At the early time point, only a small subpopulation of
cells was GFP positive. The GFP-positive fraction increased in early stationary phase, and
after overnight growth essentially all cells expressed GFP. In contrast, wild-type cells
exhibited no fluorescence (Fig. S2A), and when GFP expression was placed under
control of the strong, constitutive trc promoter (33), all cells were GFP positive at all
time points (Fig. S2B).

Encouraged by these results, we generated a strain in which expression of NLL-
MetRS was controlled by the rpoS promoter, again transposed to the Tn7 locus. The
protein was outfitted with an N-terminal six-histidine tag to allow for Western blotting
detection and a C-terminal translational fusion to mCherry, yielding PrpoS:nll-mc (Fig. 1A).
We first verified that this strain allows for Anl labeling under planktonic growth
conditions. We grew this strain from early exponential phase to stationary phase in FAB
minimal medium and treated samples of the culture with Anl for 15 min at three points
throughout growth (Fig. 1C). To provide a positive control, we transformed strain PA14
with a plasmid that enables expression of NLL-MetRS under control of the Para

arabinose-inducible promoter and treated the transformed cells with arabinose and Anl
during exponential phase (Fig. S2C). Consistent with our GFP measurements, Western
blotting showed growth phase-dependent expression of NLL-MetRS under control of
the rpoS promoter (Fig. 1D). To detect Anl incorporation, we took advantage of the
selective azide-alkyne cycloaddition (the “click” reaction). We treated cell lysates with
alkyne-carboxytetramethylrhodamine (alkyne-TAMRA) (Fig. S1) under copper-catalyzed
click conditions, separated proteins via SDS-PAGE, and imaged fluorescence. In early
exponential phase, when NLL-MetRS was not present, labeling was not detected.

FIG 1 Cell-state-selective labeling using the rpoS promoter. (A) P. aeruginosa was engineered to express GFP or an
NLL-MetRS–mCherry translational fusion under control of the endogenous rpoS promoter. Expression cassettes were
transposed to the Tn7 chromosomal locus. (B) Representative images of GFP fluorescence of the PrpoS:gfp strain throughout
growth in LB medium. GFP fluorescence (top) and a GFP– bright-field merge (bottom) are shown. The arrow indicates a
GFP-positive cell at the early time point. The times after 1:200 dilution into fresh medium are indicated above the panels.
(C) Optical density at 500 nm of PrpoS:nll-mc cells grown in liquid culture in minimal FAB medium. At each indicated time
point, an aliquot was removed and incubated with 1 mM Anl for 15 min. (D) Lysates were treated with alkyne-TAMRA and
separated via SDS-PAGE to visualize Anl incorporation. Coomassie staining of the same gel indicates equal protein loading.
Lysates were probed by Western blotting for the six-histidine tag on NLL-MetRS.

Babin et al. ®

September/October 2017 Volume 8 Issue 5 e01593-17 mbio.asm.org 4

 
m

bio.asm
.org

 on D
ecem

ber 18, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


Labeling was strongest in early stationary phase, when NLL-MetRS expression was
moderate, and low but detectable in stationary phase. For all conditions, Coomassie
staining was used to verify equal protein loading. The rate of Anl incorporation was
dependent on both the abundance of NLL-MetRS and the overall rate of protein
synthesis during the 15-min Anl pulse, so we interpreted the lower levels of Anl labeling
in stationary phase as a reflection of the decreased rates of protein synthesis in this
state.

Labeling and proteomic analysis of a biofilm subpopulation. To test for sub-
population targeting in biofilms, we cultured biofilms on glass surfaces under constant
medium flow in flow cells. Four-day-old live biofilms were analyzed via confocal
microscopy. SYTO 9 was used as a cell stain, and mCherry fluorescence was used to
locate cells expressing the NLL-MetRS–mCherry fusion (Fig. 2A). PrpoS:nll-mc exhibited
mCherry fluorescence only in the lower parts of biofilm structures, while a strain
expressing NLL-MetRS from a strong constitutive promoter (Ptrc:nll-mc) exhibited
mCherry fluorescence throughout the biofilm structures. Because only cells that express
NLL-MetRS can incorporate Anl, we expected that the difference in expression patterns
would allow for subpopulation-specific BONCAT labeling.

To visualize BONCAT labeling, we again cultured biofilms in flow cells for 4 days and
then treated them with Anl for 1.5 h. Anl incorporation was visualized by treating fixed
biofilms with aza-dibenzocyclooctyne (DBCO)-TAMRA (Fig. S1). The strained alkyne
structure present in DBCO allows for copper-free azide-alkyne cycloaddition and re-
moves the requirement for diffusion of the ligand, copper catalyst, and reductant

FIG 2 Targeted proteomic analysis of a biofilm subpopulation. (A) Detection of mCherry fluorescence (green) in live biofilms was used to locate cells expressing
the NLL-MetRS–mCherry fusion. Biofilms were counterstained with SYTO9 (magenta) immediately before imaging. (B) Following Anl treatment, BONCAT labeling
in biofilms was visualized by treating fixed biofilms with DBCO-TAMRA (green). Biofilms were counterstained with SYTO9 (magenta). Colocalization of
fluorescent signals is displayed in white. For panels A and B, cross-sections were reconstructed from confocal image stacks. (C) Proteins identified following
BONCAT enrichment from PrpoS:nll-mc and Ptrc:nll-mc strains. (D) Quantification of relative protein abundances following enrichment from both strains.
Ribosomal proteins are shown in orange. Proteins discussed in the text are indicated by gene name. The complete set of LFQ values, ratios, and adjusted
P values is provided in Data Set S1. (E) Spatial distribution of GFP expression (green) under control of the rpoS or algP promoters in live biofilms. Biofilms were
counterstained with SYTO62 (magenta).
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needed for conjugation of alkyne-TAMRA. Cells were counterstained with SYTO 9
(Fig. 2B). As expected, we observed similar patterns in Anl labeling as for NLL-MetRS
expression. PrpoS:nll-mc incorporated Anl predominantly in the lower parts of biofilm
structures, and Ptrc:nll-mc incorporated Anl throughout the entirety of the biofilm.
Wild-type cells exhibited minimal background fluorescence, likely due to nonspecific
interactions between DBCO-TAMRA and the cells.

To evaluate our ability to detect proteins preferentially expressed by the labeled
subpopulation, we compared proteomes enriched from Ptrc:nll-mc and PrpoS:nll-mc
strains. To obtain adequate protein yields, biofilms of each strain were grown for 4 days
in silicone rubber tubing and treated with Anl for 1.5 h before cells were collected and
lysed. We verified Anl incorporation by treating cell lysates with alkyne-TAMRA and
analyzing TAMRA fluorescence via SDS-PAGE (Fig. S3A). We observed a statistically
significant increase in fluorescence for Ptrc:nll-mc and PrpoS:nll-mc samples compared to
a methionine-treated control (P � 0.01 for all) (Fig. S3B). To enable enrichment of
Anl-labeled proteins, we treated lysates with DBCO–sulfo-biotin (Fig. S1). Western blot
detection using streptavidin revealed substantial biotinylation of Anl-labeled proteins
and three bands in the methionine-treated control, likely corresponding to endoge-
nously biotinylated proteins (Fig. S3C). Three of four Anl-treated samples showed a
significant increase in biotinylation (P � 0.05) (Fig. S3D).

Anl-labeled proteins were enriched on streptavidin beads and analyzed via LC-MS/
MS. We detected 908 proteins among two replicates from each strain, with fewer
identifications from the PrpoS:nll-mc strain (726 [80%]) (Fig. 2C). Based on in-gel fluo-
rescence and Western blot detection (Fig. S3A to D), Anl incorporation was not lower
in these samples, so the decreased number of identified proteins from the PrpoS:nll-mc
samples was likely due to the targeted analysis of a subset of biofilm cells. We
quantified relative abundances of proteins identified from both strains via label-free
quantification (LFQ) and found the abundance levels of 15 and 24 proteins to be at least
2-fold increased or decreased in the PrpoS:nll-mc strain, respectively (Fig. 2D; Tables S1
and S2). Full proteomic results from this experiment are provided in Data Set S1.

We hypothesized that the subpopulation labeled in the PrpoS:nll-mc strain would
exhibit decreased metabolic rates. We looked for differences in ribosome synthesis and
found that ribosomal proteins were significantly less abundant in samples enriched
from the PrpoS:nll-mc strain (P � 0.05). The median relative abundance of 36 quantified
ribosomal proteins was 1.7-fold lower in PrpoS:nll-mc samples than in the Ptrc:nll-mc
samples (Fig. S3E). Furthermore, the protein with the lowest relative abundance in the
PrpoS:nll-mc samples was the nonessential ribosomal protein RpmC (protein L29 of the
60S subunit; 22-fold less abundant). These results are consistent with measurements
showing greater translational activity in the upper regions of flow cell biofilms (34) and
the higher levels of transcripts for ribosomal components found in highly metabolically
active versus less-active cells within colony biofilms (13).

Proteins with known functions found to be enriched in the PrpoS:nll-mc samples
included those involved in antibiotic resistance, stress protection, and alginate regu-
lation (Fig. 2D). The lytic transglycosylase MltF (accession number PA14_15720), was the
protein most enriched in the PrpoS:nll-mc subpopulation. MltF and other transglycosy-
lases involved in peptidoglycan remodeling have been implicated in resistance to the
�-lactams piperacillin, cefotaxime, and ceftazidime, though there are conflicting reports
on the effects of mltF disruption on MICs (35,36). Biofilm resistance to �-lactams has
been linked previously to upregulation of the �-lactamase AmpC in peripheral cells in
response to antibiotic treatment (8). The identification of MltF upregulation in the
absence of antibiotic stimulation and within the biofilm interior supports a comple-
mentary approach to tolerance in which cells are preemptively prepared for antibiotic
stress.

We found the starvation factor Dps to be significantly more abundant in the
PrpoS:nll-mc enrichment experiment. Dps is a global DNA remodeling protein that
confers protection against a variety of stresses, including nutrient limitation, oxidative
stress, UV irradiation, and others (37,38). In E. coli, dps transcription is RpoS dependent,
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and Dps is among the most abundant proteins in stationary-phase cells (39). The higher
abundance of Dps in the biofilm interior is consistent with the expected nutrient
deprivation of cells in this region.

We also observed the DNA binding protein AlgP to be significantly more abundant
in the PrpoS:nll-mc enrichment. AlgP is a regulator reported to be involved in the mucoid
phenotype and in the synthesis of the exopolysaccharide alginate (40), though its
regulatory role may be more general. AlgP contains a histone-like domain, and immu-
nostaining combined with electron microscopy has revealed association of AlgP with
nucleoid fibril structures (41), a finding reminiscent of other histone-like bacterial
proteins that play roles in nucleoid architecture and global regulation (42). Because
AlgP has not been reported to be specifically expressed in biofilms or in slow-growing
cells, we chose this protein to validate the ability of our targeted proteomics approach
to provide information about region-specific protein expression. We grew biofilms from
a strain that expresses GFP under control of the algP promoter (PalgP:gfp). After 4 days
of growth, GFP fluorescence in PalgP:gfp biofilms was visualized via confocal microscopy.
As predicted by our proteomic measurements, expression from the algP promoter was
restricted to cells within the biofilm interior (Fig. 2E). This pattern of expression
matched the localization of GFP fluorescence in PrpoS:gfp biofilms (Fig. 2E) and the
localization of NLL-MetRS–mCherry expression (Fig. 2A) and Anl labeling (Fig. 2B)
observed in PrpoS:nll-mc biofilms.

As a caveat, we note that the RpoS protein itself was equally abundant in the
PrpoS:nll-mc and Ptrc:nll-mc samples. The design of the expression cassette in PrpoS:nll-mc
places NLL-MetRS under transcriptional control of any regulatory regions that lie 1 kb
upstream of the endogenous rpoS gene. However, much of the control of RpoS protein
levels is known to be posttranscriptional, depending on the action of sRNAs, modified
translation rates, and tuned degradation (43). Additionally, NLL-MetRS was fused to
mCherry, which may increase its intracellular stability and further disconnect levels of
the mutant synthetase from levels of RpoS itself. We conclude that PrpoS:nll-mc cells
with high NLL-MetRS abundance are not necessarily cells with high RpoS abundance.
However, our imaging results from planktonic and biofilm growth states showed that
the PrpoS:nll-mc strain can be used to target proteomic analysis to the cellular subpop-
ulation of interest.

BONCAT enrichment of proteins synthesized during ciprofloxacin treatment.
To identify the subpopulation-specific response to ciprofloxacin, we designed an
experiment to capture dynamic changes in the proteome throughout the course of
antibiotic challenge. A previous study using fluorescent imaging of biofilms treated
with ciprofloxacin showed a progression of cell death over the course of 13 h (6). Cell
death, visualized by propidium iodide staining, began between 4 and 9 h of treatment
and was restricted to peripheral regions of biofilm microstructures. Protein synthesis,
measured by expression of an unstable GFP variant, continued in interior biofilm
populations even after 13 h of treatment. We sought to investigate the set of proteins
made by biofilm cells surviving in the presence of ciprofloxacin. We replicated this time
course of antibiotic challenge by treating 4-day-old PrpoS:nll-mc biofilms with 60 �g/ml
ciprofloxacin. To achieve temporal selectivity, we pulse-labeled biofilms with Anl at 0,
4, or 13 h after ciprofloxacin was added. Each pulse was for 1.5 h to distinguish proteins
synthesized during this short pulse from the preexisting proteome. To serve as a
no-ciprofloxacin control, we also labeled untreated biofilms for 1.5 h with Anl (Fig. 3A).

Given the evidence that the PrpoS:nll-mc strain targets labeling to cells in the biofilm
regions known to tolerate ciprofloxacin, we expected that the majority of cells incor-
porating Anl would remain alive throughout treatment. We tracked the number of
viable cells recovered from biofilms throughout the time course of treatment and found
two stages of killing (Fig. 3B). Compared to untreated biofilms, those treated for 1.5 or
5.5 h both exhibited an approximately 50-fold loss in viable cells, while those treated
for 14.5 h exhibited an approximately 450-fold loss. Treatment with Anl had no effect
on the number of viable cells in untreated biofilms (P � 0.38, Welch’s t test). To quantify
Anl incorporation in ciprofloxacin-treated biofilms, we treated lysates with alkyne-
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TAMRA and analyzed fluorescence via SDS-PAGE (Fig. 3C and D). Strikingly, total Anl
incorporation decreased less than 2-fold throughout the course of ciprofloxacin treat-
ment. Even after 14.5 h of treatment, when only 0.2% of biofilm cells remained viable,
the level of Anl incorporation by surviving cells (as measured by the ratio of TAMRA
fluorescence to Coomassie staining in protein gels) was similar to that observed for
untreated cells. In this type of experiment, total Anl incorporation depends on the
number of cells expressing NLL-MetRS and the relative rates of protein synthesis and
protein degradation in these cells during each 1.5-h Anl pulse. We note that in-gel
fluorescence measurements of Anl incorporation cannot distinguish these contributing
factors. Together, these results implied that while a majority (99.8%) of biofilm cells
died over 14.5 h, the number of cells susceptible to Anl labeling remained nearly
constant during this period.

We performed BONCAT enrichment on lysates from each experimental condition
(performed in triplicate) and identified proteins by using LC-MS/MS. We identified more
than 1,200 proteins among all runs. Protein abundances, estimated by LFQ, were well
correlated among replicates for each time point (Fig. 3E). We used principal component
(PC) analysis to visualize the variance among replicates and experimental conditions
(Fig. 3F) and found that biological replicates clustered with one another and that

FIG 3 BONCAT analysis of protein synthesis during ciprofloxacin treatment. (A) Experimental timeline of biofilm treatment and
proteome labeling. Biofilms were grown in silicone rubber tubing for 4 days and then treated with 60 �g/ml ciprofloxacin
(gray). Control biofilms were untreated. For each condition, biofilms were treated with Anl at the designated time point for
1.5 h (cross-hatched portion), harvested, and lysed. (B) Survival of biofilm cells following exposure to ciprofloxacin for the
indicated treatment time and to 1 mM Anl as indicated. (C) Visualization of Anl incorporation in lysates treated with
alkyne-TAMRA. Coomassie staining was used to verify equal protein loading. (D) Anl incorporation was quantified by dividing
the TAMRA fluorescence by the Coomassie intensity for four gel regions (means � standard deviations; n � 4). Welch’s t-test
results are indicated: *, P � 0.05; **, P � 0.01. (E) Spearman rank correlation coefficients for protein LFQ values, calculated
among all MS runs. (F) The top two principal component weights for each MS run. The percent variance explained by each
component is shown in parentheses. (G) Overlap of significantly changed or uniquely identified proteins (down- and
upregulated proteins) at each time point throughout ciprofloxacin treatment.
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ciprofloxacin-treated samples were separated from the untreated control samples. For
each time point, we compared protein LFQ values in the treated samples and the
no-ciprofloxacin control, which yielded ratios for each protein that represented its
relative abundance (e.g., up- or downregulation) in treated and untreated samples.
Consistent with the correlation analysis, fewer proteins were significantly changed
under the 1.5-h treatment condition (73 proteins) than under the 5.5-h treatment (187
proteins) or 14.5-h treatment (204 proteins) (Fig. 3G). Correlation, PC, and relative
abundance analysis results were consistent with the classification of the proteomic data
into two subgroups: (i) a smaller group of proteins whose synthesis changed immedi-
ately upon ciprofloxacin exposure, and (ii) a larger group of late response proteins,
many of which were shared between the 5.5-h and 14.5-h groups.

For subsequent analyses, we divided proteins identified at each time point into
subsets of groups significantly more or less abundant in the treated versus untreated
samples. Each group included proteins whose relative abundances were quantified
(fold change of �2 and false-discovery rate [FDR] adjusted P value of �0.05), as well as
proteins identified under one condition (i.e., found in at least two of three replicates)
but not identified under the other (i.e., not found in any replicates). Full proteomic
results are listed in Data Set S2.

The dynamic proteomic response to ciprofloxacin. Based on total Anl incorpo-
ration, protein translation rates were reduced in the 5.5- and 14.5-h samples. To test
whether this decrease could be explained by changes in ribosome expression, we
examined the relative abundance of ribosomal proteins at each time point compared
to those for the no-ciprofloxacin control (Fig. 4A). Ribosomal protein abundances were
essentially unchanged after 1.5 h of treatment but decreased more than 1.5-fold after
5.5 and 14.5 h of treatment. Interestingly, the nonessential ribosomal protein RpmJ (L36
of the 50S subunit) was substantially upregulated at each of the later time points. We
also found a significant decrease in the cell division protein FtsZ under all ciprofloxacin-
treated conditions (Fig. 4B). Together, these findings suggest that translation rates and
cell division decrease upon ciprofloxacin exposure.

We next compared our results to known responses of P. aeruginosa to ciprofloxacin.
The responses of planktonic P. aeruginosa to sub-MIC and supra-MIC ciprofloxacin
treatments (0.01 to 1 �g/ml) have been characterized via microarray and RNA sequenc-

FIG 4 Dynamic cellular responses to ciprofloxacin. (A) Box plots showing the distribution of ribosomal protein abundances for treated samples compared to
the untreated control. Each box indicates the second and third quartiles, and whiskers indicate the rest of the distribution. Values exceeding 1.5 times the
interquartile range are displayed as points. The nonessential ribosomal protein RpmJ is indicated. (B) Abundance of FtsZ in each sample (mean � standard
deviation; n � 3; FDR adjusted P values are designated: *, P � 0.05; ***, P � 0.001). (C to F) Heat maps indicating the median abundance ratio for each time
point compared to the untreated control for proteins involved in DNA damage sensing and repair (C), flagellum synthesis (D), purine metabolism (E), and central
carbon metabolism (F). *, P � 0.05 (FDR-adjusted P value). The color scale for abundance ratios is shown under panel C. Gray boxes indicate time points for
which that protein was not quantitated. Hatched orange boxes indicate proteins that were identified for that time point (in at least two replicates) but absent
from the untreated control. An example of raw abundance measurements for panel C is given in Fig. S4. The complete set of LFQ values, ratios, and adjusted
P values is provided in Data Set S2.
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ing measurements of transcript abundances (10, 44–46). While the designs of these
experiments differed, we found two genes identified in all studies that showed con-
sistent responses to ciprofloxacin. This core response comprises genes involved in the
SOS response: LexA and RecA. Ciprofloxacin inhibits DNA gyrase activity, causing DNA
damage during replication attempts. DNA damage leads to an induction of the SOS
response, characterized by depletion of the SOS repressor LexA and the consequent
upregulation of genes that alleviate DNA damage stress (47). We did not identify LexA
in any experiments, but we detected upregulation of the LexA target RecA, which binds
to DNA lesions. Of the proteins involved in DNA damage response and repair found in
our data, all were either significantly upregulated or uniquely identified for at least one
time point (Fig. 4C; Fig. S4). This set includes both subunits of DNA gyrase (GyrA and
GyrB), the direct target of ciprofloxacin, and proteins involved in sensing (RecA and
UvrA) and repairing (RecB, RecQ, and MutM) various types of DNA damage. The
identification of these proteomic changes validated the experimental approach and
suggests that our results represent bona fide physiological responses to ciprofloxacin.

As described above, early and late responses to ciprofloxacin differed in our data set.
In fact, only three proteins were significantly upregulated at all time points: GyrB, the
protein chaperone HscK, and the methylisocitrate lyase PrpB. These proteins typify
functional categories of proteins we found to be upregulated by ciprofloxacin chal-
lenge, namely, those involved in remediating DNA damage and other stresses and
proteins involved in central metabolism. The differences between early and late
responses are best exemplified by the contrasting behavior of proteins involved in
flagellar synthesis and purine metabolism. Protein components of flagella and flagellar
regulation were significantly upregulated at the early and middle time points of
ciprofloxacin treatment, including the immediate upregulation of FliC, FliM, and FlgM
(Fig. 4D). In contrast, many proteins involved in purine metabolism were upregulated
only at the 4.5- and 14.5-h time points (Fig. 4E). Of the proteins in the pathway for de
novo synthesis of IMP that we identified (PurBDEFHLMT), four of eight were significantly
upregulated in at least one of the later time points. PurA, required for conversion of IMP
to AMP, was likewise upregulated. The ribonucleotide reductase complex (NrdA and
NrdB) that generates deoxyribonucleotides from their ribonucleotide precursors was
also upregulated.

Finally, some of the largest changes we observed were the up- or downregulation
of proteins involved in central metabolism, particularly components of the citrate
(tricarboxylic acid [TCA]) cycle (Fig. 4F). Of particular interest was the differential
behavior of the aconitases and isocitrate dehydrogenases (ICDs). The P. aeruginosa
genome encodes two of each protein class (aconitases AcnA and AcnB and ICDs Icd and
Idh). We found AcnA to be significantly downregulated and AcnB to be significantly
upregulated in the later stages of treatment. Similarly, expression of Icd, the monomeric
ICD, was unchanged, while the dimeric Idh was the protein most upregulated at the
14.5-h time point (40-fold more abundant than in the untreated control).

DISCUSSION

Here, we introduced an adaptation of BONCAT for selective, time-resolved pro-
teomic analyses of phenotypically distinct subpopulations of cells in genotypically
uniform bacterial cultures. As an example, we showed that this method reveals distinct
patterns of protein synthesis by antibiotic-tolerant biofilm cells following extended
incubation with supra-MIC levels of ciprofloxacin. While the data reported here provide
guidance and motivation for future mechanistic studies, the most important result of
this work is the illustration of the power of BONCAT to resolve proteome dynamics in
space and time in phenotypically heterogeneous microbial systems. This method has
the potential to advance a variety of studies in the biofilm field.

Our observations provide evidence for both passive and active tolerance mecha-
nisms in biofilms. A critical factor known to influence bacterial tolerance to antibiotics
is metabolic rate; cells with lowered rates of transcription, translation, and cell division
can survive inhibition of these processes, which are essential for growing cells (48, 49).
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Prior to antibiotic exposure, cells in the biofilm interior had lower rates of ribosomal
protein synthesis and higher levels of the stationary-phase stress protein Dps, suggest-
ing that the region targeted by the rpoS promoter is populated by cells with stationary-
phase-like physiology and decreased metabolic rates. Ciprofloxacin exposure led to
reduced ribosome synthesis and downregulation of the cell division protein FtsZ,
indicating a shift by tolerant cells away from growth. Concurrent with the decrease in
ribosome synthesis, proteins important for responding to and repairing DNA damage
caused by ciprofloxacin (e.g., the SOS response) were upregulated. This analysis sug-
gested a coordinated shift away from active growth and toward surveillance and repair
of the effects of the stresses caused by treatment.

Although ribosome synthesis decreased, translation continued in tolerant cells, even
following extended ciprofloxacin treatment. After 14.5 h of antibiotic treatment, total
Anl incorporation decreased less than 2-fold compared to the untreated control. Colony
counts of viable cells showed a 99.8% decrease in cell numbers by the end of the time
course, while our imaging data showed that, in the absence of antibiotic, substantially
more than 0.2% of PrpoS:nll-mc biofilm cells expressed NLL-MetRS–mCherry and were
labeled by Anl. One explanation to resolve this apparent discrepancy is that not all cells
that are translationally active within treated biofilms can be cultured following biofilm
disruption. Cells that are viable but nonculturable (VBNC) are observed in diverse
bacterial systems and can be induced by nutrient starvation and oxygen limitation,
conditions characteristic of biofilm interiors (50). For example, planktonic E. coli cultures
treated with supra-MIC levels of ciprofloxacin have been shown to maintain membrane
potential and protein synthetic activity, despite log decreases in culturable cells (51).
BONCAT, as applied here, cannot differentiate translation by culturable cells, VBNCs, or
dying cells, but we suspect that the number of surviving cells may be larger than that
measured by colony counting.

The adaptive response of the P. aeruginosa biofilm subpopulation presented here
leads to interesting questions about the role of proteome remodeling in ciprofloxacin
tolerance. For example, upregulation of flagellar proteins is a hallmark of biofilm
dispersal that occurs as biofilms age (52) or in response to nutrient shifts (53). The
dispersal response is characterized by upregulation of the flagellar filament FliC, which
we found to be upregulated immediately in response to ciprofloxacin challenge. We
also found large changes in the abundance of proteins with roles in central carbon
metabolism. In this category, we found differential expression of enzymes with similar
catalytic functions, i.e., the ICDs Idh (upregulated) and Icd (unchanged) and the
aconitases AcnA (downregulated) and AcnB (upregulated). To our knowledge, broad
adjustments to central carbon metabolism in P. aeruginosa biofilms have not been
reported as a mechanism for ciprofloxacin tolerance. A recent study, however, identi-
fied the TCA metabolites fumarate and glyoxylate as key modulators of P. aeruginosa
susceptibility to the aminoglycoside tobramycin (54). Does the early upregulation of
flagellar proteins promote mobilization of biofilm cells? How do the changes to the
central carbon proteome affect the intracellular redox balance and intermediate me-
tabolite concentrations? What is the physiological benefit of the differential expression
of functionally redundant enzymes like the aconitases and ICDs? Dissecting the roles of
these proteins and others in the data set through focused genetic experiments and
metabolomics will lead to better understanding of these phenomena.

Study of the role of heterogeneity in bacterial physiology is hindered by the
difficulties of separating cell types of interest from their phenotypically distinct neigh-
bors. Because cell-selective BONCAT can be targeted using genetic regulatory ele-
ments, in principle the method is applicable to any genetically tractable organism. This
work describes methods for validating selective NLL-MetRS expression via a fluorescent
protein fusion, validating selective Anl incorporation via fixed cell imaging and SDS-
PAGE analysis, and for enriching and identifying proteins synthesized by a small
subpopulation of targeted cells. The BONCAT approach is readily adaptable to other
organisms and we expect these methods will be useful for the analysis of other
heterogeneous systems (e.g., planktonic persister cells or in vivo infections).
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MATERIALS AND METHODS
Strain construction. All strains used are listed in Table S3 and were generated using standard

cloning procedures. Enzymes were purchased from New England BioLabs. For chromosomal integration
into the Tn7 site, pUC18T mini-Tn7T was modified with the desired expression cassette, followed by
tetraparental conjugation to the PA14 host strain as previously described (55). Genomic DNA was
prepared using the GenElute bacterial DNA kit (Sigma-Aldrich). The 1-kb regions upstream of rpoS and
algP were amplified from P. aeruginosa genomic DNA. GFP-expressing cassettes contained the gene for
gfpmut3b cloned from pBK-mini-Tn7-gfp2 (56). The gene encoding the E. coli mutant methionyl-tRNA
synthetase was cloned from plasmid pJTN1 (29). A shuttle vector encoding arabinose-inducible expres-
sion of NLL-MetRS was created by cloning the gene from pJTN1 into pBAD18 (57) and then ligating the
fragment containing araC and Para:nll into pUCP24 (58) to generate pBADP-NLL. P. aeruginosa was
transformed by electroporation.

Media and growth conditions. Planktonic cultures were grown at 37°C with shaking. Liquid media
were LB (5 g yeast extract, 10 g tryptone, 10 g NaCl per liter), or FAB [2 g (NH4)2SO4, 6 g Na2HPO4 · 2H2O,
3 g KH2PO4, 3 g NaCl per liter] with 0.1 mM CaCl2, 1 mM MgCl2, and 1 ml/liter trace metals mix
(200 mg/liter CaSO4 · 2H2O, 200 mg/liter FeSO4 · 7H2O, 20 mg/liter MnSO4 · H2O, 20 mg/liter CuSO4 · 5H2O,
20 mg/liter ZnSO4 · 7H2O, 10 mg/liter CoSO4 · 7H2O, 12 mg/liter NaMoO4 · H2O, and 5 mg/liter H3BO3).
Carbon was supplied to FAB by addition of 0.05 g/liter glucose (for biofilms) or 5 g/liter glucose (for
planktonic cultures) (59). For confocal imaging, biofilms were grown in flow cells (1 by 4 by 40 mm;
Stovall) as previously described (60), but without bubble traps. Biofilms were grown at 37°C with a
constant flow rate of 0.03 ml/min. For proteomic analyses, biofilms were grown in silicone rubber tubing
(10-mm interior diameter, 20 cm long; McMaster-Carr) at 37°C with a constant flow rate of 0.5 ml/min,
as previously described (61). Loosely adherent biofilm cells were extracted by collecting media within
each tube and flushing with 0.9% NaCl. Tubing was cut into 1-cm pieces and vortexed in 0.9% NaCl to
remove remaining cells. All cells were combined. To count viable cells, cells were washed once with
phosphate-buffered saline (PBS) and serial dilutions were made from each sample, spotted onto LB agar,
and allowed to grow for 16 h at 37°C.

BONCAT labeling and enrichment. For planktonic cell labeling experiments, strains from overnight
cultures were diluted 1:100 into FAB medium with 5 g/liter glucose. At each time point, labeling was
initiated by the addition of 1 mM Anl (Iris-Biotech). The strain containing pBADP-NLL-MetRS was grown
in the presence of 50 �g/ml gentamicin and treated with 1 mM Anl and 20 mM arabinose. For all, after
15 min of incubation with Anl at 37°C with shaking, cells were pelleted at 4°C, washed once with ice-cold
0.9% NaCl, and frozen at �80°C. For biofilm experiments, flow was stopped and tubing was clamped. FAB
medium with 0.05 g/liter glucose and 1 mM Anl was injected by syringe, and biofilms were incubated
for 1.5 h at 37°C. For ciprofloxacin-treated samples, 60 �g/ml ciprofloxacin was included in the labeling
medium. For proteomic analysis, cells were collected from tubing as described above, pelleted, and
frozen at �80°C.

All samples were lysed by resuspension in lysis buffer (100 mM Tris-HCl [pH 8], 4% SDS). Lysates were
sonicated with a microtip probe for 30 s at a setting of 20% (Qsonica). For Western blot detection of
NLL-MetRS, 10 �g of each lysate was separated by SDS-PAGE, transferred to nitrocellulose (GE Health-
care), and probed with penta-His Alexa Fluor 488 (Qiagen). For fluorescence detection of Anl-labeled
proteins, lysates were incubated with 5 �M alkyne-TAMRA (Click Chemistry Tools), 100 �M CuSO4,
500 �M Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA; Click Chemistry Tools), 5 mM aminoguani-
dine hydrochloride, and 5 mM sodium ascorbate for 15 min at room temperature (62). The mixtures were
then precipitated with water, methanol, and chloroform and washed twice with methanol. TAMRA-
labeled lysates were separated via SDS-PAGE (NuPAGE Novex 4-to-12% bis-Tris gels; Thermo Fisher
Scientific) and imaged on a Typhoon gel imager (GE Healthcare). Gels were stained with colloidal blue
(Life Technologies, Inc.) or Instant-Blue (Expedeon) Coomassie stains to verify equal protein loading.

For all enrichments, cysteines were reduced by addition of 10 mM dithiothreitol (DTT) for 20 min at
room temperature, and free thiols were alkylated by addition of 100 mM chloroacetamide for 30 min in
the dark. For the comparison between PrpoS:nll-mc and Ptrc:nll-mc biofilms, 0.5 mg of protein lysate per
sample was treated with 12 �M DBCO–sulfo-biotin (Click Chemistry Tools) in 0.5 ml PBS (137 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) for 15 min at room temperature. Proteins were
precipitated with acetone at �20°C and resuspended in PBS, 0.3% SDS. A small sample (~20 �g) of each
treated lysate was separated by SDS-PAGE, transferred to nitrocellulose, and probed for biotin conju-
gation with streptavidin-Alexa Fluor 488 (Thermo Fisher Scientific). The streptavidin UltraLink resin
(Pierce Biotechnology) was washed twice with PBS and added to biotinylated lysates, and this mixture
was incubated overnight at 4°C. Resin was transferred to microcentrifuge spin columns (Pierce Biotech-
nology) and washed twice with 1% SDS in PBS and once with 0.1% SDS in PBS. Proteins were eluted by
incubation with 1 mM biotin at 65°C for 20 min. Eluted proteins were separated via SDS-PAGE and
subjected to in-gel digestion coupled with LC-MS (GeLCMS).

For the comparison between ciprofloxacin-treated samples, lysates were reduced and alkylated as
described above. For each sample, approximately 0.5 mg of protein in 0.5 ml of PBS was incubated with
50 �l of a DBCO-agarose bead 50% slurry (Click Chemistry Tools) for 2.5 h at room temperature. Beads
were washed extensively in gravity flow columns (Bio-Rad) with 40 ml (8 volumes of 5 ml) each of (i) PBS,
0.8% (wt/vol) SDS; (ii) 8 M urea; and (iii) 20% (vol/vol) acetonitrile (ACN) in water. Beads were resus-
pended in 50 mM ammonium bicarbonate (AB) for on-bead tryptic digestion (see the LC-MS/MS section
for details).
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Imaging of planktonic cells. For imaging of planktonic cells, cell cultures were pelleted, washed in
PBS once, and resuspended in PBS. Cell suspensions were placed on 4% agarose pads, covered with a
coverslip, and imaged immediately.

Imaging of flow cell biofilms. For the flow cell biofilms, all treatments were applied via syringe. For
GFP imaging, flow was stopped and live biofilms were incubated with 0.05 �M SYTO 62 (Thermo Fisher
Scientific) for 30 min at 37°C. For mCherry imaging, flow was stopped and live biofilms were incubated
with 0.05 �M SYTO 9 (Thermo Fisher Scientific) for 30 min at 37°C. To visualize Anl incorporation, biofilms
were fixed by incubation with 3.7% formaldehyde for 30 min and permeabilized by incubation with 70%
ethanol for 5 min on ice. Fixed biofilms were washed with 0.9% NaCl, incubated with 100 mM
chloroacetamide in the dark for 30 min, and treated with 25 �M DBCO-TAMRA in PBS for 30 min. Biofilms
were washed extensively with PBS to remove excess dye and counterstained with 0.05 �M STYO 9.
Biofilms were imaged on a Leica TCS SPE confocal microscope with a 40� or 63� objective.

LC-MS/MS. For GeLCMS, gel lanes were cut into 8 pieces each and destained by alternating washes
with 50 �l each of 50 mM AB and a 1:1 mixture of 50 mM AB–ACN. Proteins were reduced by incubation
with 6.7 mM DTT in 50 �l 50 mM AB at 50°C for 30 min and alkylated by incubation with 37 mM
iodoacetamide in 50 �l 50 mM AB at room temperature for 20 min. Gel pieces were washed with 50 �l
each of 100 mM AB and acetonitrile. Proteins were digested first by addition of 300 ng endoproteinase
LysC in 50 �l of 100 mM Tris-HCl at 37°C for 4 h and then by addition of 150 ng of trypsin for 16 h at
37°C. Peptides were extracted by sequential washing with 50 �l each of 1% formic acid–2% acetonitrile,
1:1 acetonitrile-water, and 1% formic acid in acetonitrile. Peptides were desalted using C18 ZipTips (EMD
Millipore).

For on-bead digestion following BONCAT enrichment with DBCO-agarose, beads were incubated
with 100 ng trypsin in 100 �l 9:1 50 mM AB:acetonitrile for 18 h at 37°C. Supernatant was collected and
beads were washed twice with 100 �l 20% ACN to extract all peptides. Peptides were dried, passed
through HiPPR spin columns (Thermo Fisher Scientific) to remove residual SDS, and desalted with C18

ZipTips.
Liquid chromatography-mass spectrometry experiments were carried out essentially as previously

described (63). The rpoS versus trc experiments were performed on a nanoflow LC system, the EASY-nLC
1000, coupled to a hybrid linear ion trap Orbitrap classic mass spectrometer (Thermo Fisher Scientific)
equipped with a nanoelectrospray ion source (Thermo Fisher Scientific) with the following modifications:
for the EASY-nLC 1000 system, solvent A consisted of 97.8% H2O, 2% ACN, and 0.2% formic acid, and
solvent B consisted of 19.8% H2O, 80% ACN, and 0.2% formic acid. For the LC-MS/MS experiments,
digested peptides were directly loaded at a flow rate of 500 nl/min onto a 16-cm analytical high-
performange LC (HPLC) column (75 �m inner diameter) packed in-house with Reprosil-Pur C18AQ 3-�m
resin (120 Å pore size; Maisch, Ammerbuch, Germany). The column was enclosed in a column heater
operating at 45°C. After a 30-min loading time, the peptides were separated in a solvent gradient at a
flow rate of 350 nl/min. The gradient was as follows: 0 to 30% B (50 min) and then 100% B (10 min). The
Orbitrap was operated in data-dependent acquisition mode to automatically alternate between a full
scan (m/z 400 to 1,600) in the Orbitrap and a subsequent 10 collision-induced dissociation (CID) MS/MS
scans (the top 15 method) in the linear ion trap. CID was performed with helium as the collision gas at
a normalized collision energy of 35% and 30 ms of activation time. Ciprofloxacin experiments were
performed on a hybrid ion trap-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific) with the same
acquisition method, except the top 20 ions were selected for fragmentation. The analytical column for
this instrument was a PicoFrit column (New Objective, Woburn, MA) packed in-house with Reprosil-Pur
C18AQ 1.9-�m resin (120 Å pore size; Maisch, Ammerbuch, Germany), and the column was heated to
60°C. The peptides were separated with a 120-min gradient (0 to 30% B in 120 min) at a flow rate of
220 nl/min.

Proteomic data analysis. Raw files were searched using MaxQuant (64) against the P. aeruginosa
PA14 UniProt entries (5,886 sequences) and a contaminant database (246 sequences). Trypsin was
specified as the digestion enzyme, with up to two missed cleavages. Carbamidomethylation of cysteine
was set as a fixed modification, and protein N-terminal acetylation and methionine oxidation were
variable modifications. Protein abundances were estimated with MaxLFQ (65), and for each experiment
peptides were matched between runs. LFQ values were normalized and used to calculate abundance
ratios between samples and to estimate variance using the limma package in R version 3.2.2 (66). P values
were adjusted for false discovery by using the Benjamini-Hochberg procedure (67).

Spearman’s rank correlations were calculated between experimental replicates by using raw LFQ
values. Principal-component analysis was performed on log10-transformed LFQ values and included only
proteins that were identified in all 12 MS analyses (n � 291).

Software used for our analyses. Additional software packages that we used but that were not
mentioned above included the following. Data processing and statistical analysis were performed with
Python version 2.7.9 with NumPy version 1.9.2, SciPy version 0.15.1, Pandas version 0.16.1, and scikit-
learn version 0.17. Data were plotted with Matplotlib version 1.5.1 (68) and Seaborn version 0.8.0.
Microscopy and gel images were analyzed with ImageJ 64-bit version 2.0.0 (69). Figures were assembled
in Adobe Illustrator CS5.

Availability of data. The mass spectrometry proteomics data have been deposited with the
ProteomeXchange Consortium via the PRIDE (70) partner repository and assigned the data set identifiers
PXD007622 and PXD007261.

Selective Proteomic Analysis of Biofilm Subpopulations ®

September/October 2017 Volume 8 Issue 5 e01593-17 mbio.asm.org 13

 
m

bio.asm
.org

 on D
ecem

ber 18, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD007622
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD007261
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01593-17.
FIG S1, PDF file, 1.6 MB.
FIG S2, PDF file, 1.9 MB.
FIG S3, PDF file, 2.8 MB.
FIG S4, PDF file, 1.3 MB.
TABLE S1, XLSX file, 0.03 MB.
TABLE S2, XLSX file, 0.04 MB.
TABLE S3, DOCX file, 0.1 MB.
DATA SET S1, XLSX file, 0.2 MB.
DATA SET S2, XLSX file, 0.3 MB.

ACKNOWLEDGMENTS
We thank Geoff Smith and Roxana Eggleston-Rangel for assistance with liquid

chromatography-tandem mass spectrometry and Mustafa Fazli for assistance with flow
cell biofilm cultures. We appreciate the constructive feedback on the manuscript
provided by members of the D.K.N. and D.A.T. laboratories.

D.K.N. helped support this research with grants from the Howard Hughes Medical
Institute and NIH (5R01HL117328-03). T.T.-N. was supported by a grant from the Danish
Council for Independent Research (DFF–1323-00177). M.B.V.E. was supported by the
Netherlands Organization for Scientific Research (Rubicon fellowship 680-50-1407). The
Proteome Exploration Laboratory is supported by the Gordon and Betty Moore Foun-
dation through grant GBMF775, the Beckman Institute, and NIH S10RR029594. This
work was also supported by the Institute for Collaborative Biotechnologies through
grant W911NF-09-0001 from the U.S. Army Research Office.

The content of the information does not necessarily reflect the position or the policy
of the U.S. Government, and no official endorsement should be inferred.

REFERENCES
1. Fux CA, Costerton JW, Stewart PS, Stoodley P. 2005. Survival strategies of

infectious biofilms. Trends Microbiol 13:34 – 40. https://doi.org/10.1016/
j.tim.2004.11.010.

2. Levin BR, Rozen DE. 2006. Non-inherited antibiotic resistance. Nat Rev
Microbiol 4:556 –562. https://doi.org/10.1038/nrmicro1445.

3. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. 2000. High fre-
quency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung
infection. Science 288:1251–1254. https://doi.org/10.1126/science.288
.5469.1251.

4. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic
resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332.
https://doi.org/10.1016/j.ijantimicag.2009.12.011.

5. Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms.
Nat Rev Microbiol 6:199 –210. https://doi.org/10.1038/nrmicro1838.

6. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. 2008. Tolerance
to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms
is linked to metabolically active cells, and depends on the pmr and
mexAB-oprM genes. Mol Microbiol 68:223–240. https://doi.org/10.1111/
j.1365-2958.2008.06152.x.

7. Walters MC, III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. 2003.
Contributions of antibiotic penetration, oxygen limitation, and low met-
abolic activity to tolerance of Pseudomonas aeruginosa biofilms to cip-
rofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323.
https://doi.org/10.1128/AAC.47.1.317-323.2003.

8. Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N. 2004.
Dynamics and spatial distribution of beta-lactamase expression in Pseu-
domonas aeruginosa biofilms. Antimicrob Agents Chemother 48:
1168 –1174. https://doi.org/10.1128/AAC.48.4.1168-1174.2004.

9. Wu X, Held K, Zheng C, Staudinger BJ, Chavez JD, Weisbrod CR, Eng JK,
Singh PK, Manoil C, Bruce JE. 2015. Dynamic proteome response of
Pseudomonas aeruginosa to tobramycin antibiotic treatment. Mol Cell
Proteomics 14:2126 –2137. https://doi.org/10.1074/mcp.M115.050161.

10. Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE. 2006. Defin-

ing the Pseudomonas aeruginosa SOS response and its role in the global
response to the antibiotic ciprofloxacin. J Bacteriol 188:7101–7110.
https://doi.org/10.1128/JB.00807-06.

11. Park AJ, Krieger JR, Khursigara CM. 2016. Survival proteomes: the emerg-
ing proteotype of antimicrobial resistance. FEMS Microbiol Rev 40:
323–342. https://doi.org/10.1093/femsre/fuv051.

12. Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ. 2008. Localized
gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Mi-
crobiol 74:4463– 4471. https://doi.org/10.1128/AEM.00710-08.

13. Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K,
Stewart PS, Franklin MJ. 2012. Heterogeneity in Pseudomonas aeruginosa
biofilms includes expression of ribosome hibernation factors in the
antibiotic-tolerant subpopulation and hypoxia-induced stress response
in the metabolically active population. J Bacteriol 194:2062–2073.
https://doi.org/10.1128/JB.00022-12.

14. Khemiri A, Jouenne T, Cosette P. 2016. Proteomics dedicated to
biofilmology: what have we learned from a decade of research? Med
Microbiol Immunol 205:1–19. https://doi.org/10.1007/s00430-015-0423-0.

15. Chua SL, Yam JK, Hao P, Adav SS, Salido MM, Liu Y, Givskov M, Sze SK,
Tolker-Nielsen T, Yang L. 2016. Selective labelling and eradication of
antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa bio-
films. Nat Commun 7:10750. https://doi.org/10.1038/ncomms10750.

16. Schwanhäusser B, Gossen M, Dittmar G, Selbach M. 2009. Global analysis
of cellular protein translation by pulsed SILAC. Proteomics 9:205–209.
https://doi.org/10.1002/pmic.200800275.

17. Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM. 2006.
Selective identification of newly synthesized proteins in mammalian
cells using bioorthogonal noncanonical amino acid tagging (BONCAT).
Proc Natl Acad Sci U S A 103:9482–9487. https://doi.org/10.1073/pnas
.0601637103.

18. Dieterich DC, Lee JJ, Link AJ, Graumann J, Tirrell DA, Schuman EM. 2007.
Labeling, detection and identification of newly synthesized proteomes

Babin et al. ®

September/October 2017 Volume 8 Issue 5 e01593-17 mbio.asm.org 14

 
m

bio.asm
.org

 on D
ecem

ber 18, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

https://doi.org/10.1128/mBio.01593-17
https://doi.org/10.1128/mBio.01593-17
https://doi.org/10.1016/j.tim.2004.11.010
https://doi.org/10.1016/j.tim.2004.11.010
https://doi.org/10.1038/nrmicro1445
https://doi.org/10.1126/science.288.5469.1251
https://doi.org/10.1126/science.288.5469.1251
https://doi.org/10.1016/j.ijantimicag.2009.12.011
https://doi.org/10.1038/nrmicro1838
https://doi.org/10.1111/j.1365-2958.2008.06152.x
https://doi.org/10.1111/j.1365-2958.2008.06152.x
https://doi.org/10.1128/AAC.47.1.317-323.2003
https://doi.org/10.1128/AAC.48.4.1168-1174.2004
https://doi.org/10.1074/mcp.M115.050161
https://doi.org/10.1128/JB.00807-06
https://doi.org/10.1093/femsre/fuv051
https://doi.org/10.1128/AEM.00710-08
https://doi.org/10.1128/JB.00022-12
https://doi.org/10.1007/s00430-015-0423-0
https://doi.org/10.1038/ncomms10750
https://doi.org/10.1002/pmic.200800275
https://doi.org/10.1073/pnas.0601637103
https://doi.org/10.1073/pnas.0601637103
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


with bioorthogonal non-canonical amino-acid tagging. Nat Protoc
2:532–540. https://doi.org/10.1038/nprot.2007.52.

19. Bagert JD, Xie YJ, Sweredoski MJ, Qi Y, Hess S, Schuman EM, Tirrell DA.
2014. Quantitative, time-resolved proteomic analysis by combining
bioorthogonal noncanonical amino acid tagging and pulsed stable iso-
tope labeling by amino acids in cell culture. Mol Cell Proteomics 13:
1352–1358. https://doi.org/10.1074/mcp.M113.031914.

20. Howden AJ, Geoghegan V, Katsch K, Efstathiou G, Bhushan B, Boutureira
O, Thomas B, Trudgian DC, Kessler BM, Dieterich DC, Davis BG, Acuto O.
2013. QuaNCAT: quantitating proteome dynamics in primary cells. Nat
Methods 10:343–346. https://doi.org/10.1038/nmeth.2401.

21. Bagert JD, van Kessel JC, Sweredoski MJ, Feng L, Hess S, Bassler BL, Tirrell
DA. 2016. Time-resolved proteomic analysis of quorum sensing in Vibrio
harveyi. Chem Sci 7:1797–1806. https://doi.org/10.1039/C5SC03340C.

22. Feng L, Rutherford ST, Papenfort K, Bagert JD, van Kessel JC, Tirrell DA,
Wingreen NS, Bassler BL. 2015. A qrr noncoding RNA deploys four
different regulatory mechanisms to optimize quorum-sensing dynamics.
Cell 160:228 –240. https://doi.org/10.1016/j.cell.2014.11.051.

23. Kramer G, Sprenger RR, Back J, Dekker HL, Nessen MA, van Maarseveen
JH, de Koning LJ, Hellingwerf KJ, de Jong L, de Koster CG. 2009. Identi-
fication and quantitation of newly synthesized proteins in Escherichia
coli by enrichment of azidohomoalanine-labeled peptides with diagonal
chromatography. Mol Cell Proteomics 8:1599 –1611. https://doi.org/10
.1074/mcp.M800392-MCP200.

24. Sinai L, Rosenberg A, Smith Y, Segev E, Ben-Yehuda S. 2015. The molecular
timeline of a reviving bacterial spore. Mol Cell 57:695–707. https://doi.org/
10.1016/j.molcel.2014.12.019.

25. Babin BM, Bergkessel M, Sweredoski MJ, Moradian A, Hess S, Newman
DK, Tirrell DA. 2016. SutA is a bacterial transcription factor expressed
during slow growth in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A
113:E597–E605. https://doi.org/10.1073/pnas.1514412113.

26. Tanrikulu IC, Schmitt E, Mechulam Y, Goddard WA III, Tirrell DA. 2009.
Discovery of Escherichia coli methionyl-tRNA synthetase mutants for
efficient labeling of proteins with azidonorleucine in vivo. Proc Natl Acad
Sci U S A 106:15285–15290. https://doi.org/10.1073/pnas.0905735106.

27. Grammel M, Zhang MM, Hang HC. 2010. Orthogonal alkynyl amino acid
reporter for selective labeling of bacterial proteomes during infection.
Angew Chem Int Ed Engl 49:5970 –5974. https://doi.org/10.1002/anie
.201002050.

28. Grammel M, Dossa PD, Taylor-Salmon E, Hang HC. 2012. Cell-selective
labeling of bacterial proteomes with an orthogonal phenylalanine
amino acid reporter. Chem Commun 48:1473–1474. https://doi.org/10
.1039/c1cc14939c.

29. Ngo JT, Champion JA, Mahdavi A, Tanrikulu IC, Beatty KE, Connor RE, Yoo
TH, Dieterich DC, Schuman EM, Tirrell DA. 2009. Cell-selective metabolic
labeling of proteins. Nat Chem Biol 5:715–717. https://doi.org/10.1038/
nchembio.200.

30. Ngo JT, Babin BM, Champion JA, Schuman EM, Tirrell DA. 2012. State-
selective metabolic labeling of cellular proteins. ACS Chem Biol
7:1326 –1330. https://doi.org/10.1021/cb300238w.

31. Babin BM. 2016. Bio-orthogonal noncanonical amino acid tagging for se-
lective analysis of the Pseudomonas aeruginosa proteome. PhD thesis.
California Institute of Technology, Pasadena, CA. https://doi.org/10.7907/
Z94X55S1.

32. Xu KD, Franklin MJ, Park CH, McFeters GA, Stewart PS. 2001. Gene
expression and protein levels of the stationary phase sigma factor, RpoS,
in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol
Lett 199:67–71. https://doi.org/10.1111/j.1574-6968.2001.tb10652.x.

33. Amann E, Ochs B, Abel KJ. 1988. Tightly regulated tac promoter vectors
useful for the expression of unfused and fused proteins in Escherichia
coli. Gene 69:301–315. https://doi.org/10.1016/0378-1119(88)90440-4.

34. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B,
Stewart PS. 2004. Stratified growth in Pseudomonas aeruginosa biofilms.
Appl Environ Microbiol 70:6188 – 6196. https://doi.org/10.1128/AEM.70
.10.6188-6196.2004.

35. Cavallari JF, Lamers RP, Scheurwater EM, Matos AL, Burrows LL. 2013.
Changes to its peptidoglycan-remodeling enzyme repertoire modulate
beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents
Chemother 57:3078 –3084. https://doi.org/10.1128/AAC.00268-13.

36. Lamers RP, Nguyen UT, Nguyen Y, Buensuceso RN, Burrows LL. 2015.
Loss of membrane-bound lytic transglycosylases increases outer mem-
brane permeability and beta-lactam sensitivity in Pseudomonas aerugi-
nosa. MicrobiologyOpen 4:879 – 895. https://doi.org/10.1002/mbo3.286.

37. Nair S, Finkel SE. 2004. Dps protects cells against multiple stresses during

stationary phase. J Bacteriol 186:4192– 4198. https://doi.org/10.1128/JB
.186.13.4192-4198.2004.

38. Calhoun LN, Kwon YM. 2011. Structure, function and regulation of the
DNA-binding protein Dps and its role in acid and oxidative stress
resistance in Escherichia coli: a review. J Appl Microbiol 110:375–386.
https://doi.org/10.1111/j.1365-2672.2010.04890.x.

39. Almirón M, Link AJ, Furlong D, Kolter R. 1992. A novel DNA-binding
protein with regulatory and protective roles in starved Escherichia coli.
Genes Dev 6:2646 –2654. https://doi.org/10.1101/gad.6.12b.2646.

40. Ramsey DM, Wozniak DJ. 2005. Understanding the control of Pseudomo-
nas aeruginosa alginate synthesis and the prospects for management of
chronic infections in cystic fibrosis. Mol Microbiol 56:309 –322. https://
doi.org/10.1111/j.1365-2958.2005.04552.x.

41. Deretic V, Hibler NS, Holt SC. 1992. Immunocytochemical analysis of
AlgP (Hp1), a histonelike element participating in control of mucoidy in
Pseudomonas aeruginosa. J Bacteriol 174:824 – 831. https://doi.org/10
.1128/jb.174.3.824-831.1992.

42. Dorman CJ, Deighan P. 2003. Regulation of gene expression by histone-
like proteins in bacteria. Curr Opin Genet Dev 13:179 –184. https://doi
.org/10.1016/S0959-437X(03)00025-X.

43. Battesti A, Majdalani N, Gottesman S. 2011. The RpoS-mediated general
stress response in Escherichia coli. Annu Rev Microbiol 65:189 –213.
doihttps://doi.org/10.1146/annurev-micro-090110-102946.

44. Brazas MD, Hancock RE. 2005. Ciprofloxacin induction of a susceptibility
determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother
49:3222–3227. https://doi.org/10.1128/AAC.49.8.3222-3227.2005.

45. Linares JF, Gustafsson I, Baquero F, Martinez JL. 2006. Antibiotics as
intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci
U S A 103:19484 –19489. https://doi.org/10.1073/pnas.0608949103.

46. Murray JL, Kwon T, Marcotte EM, Whiteley M. 2015. Intrinsic antimicro-
bial resistance determinants in the superbug Pseudomonas aeruginosa.
mBio 6:e01603-15. https://doi.org/10.1128/mBio.01603-15.

47. Schlacher K, Goodman MF. 2007. Lessons from 50 years of SOS DNA-
damage-induced mutagenesis. Nat Rev Mol Cell Biol 8:587–594. https://
doi.org/10.1038/nrm2198.

48. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bac-
terial persisters. Cell 157:539 –548. https://doi.org/10.1016/j.cell.2014.02
.050.

49. Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat Rev
Microbiol 5:48 –56. https://doi.org/10.1038/nrmicro1557.

50. Oliver JD. 2010. Recent findings on the viable but nonculturable state in
pathogenic bacteria. FEMS Microbiol Rev 34:415– 425. https://doi.org/10
.1111/j.1574-6976.2009.00200.x.

51. Mason DJ, Power EG, Talsania H, Phillips I, Gant VA. 1995. Antibacterial
action of ciprofloxacin. Antimicrob Agents Chemother 39:2752–2758.
https://doi.org/10.1128/AAC.39.12.2752.

52. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseu-
domonas aeruginosa displays multiple phenotypes during development
as a biofilm. J Bacteriol 184:1140 –1154. https://doi.org/10.1128/jb.184.4
.1140-1154.2002.

53. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P. 2004.
Characterization of nutrient-induced dispersion in Pseudomonas aerugi-
nosa PAO1 biofilm. J Bacteriol 186:7312–7326. https://doi.org/10.1128/
JB.186.21.7312-7326.2004.

54. Meylan S, Porter CB, Yang JH, Belenky P, Gutierrez A, Lobritz MA, Park J,
Kim SH, Moskowitz SM, Collins JJ. 2017. Carbon sources tune antibiotic
susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle
control. Cell Chem Biol 24:195–206. https://doi.org/10.1016/j.chembiol
.2016.12.015.

55. Choi KH, Schweizer HP. 2006. Mini-Tn7 insertion in bacteria with single
attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161.
https://doi.org/10.1038/nprot.2006.24.

56. Koch B, Jensen LE, Nybroe O. 2001. A panel of Tn7-based vectors for
insertion of the gfp marker gene or for delivery of cloned DNA into
Gram-negative bacteria at a neutral chromosomal site. J Microbiol Meth-
ods 45:187–195. https://doi.org/10.1016/S0167-7012(01)00246-9.

57. Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation,
modulation, and high-level expression by vectors containing the arabi-
nose PBAD promoter. J Bacteriol 177:4121– 4130. https://doi.org/10
.1128/jb.177.14.4121-4130.1995.

58. West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ. 1994.
Construction of improved Escherichia-Pseudomonas shuttle vectors de-
rived from pUC18/19 and sequence of the region required for their

Selective Proteomic Analysis of Biofilm Subpopulations ®

September/October 2017 Volume 8 Issue 5 e01593-17 mbio.asm.org 15

 
m

bio.asm
.org

 on D
ecem

ber 18, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

https://doi.org/10.1038/nprot.2007.52
https://doi.org/10.1074/mcp.M113.031914
https://doi.org/10.1038/nmeth.2401
https://doi.org/10.1039/C5SC03340C
https://doi.org/10.1016/j.cell.2014.11.051
https://doi.org/10.1074/mcp.M800392-MCP200
https://doi.org/10.1074/mcp.M800392-MCP200
https://doi.org/10.1016/j.molcel.2014.12.019
https://doi.org/10.1016/j.molcel.2014.12.019
https://doi.org/10.1073/pnas.1514412113
https://doi.org/10.1073/pnas.0905735106
https://doi.org/10.1002/anie.201002050
https://doi.org/10.1002/anie.201002050
https://doi.org/10.1039/c1cc14939c
https://doi.org/10.1039/c1cc14939c
https://doi.org/10.1038/nchembio.200
https://doi.org/10.1038/nchembio.200
https://doi.org/10.1021/cb300238w
https://doi.org/10.7907/Z94X55S1
https://doi.org/10.7907/Z94X55S1
https://doi.org/10.1111/j.1574-6968.2001.tb10652.x
https://doi.org/10.1016/0378-1119(88)90440-4
https://doi.org/10.1128/AEM.70.10.6188-6196.2004
https://doi.org/10.1128/AEM.70.10.6188-6196.2004
https://doi.org/10.1128/AAC.00268-13
https://doi.org/10.1002/mbo3.286
https://doi.org/10.1128/JB.186.13.4192-4198.2004
https://doi.org/10.1128/JB.186.13.4192-4198.2004
https://doi.org/10.1111/j.1365-2672.2010.04890.x
https://doi.org/10.1101/gad.6.12b.2646
https://doi.org/10.1111/j.1365-2958.2005.04552.x
https://doi.org/10.1111/j.1365-2958.2005.04552.x
https://doi.org/10.1128/jb.174.3.824-831.1992
https://doi.org/10.1128/jb.174.3.824-831.1992
https://doi.org/10.1016/S0959-437X(03)00025-X
https://doi.org/10.1016/S0959-437X(03)00025-X
https://doi.org/10.1146/annurev-micro-090110-102946
https://doi.org/10.1128/AAC.49.8.3222-3227.2005
https://doi.org/10.1073/pnas.0608949103
https://doi.org/10.1128/mBio.01603-15
https://doi.org/10.1038/nrm2198
https://doi.org/10.1038/nrm2198
https://doi.org/10.1016/j.cell.2014.02.050
https://doi.org/10.1016/j.cell.2014.02.050
https://doi.org/10.1038/nrmicro1557
https://doi.org/10.1111/j.1574-6976.2009.00200.x
https://doi.org/10.1111/j.1574-6976.2009.00200.x
https://doi.org/10.1128/AAC.39.12.2752
https://doi.org/10.1128/jb.184.4.1140-1154.2002
https://doi.org/10.1128/jb.184.4.1140-1154.2002
https://doi.org/10.1128/JB.186.21.7312-7326.2004
https://doi.org/10.1128/JB.186.21.7312-7326.2004
https://doi.org/10.1016/j.chembiol.2016.12.015
https://doi.org/10.1016/j.chembiol.2016.12.015
https://doi.org/10.1038/nprot.2006.24
https://doi.org/10.1016/S0167-7012(01)00246-9
https://doi.org/10.1128/jb.177.14.4121-4130.1995
https://doi.org/10.1128/jb.177.14.4121-4130.1995
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


replication in Pseudomonas aeruginosa. Gene 148:81– 86. https://doi.org/
10.1016/0378-1119(94)90237-2.

59. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK,
Molin S. 2000. Quantification of biofilm structures by the novel com-
puter program COMSTAT. Microbiology 146:2395–2407. https://doi.org/
10.1099/00221287-146-10-2395.

60. Tolker-Nielsen T, Sternberg C. 2014. Methods for studying biofilm
formation: flow cells and confocal laser scanning microscopy. Methods
Mol Biol 1149:615– 629. https://doi.org/10.1007/978-1-4939-0473-0_47.

61. Alhede M, Bjarnsholt T, Jensen PØ, Phipps RK, Moser C, Christophersen
L, Christensen LD, van Gennip M, Parsek M, Høiby N, Rasmussen TB,
Givskov M. 2009. Pseudomonas aeruginosa recognizes and responds
aggressively to the presence of polymorphonuclear leukocytes. Micro-
biology 155:3500 –3508. https://doi.org/10.1099/mic.0.031443-0.

62. Hong V, Presolski SI, Ma C, Finn MG. 2009. Analysis and optimization of
copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew
Chem Int Ed Engl 48:9879–9883. https://doi.org/10.1002/anie.200905087.

63. Kalli A, Hess S. 2012. Effect of mass spectrometric parameters on peptide
and protein identification rates for shotgun proteomic experiments on
an LTQ-Orbitrap mass analyzer. Proteomics 12:21–31. https://doi.org/10
.1002/pmic.201100464.

64. Cox J, Mann M. 2008. MaxQuant enables high peptide identification
rates, individualized ppb-range mass accuracies and proteome-wide

protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10
.1038/nbt.1511.

65. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate
proteome-wide label-free quantification by delayed normalization and
maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics
13:2513–2526. https://doi.org/10.1074/mcp.M113.031591.

66. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015.
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/
nar/gkv007.

67. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc B Stat
Methodol 57:289 –300.

68. Hunter JD. 2007. Matplotlib: a 2D graphics environment. Comput Sci Eng
9:90 –95. https://doi.org/10.1109/MCSE.2007.55.

69. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25
years of image analysis. Nat Methods 9:671– 675. https://doi.org/10
.1038/nmeth.2089.

70. Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G,
Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H.
2016. 2016 update of the PRIDE database and its related tools. Nucleic
Acids Res 44:D447–D456. https://doi.org/10.1093/nar/gkv1145.

Babin et al. ®

September/October 2017 Volume 8 Issue 5 e01593-17 mbio.asm.org 16

 
m

bio.asm
.org

 on D
ecem

ber 18, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

https://doi.org/10.1016/0378-1119(94)90237-2
https://doi.org/10.1016/0378-1119(94)90237-2
https://doi.org/10.1099/00221287-146-10-2395
https://doi.org/10.1099/00221287-146-10-2395
https://doi.org/10.1007/978-1-4939-0473-0_47
https://doi.org/10.1099/mic.0.031443-0
https://doi.org/10.1002/anie.200905087
https://doi.org/10.1002/pmic.201100464
https://doi.org/10.1002/pmic.201100464
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1074/mcp.M113.031591
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1093/nar/gkv1145
http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/

	RESULTS
	The rpoS promoter enables cell-state-selective labeling. 
	Labeling and proteomic analysis of a biofilm subpopulation. 
	BONCAT enrichment of proteins synthesized during ciprofloxacin treatment. 
	The dynamic proteomic response to ciprofloxacin. 

	DISCUSSION
	MATERIALS AND METHODS
	Strain construction. 
	Media and growth conditions. 
	BONCAT labeling and enrichment. 
	Imaging of planktonic cells. 
	Imaging of flow cell biofilms. 
	LC-MS/MS. 
	Proteomic data analysis. 
	Software used for our analyses. 
	Availability of data. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

