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An overview of the synergy and crosstalk between
pentraxins and collectins/ficolins: their functional
relevance in complement activation

Ying Jie Ma1, Bok Luel Lee2 and Peter Garred1

The complement system is an innate immune defense machinery comprising components that deploy rapid immune responses

and provide efficient protection against foreign invaders and unwanted host elements. The complement system is activated upon

recognition of pathogenic microorganisms or altered self-cells by exclusive pattern recognition molecules (PRMs), such as

collectins, ficolins and pentraxins. Recent accumulating evidence shows that the different classes of effector PRMs build up a

co-operative network and exert synergistic effects on complement activation. In this review, we describe our updated view of the

crosstalk between previously unlinked PRMs in complement activation and the potential pathogenic effects during infection and

inflammation.
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INTRODUCTION

The complement system is an important part of humoral and
cellular innate immunity that mobilizes immune defense
mediators to handle microbes and endogenous waste
materials.1,2 The complement system consists of the following
three activation pathways: the classical pathway (CP), lectin
pathway (LP) and alternative pathway (AP). The CP is mainly
activated by C1q and associated serine proteases upon binding
to antibodies.3 The LP activation is primarily induced by
collagen-like humoral pattern recognition molecules (PRMs),
such as mannose-binding lectin (MBL), the ficolins, collectin-
10 (CL-10 or CL-L1), collectin-11 (CL-11 or CL-K1) or a
heteromeric complex of CL-10 and CL-11 (CL-LK).4–8

In contrast, the AP does not require antibodies or soluble
PRMs for its initiation and is often referred to as spontaneous
and indiscriminate because it does not differentiate between
self and non-self. Rather, initiation of the AP occurs by
spontaneous low-rate hydrolysis of the thioester in C3, which
is quickly amplified if an additional starting signal is provided
by the CP and LP (Figure 1).9 Thus, in many instances, the AP
may be regarded as an amplification loop.

Humoral PRMs and the complement system are indispen-
sable immune defense factors and are the first line of defense

against danger signals. However, the roles of humoral PRMs
have been fairly oversimplified in the separate pathways of the
complement system (Figure 1). Recently, the crosstalk between
different classes of humoral PRMs and its involvement in
complement cross-activation has been highlighted.8 In this
review, we provide an overview of the key humoral PRMs and
their potential co-operative interactions during complement
activation and amplification, and discuss the potential aspects
of both beneficial and deleterious effects in physiological and
pathological situations.

COLLECTINS, FICOLINS AND PENTRAXINS: ESSENTIAL

COMPONENTS FOR COMPLEMENT-MEDIATED IMMUNE

RESPONSES

Collectins are members of the C-type lectin superfamily that
recognize sugar moieties exposed on pathogens and facilitate
opsonophagocytosis.10 All collectins possess two structural
characteristics, a collagen-like domain and a carbohydrate-
recognition domain.11,12 In a conceptual manner, collectins can
be categorized as either classical or novel collectins, which
consist of MBL/surfactant protein-A/surfactant protein-D and
CL-10/CL-11/CL-12, respectively.13
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Among the different types of collectins, MBL/CL-10/CL-11
have been shown to be involved in LP complement activation
and regulation via association with the LP-associated serine
proteases (MASPs) and two non-enzymatic proteins named
small MBL-associated protein (sMAP) (MAp19) and MBL/
Ficolin-associated protein-1 (MAP-1) (MAp44).14 In contrast,
surfactant protein-A and surfactant protein-D are mainly

distributed throughout the airways and play a homeostatic
role in the regulation of lung surfactant but also function as
pulmonary opsonins to sequester pathogens by employing a
variety of mechanisms other than complement activation.15,16

Different from the other novel collectins, CL-12 was originally
defined as a scavenger receptor C-type lectin, because it shares
structural and functional similarities with the type A scavenger

Figure 1 General view of complement activation. The complement system comprises the following three activation pathways: the classical,
lectin and alternative pathways. The classical pathway is activated when the C1 complex (the molar ratio of C1q, C1r and C1s, 1:2:2)
binds immunoglobulins (mainly IgG clusters) that recognize pathogen-associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs). Activation of the lectin pathway is induced by PRMs, such as mannose-binding lectin, ficolins (ficolin-1,
-2 or -3) or collectins (collectin-10 or collectin-11), upon binding to PAMPs or DAMPs. The lectin pathway-initiating PRMs are found in
complexes with LP-associated serine proteases (MASPs), whereas C1q is found in complexes with the serine proteases C1r and C1s.
Activation of the classical and lectin pathways leads to cleavage of C4 and C2, and the formation of a C3 convertase (C4b∙C2a). Initiation
of the alternative pathway occurs by spontaneous hydrolysis of C3 in solution. Activated C3 leads to formation of the initial C3b, which
covalently bind to target surfaces. Surface-bound C3b allows factor B (fB) to bind. fB is then cleaved by the enzyme factor D (fD), leading
to the formation of the alternative C3 convertase (C3b∙Bb). The alternative C3 convertase is stabilized by the plasma protein properdin.
The C3 convertases cleave C3 into the opsonin C3b and the anaphylatoxin C3a. Activation of C3 also leads to the formation of the
classical and lectin pathway C5 convertase (C3b∙C4b∙C2a) and the alternative C5 convertase (C3b·Bb·C3b). C5 convertase cleaves C5 into
the anaphylatoxins C5a and C5b. Deposition of C5b onto a target initiates formation of the membrane attack complex (C5b-9, MAC) in the
late steps and leads to lysis of the target. The alternative pathway also works as an amplification loop for the classical and lectin pathways.
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receptor and collectins.17,18 As a transmembrane scavenger
receptor, CL-12, is mainly localized in vascular endothelial
cells19 and revealed pattern recognition characteristics in
response to Saccharomyces, as well as E. coli and S. aur-
eus.18,19 Recently, soluble CL-12 has also been detected and
shown to induce AP activation.20

Ficolins are a class of collagenous defense proteins
containing collagen-like domains and fibrinogen-like domains
(FDs).21,22 The three members of the ficolin family include
ficolin-1 (M-ficolin), ficolin-2 (L-ficolin) and ficolin-3
(H-ficolin or Hakata antigen). Ficolin-2 is mainly produced
in the liver, whereas Ficolin-3 is synthesized in both the liver
and lungs. Ficolin-2 and Ficolin-3 circulate in the blood with a
median concentration of 5 and 25 μgml− 1, respectively.23,24

Ficolin-1 is primarily expressed by cell types of myeloid origin
and is present in the blood at a relatively low level
(~0.3 μg ml− 1).25–27 Functionally, the ficolins recognize a wide
spectrum of different types of microorganisms via their FD and
have potentials to activate the LP to a different extent in
complex with LP-associated serine proteases via collagen-like
domain.28,29

Pentraxins are a superfamily of soluble PRMs characterized
by a cyclic multimeric structure.30 On the basis of the primary
structure of the subunit, the pentraxins are defined as short
pentraxins or long pentraxins. C-reactive protein (CRP or
pentraxin 1 (PTX1)) and serum amyloid P component (SAP or
PTX2) are the classical short pentraxins, whereas PTX3 was the
first identified long pentraxin. Both CRP and SAP are produced
by hepatocytes in response to inflammatory cytokine stimula-
tion and are the major acute phage reactants in human and
mouse, respectively. Unlike the short pentraxins, PTX3 is
expressed by a variety of cell types of extrahepatic origin, such
as macrophages, neutrophils, dendritic cells and endothelial
cells. Under normal conditions, PTX3 is hardly detectable
in human serum (o2 ngml− l), whereas its synthesis is
rapidly (6–8 h) and markedly (200–800 μg l− 1) upregulated in
response to inflammatory and infectious stimuli.31 The pen-
traxins share structural similarity with the C-terminal pentraxin
domain, whereas PTX3 contains a unique N-terminal region,
which has no sequence homology to any known proteins so
far.31 The pentraxins recognize different classes of molecular
patterns present on microorganisms, but also recognize
endogenous extracellular matrix proteins as well as structures
exposed on dying host cells.32 As a common functional feature,
the pentraxins interact with adaptive Fcγ receptors on hema-
topoietic cells upon target opsonization and increase phagocy-
tosis and acute inflammation. Furthermore, their interactions
with C1q also increase complement activation.33–35

SYNERGY BETWEEN PREVIOUSLY UNLINKED PRMS IN

PATTERN RECOGNITION AND COMPLEMENT

ACTIVATION

A hidden innate immune connection conserved from
arthropods to mammals
The biological functions of the complement system have been
shown to be elicited as a result of activation by three separate

and autonomous routes, of which the CP and LP require
distinctive soluble PRMs for complement activation on target
surfaces. In addition to the antibody (IgM or IgG cluster)-
dependent ‘classical’ activation, recent data have shown that the
CP is also initiated by C1q in conjunction with endogenous
pentraxins, such as CRP, SAP and PTX3.33,36,37 Antibodies are
secreted by B-cells that often undergo a lengthy stage of
differentiation and proliferation upon antigen stimulation
and are highly specific to certain antigens. In contrast,
pentraxins are swiftly and markedly activated at both systemic
and local tissue levels in response to microbial sensing and
inflammatory cytokines and broadly recognize wide spectrum
of different pattern moieties. Thus, pentraxin-mediated
complement activation is much more rapid and efficient
at the early stage of infection than antibodies, providing
immediate humoral and cellular immune responses against
danger signals.32 Evolutionally, pentraxins together with
complement components, such as C1q, are both ancient
immune elements and highly conserved in species ranging
from mammals, vertebrates and lizards to horseshoe crabs.38,39

Antibodies, particularly IgGs, are relatively recent evolutionary
immune mediators and are highly diverse among various
species but highly conserved in mammalian species. In this
context, it should be emphasized that the pentraxins possess
antibody-like functions, not only in the context of
C1q-mediated complement activation, but also in a variety of
humoral and cellular immune effector functions, such as
phagocytosis, endocytosis, inflammatory cytokine expression
and antibody-independent cellular cytotoxicity.

Nevertheless, the role of the short pentraxin CRP has been
rather controversial between both in vitro and in vivo findings
of its ability to assist in protection against certain pathogens,
especially toward Streptococcus pneumoniae and Salmonella
enterica. It has remained elusive because of the following
reasons. (1) The level of human CRP is highly elevated during
bacterial infection.40 Mice administered human CRP or human
CRP-transgenic mice that were infected with S. pneumoniae
(or S. enterica) had reduced bacteremia and increased survival
compared with controls.41–43 (2) In contrast, in vitro evaluation
did not reveal direct binding of purified CRP to most bacteria
including S. enterica,43,44 and CRP did not activate the CP of
complement in S. pneumoniae-infected mice.45 Finally, CRP is
not a major acute-phase protein in mice.46 Explanations for
these apparent contradictions in the in vivo role of CRP in
resistance to infection comes from studies in arthropod
models, such as the horseshoe crab, which relies entirely on
innate immune mechanisms and naturally induced defenses via
evolutionally conserved molecules such as CRP, which is an
important PRM in the hemolymph (horseshoe crab blood).47,48

Interestingly, these studies revealed apparent differences in CRP
in isolation and in the complex hemolymph. CRP recognizes a
wider range of bacteria in the presence of hemolymph than
when tested in isolation, and the enhanced binding of CRP and
its remarkable bactericidal ability are elicited by collaboration
with certain innate PRMs in the hemolymph, such as horse-
shoe crab (Tachypleus spp.) lectin and carcinolectin-5 (CL-5).49
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Previously, Ma and Lee et al. identified peptidoglycan
recognition proteins (PGRPs, and 1,3-β-D-glucan recognition
proteins (BGRPs) from insect hemolymph and characterized its
crucial role in the activation of the prophenoloxidase (proPO)
system (a major humoral defense reaction in arthropods).50

Several lines of evidence revealed that the arthropod proPO
system shares some similarities with the mammalian LP of the
complement system.51,52 Both the proPO system and the LP of
the complement system are proteolytic cascades comprising
various PRMs for recognition, serine proteases for response
and their inhibitors for regulation and terminators for
resolution.53 Moreover, the genes encoding PGRPs are highly
conserved in the sequences between insects and mammalian
species.54–57 Interestingly, in an attempt to further characterize
the human counterparts of these molecules and their functional
consequences, Ma and Lee et al. purified a PGRP and BGRP
from human serum and identified complement-related pro-
teins, specifically MBL and ficolin-2. A previous study revealed
that human PGRP and BGRP could also function as soluble
PRMs for peptidoglycan and 1,3-β-D-glucan, respectively.50

Altogether, these results have provided insights into the hidden
nature of an innate immune connection that may be highly
conserved from arthropods to mammals.

Ficolin:pentraxin heterocomplexes in complement activation
Many PRMs are evolutionally conserved from horseshoe crab
to human, indicating that these proteins are essential in innate
immunity.58,59 The human ficolins (ficolin-1, -2 and -3) have
been revealed to share ~ 35% homology with horseshoe crab
tachylectin-5s and CL-5s, which both harbor an FD.60,61 On
the basis of the studies in arthropods, Patricia et al. have
recently highlighted that such conserved innate PRMs have the
ability to build up potential crosstalk to synergize innate
immune defenses and found that CRP interacts with the
ficolins in human.49

Human CRP has been reported to interact with ficolin-2
(CL-5 homolog), thus allowing CRP to effectively recognize
and stabilize its anchorage onto certain bacteria that it does not
naturally recognize. This collaboration has been shown to
specifically enhance the recognition of S. enterica and activate
the LP of complement on the surface of this pathogen.
Previous research suggested that CRP may organize mutual
coordination with other PRMs to target a wide range of
bacteria and adapt to diverse pathogenic circumstances.49 This
hypothesis has been recently substantiated by several lines of
evidence from clinically important opportunistic pathogens
that have become major causes of mortality in immune-
compromised patients, such as Pseudomonas aeruginosa,62

Aspergillus fumigatus63 and Candida albicans.64 In one study,
the ficolin-2:CRP interaction prevails under local infection-
inflammation conditions with reduced pH and calcium levels,
which are common phenomenon in many inflammatory
infection-related diseases, such as acidosis, trauma-induced
infection, acute renal failure and intra-abdominal infection.
Interestingly, this interaction has been demonstrated to induce
powerful complement-mediated anti-microbial activity via

cross-activation of the CP and LP, which were previously
defined as independent of each other.62

PTX3 originated very early and even ascended to amphi-
bians, such as Xenopus laevis, and it is highly conserved
evolutionally. The PTX3 structure possesses a C-terminal
pentraxin domain coupled with a unique N-terminal region,
which has endowed PTX3 with different effector functions than
the short pentraxins, such as recognition of fungal pathogens,65

complement regulation,66–68 extracellular matrix deposition/
angiogenesis69,70 and tissue repair.71 In an attempt to better
understand the ligand specificity of ficolins toward fungal
pathogens, we found that ficolin-2 preferentially recognizes
1,3-β-D-glucan moiety in addition to the N-acetyl-glucosamine
moiety on A. fumigatus through its FD and subsequently
activates the LP of complement in association with
LP-associated serine protease-2. Interestingly, we also con-
firmed that serum ficolin-2 can interact with PTX3 and
demonstrated that ficolin-2 and PTX3 recruit each other in
response to an opportunistic fungal pathogen, A. fumigatus.
Functionally, this ficolin-2:PTX3 interaction leads to reciprocal
communication between the CP and LP, and eventually
results in boosting complement-mediated anti-fungal activity
via expansion of pattern recognition and complement
amplification.63 In agreement with our findings, a recent
shotgun proteomics analysis of the PTX3 complexes in patients
with sepsis also substantiated the presence and importance
of complement components including ficolin-2 in crosstalk
with PTX3.72

Aspergillus species are ubiquitous saprophytic molds
that cause devastating invasive fungal infections (invasive
aspergillosis) associated with a high mortality rate in immuno-
compromised hosts. Among the human pathogenic species, the
most common causative agent of human infections is
A. fumigatus.73 The non-redundant role of the complement
system in resistance to invasive aspergillosis has been well
documented in DBA/2N mouse models.74 Recently, in an
immunocompromised host, the LP was shown to be crucial
for complement initiation on A. fumigatus.75 Complement
deficiency increases susceptibility to A. fumigatus infection and
increased mortality rates have been observed in C5-knockout
mice.76,77 We and others have recently highlighted the
significance of ficolin-2-mediated anti-fungal activity in the
LP of complement activation or modulation of both pro-
and anti-inflammatory airway immune responses against
A. fumigatus challenge.63,78,79 Both ficolin-2 and ficolin-A
(ficolin-2 homolog in mice) have been shown to recognize
A. fumigatus, and it was recently shown that ficolin knockout
mice have increased fungal load compared with wild-type
mice.80 However, only ficolin-2 is capable of inducing the LP
of complement activation upon opsonization. In contrast,
ficolin-A has been shown to enhance adherence of the fungus
to A549 airway epithelial cells and modulate inflammation via
production of pro-inflammatory cytokines.78 Furthermore,
ficolin-A has also been shown to inhibit hyphae growth and
increase fungal killing by monocyte-derived macrophages and
neutrophils.79 Nevertheless, consistent with the previous
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structural determination of FD, both of the ficolins are
insensitive to Ca2+ but rather sensitive to an acidic environ-
ment (pH 5.7),81,82 which is common at the site of local
infection and often drops to as low as pH 5.5 during
inflammation.83 This finding is very consistent with the
observation of a pH-sensitive CRP:ficolin-2 interaction
reported by Zhang et al.62 These data suggest that infection-
induced local acidic conditions may be essential to optimize
ficolin opsonization at the early stage of infection and
inflammation against A. fumigatus. In agreement with those
in vitro findings, ficolin-2 was also found in bronchoalveolar
lavage fluids from the lungs of patients with invasive
aspergillosis. Alveolar ficolin-2 has also been demonstrated to
potentially modulate immune responses to A. fumigatus. These
results suggest that liver-expressed ficolin-2 may translocate to
the alveoli from the bloodstream.82 Therefore, in this respect,
it should be emphasized that migratory serum ficolin-2
may boost complement-mediated opsonophagocytosis and
modulate the anti-inflammatory cytokine profile at local sites
of pulmonary fungal infection. Furthermore, collaboration of
ficolin-2 with locally produced PTX3 may also provoke a
synergistic effect on complement-mediated immune responses.

An animal study has previously demonstrated that PTX3
plays a non-redundant role in resistance to opportunistic
fungal pathogens, A. fumigatus in particular. In vivo data
showed that ptx3− /− mice are highly susceptible to invasive
pulmonary aspergillosis, but this phenotypic defect can be
reversed by administration of recombinant PTX3, which has
been attributed to defective recognition of A. fumigatus conidia
by alveolar macrophages and dendritic cells.65,84 Consistently,
an in vitro study has shown that PTX3 enhances phagocytic
engulfment of conidia by neutrophils via FcγRII.85 In addition,
PTX3-opsonized A. fumigatus has been shown to activate the
CP of complement through association of C1q85 and cross-
activate the LP of complement through an interaction with
ficolin-2.63 In agreement with these findings, a single-
nucleotide polymorphism in PTX3 in homozygous haplotype
donor individuals was shown to be linked to an increased risk
of invasive aspergillosis in stem cell recipients of such donor
cells.86 These data suggest that PTX3 may play crucial roles in
resistance to invasive pulmonary aspergillosis.

Altogether, ficolin-2 and PTX3 play non-redundant roles in
resistance to invasive pulmonary aspergillosis. The crosstalk
between ficolin-2 and PTX3 is likely to provide a platform
for cross-activation of immune effector mechanisms, leading to
a synergistic effect at local sites of pulmonary infection/
inflammation. Ficolin-1, the only ficolin isoform expressed
by immune cells,26,27,87 has also been shown to interact with
CRP and PTX3.88–90 Zhang et al. reported that ficolin-1
interacts with CRP in a pH-sensitive manner, whereby
ficolin-1 switches structural conformation between its inactive
and active form during contact with CRP. Functionally,
ficolin-1 has been shown to regulate interleukin-8 production
both pre-infection and post-infection through transduction
of infection signals by G-protein-coupled receptor 43 at the
local site of infection/inflammation. These results suggest that

ficolin-1:CRP interaction functions as an immune recognition–
regulation circuit to prevent immune overactivation in a
pH-sensitive manner by recruitment of certain transmembrane
receptors on immune cells.89 In agreement with these findings,
we have found that the ficolin-1:PTX3 interaction may behave
in a manner similar to that of the ficolin-1:CRP interaction
upon variations in pH. We have demonstrated that PTX3
recognizes dying host cells, but it requires ficolin-1 to mediate
removal of the cells. Moreover, the complex formation
between ficolin-1 and PTX3 downregulates the release of
interleukin-8.90 These findings imply that heterocomplexes
and collaborative interactions between autonomous collagen-
like defense molecules and pentraxins appear to lead to
novel reciprocal trends of immune surveillance and effector
mechanisms that aid in the safe disposal of dying host cells,
whereby excessive inflammatory responses and tissue injury
may effectively be prevented.

MBL:pentraxin heterocomplexes in complement activation
Pentraxins recognize a number of microorganisms, including
bacteria, fungi and viruses,91 but do not bind C. albicans and
Burkholderia cepacia.65 In an unexpected twist, we have
observed that incubation of human serum with C. albicans
resulted in binding of pentraxins (PTX3 and SAP in particular,
but not CRP) to C. albicans. This observation implies that some
serum factors might enhance the docking of pentraxins on this
fungal pathogen, which has not been shown to be solely
recognized by pentraxins. We found that PTX3 or SAP do not
surveil alone but interact with other serum PRM to achieve
stable immune recognition complexes on certain fungal
pathogens. We also revealed that serum MBL contributes to
the recruitment of PTX3 or SAP on C. albicans upon binding.
MBL:PTX3 complex formation resulted in recruitment of C1q,
but this was not observed for MBL:SAP complexes. However,
both MBL:PTX3 and MBL:SAP complexes enhanced
complement-mediated opsonophagocytosis of C. albicans by
polymorphonuclear leukocytes.64 These findings suggest that
fungal infection might induce potential crosstalk between
previously unlinked serum PRMs for immune defense, which
provide two potential complement amplification mechanisms.
One mechanism consists of complexes comprising MBL, PTX3
and C1q, which amplify complement activation via the CP, and
the other involves MBL and SAP, which amplify complement
activation via an unknown mechanism.

CL-12:properdin crosstalk in complement activation
Decades of research have solidified the role of properdin as a
stabilizer of the AP C3 convertase C3bBb, but the properdin
protein was attributed a relatively nonspecific role.92

Previously, properdin has been shown to bind AP activator
surfaces strictly in a C3-dependent manner.93,94 However,
several lines of recent evidence also suggest that properdin
alone may provide a platform for the in situ assembly of the
C3bBb complex on target surfaces.95,96 Recently, we found that
membrane-anchored CL-12 might be cleaved in close vicinity
to the plasma membrane at its N terminus and circulate in
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normal human umbilical cord plasma at 55–121.4 ng ml− 1.
Furthermore, we have demonstrated that soluble CL-12
recruits properdin to target surfaces, thereby allowing AP
activation.20 Taken together, our results revealed that given a
platform via a co-operative immune response integrating
signals from another ‘sensory’ input, for instance soluble
PRM, properdin is able to mediate de novo C3 convertase
assembly and initiate complement activation on certain patho-
gens via recognition of specific target surfaces by its ‘sensory’
input. In this respect, this ‘sensory’ input manner seems to be
rather selective and specific, compared with the standard
manner of the AP of complement activation via a highly
reactive but non-discriminating nascent C3b. Therefore, we
envision that properdin plays a role in the AP of complement
activation not only by stabilizing preformed C3bBb but also
by providing a platform for de novo C3 convertase assembly
once surface-bound through co-operative recognition by the
humoral innate immune system. However, both mechanisms
probably require generation of nascent C3b for initiation.

Nevertheless, in support of our notion that different PRMs
might collaborate to provide a platform for construction of
multiple defense barriers via complement activation and
amplification, Nitai et al.97 recently reported crosstalk of
transmembrane CL-12 with the short pentraxin CRP in a
charge-dependent manner, whereby CL-12 triggers the
CRP-mediated CP of complement activation and propels
the subsequent amplification loop of complement through
properdin deposition. Consistent with our findings, these
results suggest that transmembrane CL-12 might not act alone
in properdin-driven complement amplification. However,
upon collaboration with other serum factors or immune
mediators, such as CRP, CL-12 seems to be either active or
deleterious due to complement crosstalk, which may trigger
and exacerbate pathological conditions.

Taken together, as the CP and LP of complement rely upon
soluble PRMs for initiation, the AP of complement may also be
initiated by specific recognition molecules via collaboration
with properdin. This soluble CL-12:properdin (or CRP)
collaboration and its involvement in complement activation
could be particularly effective against certain clinically relevant

pathogens, such as A. fumigatus, and may also be a comple-
mentary countermeasure to manipulate the crafty immune
evasion tactics that have been increasingly evolving in
pathogens.

PROTECTIVE VS PATHOGENIC EFFECTS OF

CO-OPERATIVE INTERACTIONS OF PRMS

As depicted above, many PRMs are evolutionally conserved,
and their potential crosstalk recently has been unveiled
(Table 1). To rapidly and efficiently defend against multiple
danger signals, many PRMs likely collaborate and deploy a
variety of immune effector functions, leading to synergistic
effects in immune recognition, response and resolution. These
co-operative immune events are likely to widen the repertoire
of pattern recognition and diversify immune effector functions
to cope with the evolving immune evasion tactics of pathogens
(Figure 2).

Despite the obvious evidence accumulating for the crucial
protective roles of such immune events during microbial
invasion, several lines of evidence suggest that PTX3, MBL
and those collaborations also appear to mediate pathogenic
effects during microbial infections.99–101 The evidence supports
a potential deleterious effect on immunopathogenicity because
of the following observations. (1) PTX3-overexpressing
transgenic murine models that were infected with a high
inoculum of Klebsiella pneumoniae exhibited accelerated
lethality, which has been attributed to decreased neutrophil
infiltration into the lung tissues and increased dissemination of
bacteria in the blood during acute infection.99 (2) In ross river
virus (RRV)-infected mice, the MBL-mediated LP of comple-
ment activation was shown to exacerbate alphavirus-induced
arthritis during acute RRV infection. Importantly, a significant
correlation has been observed between the MBL levels in serum
and synovial fluid, and the severity of disease in RRV-infected
individuals.100 (3) The overt expression of PTX3 has been
shown to promote early viral entry and viral replication during
the acute phase of alphavirus infection through modulating
recruitment of monocyte-differentiated DC and macrophages
as well as pro-inflammatory cytokines, such as tumor necrosis
factor-α, interleukin-6 and interferon-γ.101 (4) MBL:PTX3

Table 1 Crosstalk of soluble PRMs involved in pattern recognition and complement activation

Heterocomplex Functional consequences References

Ficolin-1:PTX3 Clearance of dying host cells; modulation of inflammatory cytokine secretion; LP activation 90,98

Ficolin-2:PTX3 Expansion of pattern recognition and complement amplification 63

MBL:PTX3 Enhancement of opsonophagocytosis and amplification of complement activation via CP:LP crosstalk 64

C1q:PTX3 CP activation; inhibition upon occurrence in fluid phage 33,35,36

CL-12:properdin AP activation 20

CL-12:CRP CP activation 97

Ficolin-1:CRP Modulation of inflammatory cytokine secretion via GPCR43 during infection 89

Ficolin-2:CRP Cross-activation of CP and LP and complement amplification 49,62

C1q:CRP CP activation or inhibition on surfaces upon occurrence in fluid phase 36,37

C1q:SAP CP activation 36

Abbreviations: AP, alternative pathway; CP, classical pathway; CRP, C-reactive protein; GPCR43, G-protein-coupled receptor 43; LP, lectin pathway; PTX, pentraxin;
SAP, serum amyloid P component.
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heterocomplex-mediated opsonophagocytosis and complement
amplification may further exacerbate disease severity during
alphavirus infection.102

CONCLUDING REMARKS

The co-operative immune events between the collagen-like
defense molecules and pentraxins have been increasingly
acknowledged for their roles in immunosurveillance and host
immune defense against microbial invasion. However, the
growing list of evidence suggests immunopathogenicity of
those co-operative events in the progression of arthritis
induced by alphavirus infection, such as chikungunya virus
and RRV infection, and also emphasizes the potential deleter-
ious impact on pathogen immune evasion and development of

complement-related diseases. The pathogenic side of the
potential functional roles of MBL, PTX3 and their involvement
in complement activation needs to be further explored:
whether the MBL:PTX3 complex is involved in alphavirus-
induced arthritis during the acute phase of infection and how it
exacerbates disease severity are both intriguing unanswered
questions. Accordingly, those immune heterocomplexes may
also be crucial drug targets for the development of
complement-immune therapies against the consequences of
certain viral infections, such as alphavirus infection and
possibly complement-related diseases in general.
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Figure 2 An expanded network of complement activation by previously unlinked PRMs. The model reevaluates the classical view of
complement activation that is mediated exclusively via complement PRMs and highlights the synergistic effects of complement PRMs on
complement-mediated immune responses. The classical pathway (CP) is mainly activated in an antibody-dependent manner by IgG clusters
(or IgM) but is also initiated through pentraxins, such as PTX3, C-reactive protein (CRP) and serum amyloid P component (SAP), via C1q.
In addition, surface-bound collectin-12 (CL-12) is hypothesized to mediate CP activation by crosstalk with CRP. Activation of the lectin
pathway (LP) is induced directly by mannose-binding lectin (MBL), ficolins and collectins but can also be mediated by MBL or ficolins
through PTX3, CRP or SAP. Moreover, the CP and LP are capable of being cross-activated through formation of heterocomplexes between
PTX3 (or CRP) and MBL (or ficolin-2) and C1q. The cross-activation comprises two amplification pathways: target→PTX3
(or CRP)→ficolin-2/MASPs→C4→C3→ formation of the membrane attack complex (MAC; amplification 1); target→MBL (or ficolin-2/
MASPs)→PTX3 (or CRP) →C1q→C4→C3→ formation of MAC (amplification 2). Initiation of the alternative pathway (AP) occurs by
spontaneous low-rate hydrolysis of the thioester in C3 and quickly spreads to nearby surfaces via nascent C3b, which binds covalently to a
target. As an additional activation route, it has been suggested that soluble CL-12 in collaboration with properdin provides a platform for
de novo C3 convertase assembly. All activation pathways consequently lead to opsonization, chemotaxis, inflammation and lysis against
microbes or dying host cells.
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