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Abstract The basis set convergence of nuclear spin-spin coupling constants
(SSCC) calculated at the coupled cluster singles and doubles (CCSD) level
has been investigated for ten difficult molecules. Eight of the molecules con-
tain fluorine atoms and nine contain double or triple bonds. Results obtained
using the ccJ-pVXZ, X=D,T,Q,5, hierarchy of basis sets of Benedikt et al. [J.
Chem. Phys. 129, 064111 (2008)], converge rather slowly towards the basis
set limit, but fast convergence can be obtained by adding diffuse functions, in
particular for couplings across several bonds. The pcJ-n basis sets of Jensen
[J. Chem. Theory Comput. 2, 1360 (2006)] exhibit large contraction errors for
one-bond couplings, but in their uncontracted form they perform better than
the ccJ-pVXZ basis sets. For multi-bond couplings, however, diffuse functions
should be used, and when including these the two hierarchies show similar
performance. The ccJ-pVXZ basis sets with diffuse functions included (aug-
ccJ-pVXZ) show consistent performance across all types of SSCCs, with the
triple zeta (X=T) basis set yielding sufficiently good results for most purposes.
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a very commonly used
analytical tool in chemistry. The widespread use of NMR-spectroscopy makes
accurate calculations of the associated properties, the nuclear shielding and
the indirect nuclear spin-spin coupling constant (SSCC), an important topic.
While empirical ”rules-of-thumb” are often sufficient for assigning spectra of
some nuclei, like 1H and 13C, in common chemical environments, this will not
be the case when investigating new types of systems, with little or no back
catalogue of similar compounds to compare to. Furthermore, if conformational
information is needed, empirical rules will often not be sufficient.

The theory required for the calculation of nuclear SSCCs is well developed
[1–3]. However, the details of this theory, in particular the operators involved,
imply that it is very challenging to calculate SSCCs with high accuracy. One
of the main obstacles encountered is that the calculation of SSCCs involves
triplet operators and thus reliable results cannot be obtained unless the elec-
tronic structure method used yields a ground state description that is stable
towards such perturbations. In particular the response of the common Hartree-
Fock (HF) method to such a perturbation is nearly singular in many cases [2,
4–8]. DFT has become a popular approach for the calculation of SSCCs, but
inclusion of exact HF exchange in hybrid functionals may bring along the
triplet instability problem again [9]. Correlation treatments that explicitly in-
clude the HF response, e.g. relaxed coupled cluster methods are also affected
[10]. The other main challenge for accurate calculations of SSCCs is the choice
of the one-electron basis. While this choice is without doubt critical for any
electronic structure calculation, it is particularly crucial when calculating SS-
CCs as they are extremely sensitive to the description of the wavefunction
close to the nuclei; a region not sufficiently well described using basis sets that
are optimized for the calculation of electronic energies [11–13]. An often used
approach is to take a normal, energy-optimized basis set and add additional
tight s-functions in an even tempered series. Helgaker et al. [14,15] have used
various basis sets augmented in this manner with the s-functions uncontracted,
and the convention of adding -sun to the name. The aug-cc-pVTZ-J set [8,16–
22] and the 6-31G-J and 6-311G-J basis sets [23] of Sauer et al. are similar,
but with the s-functions recontracted.

While s-functions are the only ones which will directly contribute to the
Fermi-Contact (FC) term, other types of functions may be needed for a good
description of the remaining terms of the SSCCs. This is particularly important
for SSCCs that are not dominated by the Fermi-Contact contribution. Jensen
[24] has explored the importance of adding tight basis functions of higher
angular momenta. In studies on improving the basis set convergence of DFT
calculations he found that it was necessary to add also tight p-, d- and f-
functions to the pc series of basis sets [25,26] in order to uniformly improve
the basis set convergence of all contributions to the SSCC. On the basis of this
work the pcJ series of basis sets was proposed. A similar study for calculations
using correlated wavefunctions was performed by Benedikt et al. [27]. They
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performed CCSD calculations with Dunnings correlation consistent basis sets
and found once more that both p- and d-functions were required in order
to evenly improve basis set convergence. Based on their findings Benedikt et
al. proposed the ccJ-pVXZ series of basis sets, which are based on Dunnings
cc-pVXZ, X=D,T,Q,5, basis sets [28].

Although a number of basis sets have been proposed for the calculation of
SSCCs, only a few of them have been extensively tested [29–32] for correlated
methods outside the relatively small set of molecules used for fitting the expo-
nents. Furthermore, the pcJ-n and ccJ-pVXZ hierarchies have been developed
without diffuse functions. While this gives a consistent common baseline for
optimization, the use of diffuse ”augmentation” functions has become common
and these are available for the closely related pc-n [26] and cc-pVXZ basis sets
[33].

In the present work we will compare the performance of the pcJ-n and
cc-pVXZ series of basis sets and their augmented and totally uncontracted
versions in CCSD calculations of SSCCs. Contrary to earlier studies, our test
set of molecules was chosen so each molecule has fluorine atoms and/or double
or triple bonds, which are typically associated with large non-contact contri-
butions [19,32,34–38]. This will allow us to test the importance of including
optimized functions for these contributions and to test how well each series
manages to give a balanced description of each. Furthermore, there has recently
been a lot of interest in calculations of through-space couplings involving F
atoms [39–41], which makes a better understanding of the basis set dependence
of F-couplings an interesting goal to be achieved.

2 Theory

The indirect nuclear spin-spin coupling tensor can be defined as the second
derivative of the electronic energy with respect to the spins of the two nuclei
involved [2,42]

JKL,αβ =
∂2E

∂IKα ∂ILβ
(1)

where IKα is the α ∈ {x, y, z} component of the nuclear spin of nuclei K. In gas
or solvent phase experiments, the molecules rotate freely and only the trace of
the coupling tensor is observable. In the present work we will therefore focus
on the trace of the coupling tensor, which we will refer to as the spin-spin
coupling constant (SSCC):

JKL =
1

3

∑
α∈{x,y,z}

JKL,αα (2)

Nuclear spins enter the electronic Hamiltonian through their magnetic mo-
ments, and what is obtained directly in theoretical calculations are thus the
reduced coupling constants, K, defined in terms of the second derivative of
the energy with respect to the nuclear fields. K thus represents the unscaled
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result from the electronic structure calculation. However, the unit of K is dif-
ferent from the unit of J and it is therefore difficult to relate a K value to a J
value. When we refer to reduced coupling constants in the present paper, we
shall instead refer to K̃, which we define by simply scaling J using the nuclei
specific unitless g-factors, g,

JKL = gKgLK̃KL, (3)

meaning that K̃ will have the same unit (Hz) as J . When comparing the
computational accuracy of SSCC calculations between different kinds of nuclei
it is better to use the reduced couplings constants, as these represent the
unscaled result from the electronic structure calculations and their differences
reflect the changes in electronic structure and not just a different nuclear g-
factor. When considering any particular SSCC, however, we will revert to the
more familiar J coupling constants.

In non-relativistic theory the part of the perturbation which is linear in the
nuclear magnetic moment splits into three distinct contributions, the Fermi-
Contact (FC), spin-dipolar (SD) and paramagnetic spin-orbit (PSO) interac-
tions. The associated perturbing operators can be written as

FCÔK
α ∝

∑
i

δ(ri −RK)ŝi,α (4)

SDÔK
α ∝

∑
i

(
(ri,α −RK,α)

∑
β(ri,β −RK,β)ŝi,β

|ri −RK |5
− ŝi,α

|ri −RK |3

)
(5)

PSOÔK
α ∝

∑
i

l̂Ki,α
|ri −RK |3

, (6)

where ŝi,α is a component of the electron spin operator of electron i, ri and

RK are the position vectors of the electron i and nucleus K and l̂Ki,α is a
component of the orbital angular momentum of electron i around nucleus K.
There is also a contribution, which is bi-linear in the nuclear magnetic moments
of two nuclei,

DSOÔKL
αβ ∝

∑
i

(ri,α −RK,α)(ri,β −RL,β)

|ri −RK |3|ri −RL|3
. (7)

When considering which basis set to use in the calculation of SSCCs, it
should be realized that, in order to give good energies, a basis set needs to
represent the wavefunction well enough near the nuclei to describe the nuclear-
electron attraction well. That interaction behaves as the inverse of |ri −RK |.
The operators in equations (4-7), however, fall off much faster and the FC
term explictly depends only on the wavefunction at the nucleus. Thus, the
flexibility of the wavefunction at the position of the nuclei is critical in order
to accurately describe perturbations of this kind. Hydrogenic atomic orbitals
have a cusp at the nucleus, a behavior which cannot be exactly reproduced
using Gaussian basis functions. Still, it is generally believed that the addition
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of very tight s-type basis function is sufficient to give an accurate description
of the FC interaction. Recent developments by McKemmish et al. [43,44] make
it feasible to replace the Gaussians representing the inner s-type orbitals with
”ramp” functions showing the correct cusp-behavior at the nuclei, which might
allow for a good description of the FC contribution to the SSCCs with much
fewer basis functions. However, to our knowledge, this has so far not yet been
further investigated. While only s-functions can contribute directly to the FC
interaction, other types of basis functions could be considered for improving
the description of the remaining contributions. Indeed the operators defined
above are much more sensitive to the behaviour near the nucleus than the
potential energy operator. Acting with the SD operator of a nucleus on a s-
type function centered on that same nucleus yields a function with d-symmetry.
The PSO operator of a nucleus yield zero, when applied to a function, that has
s-symmetry around that nucleus. As both of these operators fall of as the third
power of the electron-nucleus distance, we would expect their contributions to
require functions of non-zero angular momentum, which are tighter than those
present in common energy optimized basis sets. Indeed, it has previously been
demonstrated by Jensen et al. [24,27] that this is the case.

One should mention here that alternative forms of both the FC and DSO
have been derived [45–47] which lead to different basis set requirements. How-
ever, they are not yet commonly employed and will therefore not be considered
further here.

3 Computational Details

The geometries of all molecules were optimized using the CCSD(T) [48] method
and the aug-cc-pCVQZ [49,33,50] basis set, except for difluoro-acetylene where
a cc-pCVQZ geometry was used in order to give results that are directly com-
parable to previous work [32]. The SSCCs of all molecules were calculated
using the unrelaxed CCSD method and the (aug-)ccJ-pVXZ, X=D,T,Q,5 [27]
and (aug-)pcJ-n, n=1,2,3 [24] basis sets. The aug-ccJ-pVXZ basis sets were
not proposed in the original work, but can easily be constructed by adding the
diffuse functions of the aug-cc-pVXZ basis set [33] as additional uncontracted
functions to the ccJ-pVXZ basis set. Both of these series of basis sets have
been optimized for the calculation of the total nuclear spin-spin coupling con-
stants. The aug-cc-pVTZ-J basis set of Sauer et al. [8,16–22] has been used for
comparison, as an example of what can be obtained when the basis set is only
augmented with s-type functions. Results obtained using the qzp basis set [51]
are also presented, as this basis set has often been used in CCSD calculations
of SSCCs [52–54]. All calculations have been performed using version 1.0 of
the CFOUR program [55].
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4 Results

In Table 1 we give the CCSD values obtained with the uncontracted aug-ccJ-
pV5Z basis set for all molecules in the study. These are values that will be
assumed to be converged to the basis set limit for the purpose of the compar-
isons in the following sections. One may of course wonder whether complete
basis set extrapolated values would be more suitable for use in this comparison.
However, in many cases we found uneven or oscillating convergence towards
the basis set limit, and were thus not confident that any such extrapolated
values would be reliable enough to use as a benchmark, as will be discussed in
the final section.

These CCSD/aug-ccJ-pV5Z-unc result are compared to experimental re-
sults in Table 1. Perfect agreement with the experimental values should not
be expected. This would require a proper treatment of both vibrational cor-
rections [56–61] and solvent effects [62], which are not the topic of the present
study.

In the following we will discuss only results for the total SSCC. While the
different terms of the SSCC require different modifications to the basis set, the
basis set series investigated here is designed to converge uniformly across all
of them. Indeed they all seem to converge evenly to the point that a detailed
discussion of each term would be of little use. Equivalents of figures 1-3 are
given in the supplementary material (figures S1-S9).

The molecules discussed here have previously been investigated by Del
Bene et al. [52,53], using the rather small qzp [51] basis and the ”CI-like”
EOM-CCSD method [63,64], which differs from the CCSD unrelaxed energy
derivatives used in the present work. The results presented by Del Bene et al.
are in general similar to ours, there is not a clear trend for which are closer to
the experimental values. One example where the difference between the results
are large is the 1JCN in HCN, where the results of Del Bene is -12.6 Hz, which is
far from both our aug-ccJ-pV5Z result, -18.1 Hz and the experimental results,
-19.1 Hz and -18.5 Hz. This may be a geometry issue, as our qzp value is
-18.0 Hz, due to a favorable contraction error of 2.0 Hz. The results also differ
significantly for the SSCCs of F2CO, which again should be due to a difference
in geometry as our qzp values are closer to our other results.

Jaszuński et al. [65] previously presented MCSCF results for cis- and trans-
FNNF. They were able to obtain results in agreement with experiment for all
but the symmetric couplings in trans-FNNF by changing the active space and
basis set used, but they were not able to find one approach that consistently
gave good results for all couplings.

4.1 One-bond Couplings

Figure 1 compares for each basis set the mean absolute deviation of the results
for the reduced coupling constants (K̃ in Hz) obtained with the given basis set
from the corresponding aug-ccJ-pV5Z-unc results. There are a few conclusions
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Table 1 CCSD values of all SSCCs in the study (in Hz), as obtained in calculations using
the largest basis set, aug-ccJ-pV5Z-unc. Some experimental results are given for comparison.
All results are given in Hz for the 1H, 13C, 15N, 17O and 19F isotopes.

SSCC FC SD PSO DSO Total Experimental

CO 1JCO 7.61 -5.17 13.30 0.10 15.84 16.4(1) [66]

HCN

1JCH 256.63 0.48 -0.62 0.39 256.87 267.3(1) [67] 261.7(4) [68]
1JCN -12.67 -5.28 -0.16 0.04 -18.08 -19.1 [69] -18.5(1) [67]
2JHN -4.07 -0.73 -3.55 0.62 -7.74 -8.7 [70] -7.41 [68]

FCN

1JCF -358.72 -10.50 -29.59 0.55 -398.26
1JCN 4.62 -5.80 -4.83 -0.03 -6.05
2JFN 42.27 -10.21 17.08 0.41 49.55

OF2

1JOF 127.35 -157.41 -243.71 -0.40 -274.17 -300(30) [71]
2JFF 74.86 415.64 723.88 -1.01 1213.37

FNO

1JNO -19.49 0.76 -16.60 -0.01 -35.34
1JNF 136.69 -17.22 26.25 -0.27 145.46
2JOF -33.07 -2.78 155.33 0.26 119.75

F2CO

1JCO 9.70 -3.67 7.15 -0.13 13.04
1JCF -257.43 -0.05 -38.77 1.16 -295.08 -308 [72]
2JOF -3.68 -4.74 47.30 0.32 39.19
2JFF 124.24 24.82 -256.55 -1.10 -108.59

FCCH

1JCC 250.74 9.85 11.68 0.16 272.42
1JCF -251.38 -10.36 -21.89 0.48 -283.15
1JCH 275.50 0.43 -0.82 0.43 275.54
2JCF 13.32 18.00 -4.26 -0.88 26.17
2JCH 61.84 1.01 5.77 -1.13 67.49
3JFH -1.17 2.98 13.80 -2.62 12.98 21 [73]

FCCF

1JCC 383.01 10.80 15.52 0.31 409.64
1JCF -247.93 -8.02 -9.20 0.58 -264.58 287.3 [74]
2JCF 19.20 19.14 6.65 -0.69 44.30
3JFF 6.90 33.11 -32.94 -1.85 5.22 2.1 [74]

cis-FNNF

1JNN 2.67 1.76 -4.54 0.03 -0.08 ± 4.0 [75]
1JNF 244.42 -19.64 -12.13 -0.33 212.32 211.0 [75]
2JNF -47.57 -2.13 34.98 0.17 -14.54 -25.4 [75]
3JFF 150.18 42.03 -319.73 0.04 -127.48 -146.0 [75]

trans-FNNF

1JNN -10.33 1.43 -8.66 0.02 -17.53 -18.5 [75]
1JNF 220.41 -21.06 -21.47 -0.30 177.58 172.8 [75]
2JNF -62.10 -6.29 9.67 0.06 -58.66 -62.8 [75]
3JFF 21.26 52.05 -372.86 -2.29 -301.83 -316.4 [75]

that are immediately apparent from Fig. 1. The contraction coefficients of the
normal ccJ-pVXZ series of basis sets are nearly optimal for the calculation
of this type of coupling constants, as completely uncontracting the basis sets
(blue bars) changes neither the mean nor the maximum deviation significantly.
However, this is no longer the case when diffuse functions are added. In terms of
the maximum deviation, the aug-ccJ-pVXZ basis sets are a major improvement
over the ccJ-pVXZ basis sets, at least at the triple and quadruple zeta level.
For example, the deviation from the aug-ccJ-pV5Z-unc result for 1K̃NN in cis-
FNNF is reduced from 3.5 Hz to 0.24 Hz, when diffuse functions are added
to ccJ-pVTZ, and the deviation for 1K̃NO in FNO is reduced from 2.1 Hz to
1.2 Hz. However, the diffuse functions do not provide a similar improvement
in the average performance unless the contraction is removed. Uncontracting
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Fig. 1 One-bond reduced coupling constants (K̃ in Hz): The mean average deviation from
the aug-ccJ-pV5Z-unc results obtained using the basis sets. Green bars represent the results
obtained with contraction of the basis functions, blue bars represent the results obtained with
all functions uncontracted. Values in brackets are the maximum deviation found amongst
all the one-bond couplings. There are 19 total one-bond couplings in the set.

the aug-ccJ-pVTZ and aug-ccJ-pVQZ improves average performance of these
basis sets by roughly a factor of two compared to the contracted versions and
by almost a factor of three compared to basis sets without diffuse functions.
On the other hand, the maximum deviation of the aug-ccJ-pVTZ and aug-
ccJ-pVQZ basis sets change only slightly when contraction is removed. For
the aug-ccJ-pVTZ, e.g., the largest deviation is found for 1K̃OF in OF2, which
is 1.3 Hz with contraction and 1.1 Hz without. We can thus conclude that
the addition of diffuse functions is important for obtaining good results for
the one-bond SSCCs studied here, but also that the contraction scheme of the
ccJ-pVXZ basis sets is no longer optimal for the augmented basis sets.
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Turning our attention to Jensen’s pcJ basis sets, it is once again clear
that contraction errors will be an important part of the discussion. Here it
is important to note that the pcJ sets and thus also their contractions were
optimized for DFT calculations rather than CCSD calculations. Nonetheless,
it is surprising that there is a factor of two between the mean average deviation
of the results obtained using the contracted and fully uncontracted version of
the pcJ-2 basis set. The one outlier here is 1K̃NN of cis-FNNF, where the
deviation from aug-ccJ-pV5Z-unc is slightly increased from 2.4 Hz to 2.6 Hz,
when the contraction is removed from pcJ-2. However, that does not change
the overall impression that while the functions included in the pcJ basis set are
very well chosen, the contraction coefficients are suboptimal for the couplings
or computational method studied here. When diffuse functions are added to
the pcJ-1 basis set, the results obtained are even worse than those obtained
without them. Considering the larger aug-pcJ basis sets the results are on
the line with what is observed for the aug-ccJ sets, though the max absolute
deviation is worse, unless contraction is removed. It should be mentioned that
Jensen has published a second contraction scheme for the pcJ basis sets using
a segmentet scheme, and were able to obtain a decreased contraction error in
B3LYP [76]. However, even if that result is transferable to CCSD calculations,
the contraction errors observed here are so large that reducing them, even by a
factor of two, it would still be advantageous to avoid contractions for one-bond
SSCCs.

The aug-cc-pVTZ-J basis set performs badly compared to the other triple-
zeta basis sets for the couplings in the present study. In particular for one
SSCC, the 1K̃OF coupling in OF2, the deviation is as much as 6.4 Hz! This
particular SSCC has very large contributions from the SD and PSO contribu-
tions and it is therefore not surprising that a basis set, such as aug-cc-pVTZ-J,
designed for the calculation of the FC contribution only, struggles to accurately
describe it. Indeed the aug-cc-pVTZ-J basis set has errors of more than 3 Hz
for both the SD and PSO contributions to this coupling. The errors in the
other coupling constants are more in line with what is observed for the ccJ
and pcJ basis set. Indeed the average error in the FC term is lower for the aug-
cc-pVTZ-J than the other triple zeta basis sets if the contraction versions are
used. In the case of aug-ccJ-pVTZ the contraction error furthermore partially
cancels the basis set error, and so removing the contraction leads to larger av-
erage errors than all other uncontracted triples-zeta basis sets, even for the FC
term alone. Still, the relatively unsatisfying results for aug-cc-pVTZ-J show
that it is not always sufficient to add only tight s-type functions when modi-
fying basis sets for the calculation of SSCCs, at least for the type of coupling
constants and molecules considered in the present study.

4.2 Two-bond Couplings

Figure 2 shows the mean absolute deviation of the results for two-bond re-
duced SSCCs from the aug-ccJ-pV5Z-unc result for each basis set in the study.
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Two-bond SSCCs are typically much smaller than one-bond SSCCs, and the
absolute errors displayed in Fig. 2 are thus also smaller. Comparing relative
errors in the two kind of SSCCs yields roughly similar results. One main differ-
ence from the one-bond SSCC results shown in Fig. 1 is immediately apparent:
The contraction errors are no longer a primary concern. Only for the double
zeta and the Jensen basis sets with diffuse functions included are there some
noticeable differences between the contracted and totally uncontracted basis
sets.

Looking at the ccJ-pVXZ basis sets, it is clear that diffuse functions are
important. At the triple zeta level, for instance, the mean absolute deviation is
0.55 Hz with deviations of 1.72 Hz for 2K̃OF in FNO and 1.62 Hz for 2K̃NF in
trans-FNNF, when diffuse functions are not included. With diffuse functions
the mean deviation drops to only 0.08 Hz with the above mentioned outliers
dropping to 0.14 Hz and 0.05 Hz respectively. In comparison 2K̃OF in FNO
and 2K̃NF in trans-FNNF still have deviations of 0.62 Hz and 0.67 Hz, when
calculated using the ccJ-pVQZ basis set. Thus for two-bond SSCCs the addi-
tion of diffuse functions improves the accuracy more than going to the next
larger set in the same series.

The pcJ-n sets are less improved by the addition of diffuse functions. Only
the results at the triple zeta level are improved, on average, when diffuse
functions are added. Adding diffuse functions to the pcJ-n sets is therefore
not necessarily a better strategy than going to the next larger basis set in the
same series. In comparison to the ccJ-pVXZ basis sets of similar sizes, the
pcJ-n are thus quite a lot better when comparison is made without diffuse
functions, but fairly similar when diffuse functions are included.

The performance of the aug-cc-pVTZ-J basis is below that of all other
optimized triple zeta basis sets and even that of the qzp basis set. On one hand
the aug-cc-pVTZ-J performs well, if only the FC contribution is considered,
with a mean average deviation of only 0.07 Hz, which is similar to aug-pcJ-2
and is below that of aug-ccJ-pVTZ (0.1 Hz). On the other hand aug-cc-pVTZ-
J has quite high mean absolute deviations for the PSO term (0.42 Hz) and
the highest mean absolute deviation of all the tested basis sets in the SD term
(0.21 Hz). This underlines how important it is for the SSCCs studied here that
the basis set is optimized for the calculation of all four contributions to the
SSCC.

4.3 Three-bond couplings

In our set of molecules, there are only four three-bond SSCCs, so we will
only quickly comment on basis set performance for calculating these, shown
in Fig. 3. Broadly speaking the convergence is similar to that reported for
the two-bond SSCCs. Two noticeable differences are the relative failure of the
aug-pcJ-1 set and the surprisingly good performance of aug-pcJ-2. Due to
the very low number of three-bond couplings, however, these results are likely
coincidental.
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Fig. 2 Two-bond reduced coupling constants (K̃ in Hz): The mean average deviation from
the aug-ccJ-pV5Z-unc results obtained using the basis sets. Green bars represent the results
obtained with contraction of the basis functions, blue bars represent the results obtained with
all functions uncontracted. Values in brackets are the maximum deviation found amongst
all the two-bond couplings. There are 11 total two-bond couplings in the set.

4.4 Specific Examples

One issue that is somewhat blurred in the discussion above, when considering
basis sets only by a general category, e.g. ”triple zeta” or ”triple zeta plus
diffuse functions”, is the actual size of the basis sets.

Having made some general comments based on the average performance of
the difference basis sets, it is relevant to also consider a few specific examples.



12 Rasmus Faber, Stephan P. A. Sauer

Fig. 3 Three-bond reduced coupling constants (K̃ in Hz): The mean average deviation from
the aug-ccJ-pV5Z-unc results obtained using the basis sets. Green bars represent the results
obtained with contraction of the basis functions, blue bars represent the results obtained
with all functions uncontracted. Values brackets are the maximum deviation found amongst
all the three-bond couplings. There are 4 total two-bond couplings in the set.

In Fig. 4 the results for the 1JCF coupling in F2CO calculated using each
series, with and without contraction are plotted as a function of number of
the basis functions. Following the curve for the ccJ-pVXZ basis set, the double
zeta value is too low, but the remaining values converge from above. The aug-
ccJ-pVXZ basis sets similarly converge from above, with the curve consistently
above that of the ccJ basis sets without diffuse functions. When contraction
is removed, convergence is significantly faster. The pcJ-n basis set yield too
low values at the double and triple zeta levels and only appear to converge
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Fig. 4 The 1JCF coupling of F2CO as calculated with various basis sets, plotted against
the number of basis functions. g13Cg19F is about 7.4.

when used without contraction. The aug-pcJ-n basis set gives a too large value
at the double zeta level and a too low one at the triple zeta level. Removal
of the contraction shifts these points upwards, giving an impression of rapid
convergence beyond the unreliable double zeta values. The smallest basis set
that gives practically converged values, with a deviation of 0.2 Hz, is aug-ccJ-
pVTZ-unc, which uses 272 functions for F2CO.

As an example of a two-bond coupling we have plotted the 2JNF coupling
in FCN in Fig. 5. Clearly the ccJ-pVXZ basis sets converge only very slowly.
However, upon adding diffuse functions the convergence is quite rapid, though
possibly in part due to favorable cancellation of the contraction error. The
pcJ-n basis sets oscillate wildly with or without diffuse functions, though the
removal of contraction does improve convergence. In this case the contracted
aug-ccJ-pVTZ yields converged results, though the uncontracted version has
an error of 0.4 Hz.

4.5 Basis set extrapolations

Basis set extrapolation has become a popular way of reducing the effort re-
quired in order to obtain highly accurate theoretical values for molecular en-
ergies [77] and properties [78]. The basic premise is that the functional form
of the basis set incompleteness error as function of basis set size is known. If
this is the case, that function can be fitted using results obtained with various
finite basis sets. Various functional forms of the basis set incompleteness error
have been proposed. The basis set error in HF and DFT energies are usually
taken to decrease exponentially with basis set size [79,80]. On the other hand
the error in the correlation energy decreases only polynomially. Considerations
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Fig. 5 The 2JNF coupling of FCN as calculated with various basis sets, plotted against the
number of basis functions. g15Ng19F is about -3.0.

on helium suggests that the correct dependence should be as the inverse third
power of basis set size [81,82].

When trying to apply these considerations for property calculations, a num-
ber of issues must be addressed. For energy calculations it is reasonable to
expect that the energy decreases monotonously towards the basis set limit,
even for non-variational methods. However, there is no variational theorem
for molecular properties and so the addition of any one basis function could
both raise or lower the calculated result. While much effort has been put in to
constructing both the ccJ-pVXZ and pcJ-n basis sets and we have shown that
they converged nicely on average, it would nonetheless be desirable with at
least visual confirmation that even convergence is obtained for any particular
coupling constant. An additional concern when calculating SSCCs is that it
is not possible to separate the calculated value in HF and correlation contri-
butions. Two approaches thus seem viable. Either we can empirically try out
various extrapolation schemes and find one that fits reasonably. Or we can
assume that exponential decay of the HF incompleteness is so rapid that the
total basis set error, at least from the triple zeta level and onwards, is prac-
tically identical to the error in the correlation contribution. In the following,
we shall take the second approach. That is, we will try to fit our result on the
assumption that the coupling constant calculated with a basis set of maximum
angular momentum l is related to that in the basis set limit as

J(l) = J(∞) +
a

l3
, (8)

where a is an unknown constant.
We believe that in practice the most useful type of basis set extrapola-

tion will be two point extrapolations using two consecutive basis sets in the
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same hierarchy of basis sets. Performing such extrapolations for all the one-
bond SSCCs and calculating their mean average deviation from the result of
the aug-ccJ-pVQZ-unc to aug-ccJ-pV5Z-unc extrapolation leads to the results
displayed in Fig. 6. The pcJ-n style basis sets perform quite a lot worse when
extrapolations are attempted than when we compared the results from sin-
gle calculations. Actually, the error is roughly twice as large when using the
two-point extrapolated values. That is not surprising given the non-monotonic
convergence pattern that we observed for these basis sets in Fig. 4. Analyzing
the individual contributions, we find that this is due to the FC contribution,
while the SD or PSO terms alone would lead to better results on extrapolation.

For the ccJ-pVXZ basis sets, the results are closer. The result obtained with
the ccJ-pVQZ and aug-ccJ-pVQZ basis set can be improved by an extrapola-
tion using also the (aug-)ccJ-pVTZ results. On the other hand the triple zeta
results are not in general improved by the extrapolation, probably due to the
low quality of the results obtained with double zeta basis sets.

Similar results are shown for the two bond SSCCs in Fig. 7. The results
for the ccJ basis set are favourable for extrapolations using both ccJ-pVTZ
and ccJ-pVQZ, leading to better results than those of the non-extrapolated
values, particularly when diffuse functions are not used. However, for the
CBS(ccJ-pV5Z) extrapolations the average deviations are actually larger than
for CBS(ccJ-pVQZ). Thus one still needs to be a bit careful about making ex-
trapolations and conclusions based on them. The pcJ basis sets do not appear
to be to be suitable for extrapolations of two-bond SSCCs either.

5 Conclusion

We have compared the accuracy of various basis sets for the calculation of
indirect nuclear spin-spin coupling constants using the CCSD method. For one-
bond couplings we found relatively large contraction errors for both Jensen’s
pcJ-n basis sets and also the ccJ-pVXZ basis sets when diffuse functions are
added to them. When not using basis set contraction, the pcJ-2 and pcJ-3
outperformed the similar ccJ-pVTZ and ccJ-pVQZ, however on adding diffuse
functions the results are fairly similar. Without contraction, the aug-ccJ-pVTZ
basis set leave errors in the reduced couplings constants of about 0.27 Hz
corresponding to about 2.0 Hz for 1JCF type coupling constants. This should
be seen in the light that these types of coupling typically exceed 200 Hz. The
error can be improved to about 0.10 Hz in the reduced coupling if instead the
aug-ccJ-pVQZ basis set is used.

When calculating two- and three-bond couplings, it is quite important to
add diffuse functions. On the other hand, contraction errors are no longer a
concern. With diffuse functions added the ccJ-pVXZ and pcJ-n basis sets yield
similar results. The aug-ccJ-pVTZ basis set gives good results, with an error in
the reduced coupling constant of about 0.08 Hz, although this still corresponds
to about 0.6 Hz for 2JCF type coupling constants. If higher accuracy is needed,
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Fig. 6 Extrapolated one-bond reduced coupling constants (K̃ in Hz): Mean average de-
viations of the extrapolated values from the CBS(aug-ccJ-pV5Z-unc) results. Numbers in
brackets are the max deviations. CBS(b) should be understood as the extrapolated value
obtained using b and the next smaller basis set in the same series, eg. CBS(ccJ-pVTZ) is
obtained from extrapolating using the ccJ-pVDZ and ccJ-pVTZ results.

the basis set error can be reduced by roughly a factor of two by going to the
quadruple zeta basis set.

We found that basis set extrapolations can improve the results obtained
with medium size basis sets of the ccJ type, but not those of the pcJ type.
However, it was not clear that the two-point extrapolations used do in fact
converge as the size of the basis sets used in the extrapolations increases.
While it thus appears that these extrapolation can be a useful way of improving
results calculated using medium sized basis sets, at this time we do not believe
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Fig. 7 Extrapolated two-bond reduced coupling constants (K̃ in Hz): Mean average de-
viations of the extrapolated values from the CBS(aug-ccJ-pV5Z-unc) results. Numbers in
brackets are the max deviations. CBS(b) should be understood as the extrapolated value
obtained using b and the next smaller basis set in the same series, eg. CBS(ccJ-pVTZ) is
obtained from extrapolating using the ccJ-pVDZ and ccJ-pVTZ results.

that they can replace calculations with very large basis sets if highly accurate
results are desired.
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