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ABSTRACT: In theories of Einstein gravity coupled with a dilaton and a two-form, a soft
theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In
this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons,
dilatons and B-fields in any tree-level scattering amplitude involving the three massless
states. The new soft theorem is fixed by means of on-shell gauge invariance and enters
at the subleading order of the graviton’s soft theorem. In contrast to the subsubleading
soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this
order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible
to establish a gauge invariant decomposition of the amplitudes to any order in the soft
expansion. We check explicitly the new soft theorem in the bosonic string and in Type
IT superstring theories, and furthermore demonstrate that, at the next order in the soft
expansion, totally gauge invariant terms appear in both string theories which cannot be
factorized into a soft theorem.
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1 Introduction

There has been a huge effort in the last few years to connect the soft behavior of scattering
amplitudes of massless particles to underlying symmetries of the theory. This connection
has been made explicit in the case of gauge, gravity and higher-spin theories, where the soft
factorization theorems of the scattering amplitudes through subleading orders have been
shown to follow from their on-shell gauge invariance [1-5]. Their relation to asymptotic
symmetries were recently suggested [6, 7], and are now being being vastly explored (see
e.g. the recent review [8] and references therein, as well as the more recent paper [9], which
discusses also scalar soft theorems from asymptotic symmetries).

Similar results have, on the other hand, also recently been obtained in theories where
global internal [10-13] or global space-time symmetries [4, 14—18] are spontaneously broken.
In these cases, it is the spontaneously broken symmetry that determines the soft behavior
of amplitudes with soft Nambu-Goldstone bosons.

The focus of this paper concerns the gravitational S-matrix in theories of gravity cou-
pled with a dilaton and a two-form. It is well known from string theory that amplitudes of
this theory can be described in a unified way, which we in short will describe. Nevertheless,
while it is known that the graviton and dilaton obey soft theorems, a soft theorem for the
two form is still missing [19, 20]. The aim of this paper is to fill this gap, and to derive a
unified soft theorem valid universally for the graviton, dilaton and the two-form.

The two-form appears particularly in theories of supergravity and string theory, where
it is known as the Kalb-Ramond two-form B-field. In string theory it enters as a closed
string massless state accompanying the graviton and dilaton. Their soft behavior, and par-
ticularly the soft theorems obeyed by the string graviton and dilaton were recently derived



in refs. [3, 20-26], extending the well-known graviton [27-30] and less-known dilaton [31, 32]
soft theorems from the 60s and 70s to one higher order. (See also refs. [33-38] for other
string theory related soft theorems.)

The B-field also appears in gravity as a double-copy Yang-Mills theory. An easy way to
understand this, which will later be useful, is by decomposing the double-copied Yang-Mills

field into its constituent fields:
1
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such that n“”ef;y = /D —2, and ef;l,eﬂw = 1, while k is an unphysical reference mo-
mentum. The fields g,., ¢, and B, are naturally identified with the gravitational field,
the dilaton and the antisymmetric B-field, while elfy can be thought of as the dilaton
‘polarization tensor’ (or dilaton projector). By the Kawai-Lewellen-Tye [39] and Bern-
Carrasco-Johansson [40] relations, double-copied amplitudes of Yang-Mills theory can be
identified with amplitudes of gravity coupled with the dilaton and B-field, providing a
unified description for amplitudes involving any of the three fields.

From this double-copy construction one may naively expect that also the B-field should
obey soft theorems at the same order. After all, one may compute the amplitudes gener-
ically, and only in the end project the external states appropriately. However, the naive
expectation turns out not to hold, and we will explain why.

It is useful to first review how the soft theorems for the graviton and dilaton can be
derived by using gauge invariance of the amplitude. Considering an (n+1)-point amplitude
involving double-copied Yang-Mills states, i.e. gravitons, dilatons, and B-fields, it is possible
to decompose it into two contributions, as depicted in figure 1. The decomposition of the
amplitude as given in figure 1 can be written as:

n
1
M1 = Ms(q ki) 3 Mn(ki + @) + Naya(g; ki) , (1.3)
— (ki +q)
where dependence on all other k; # k; is implicit. We are giving a special role to the
state carrying momentum ¢, since we will consider its soft behavior. By using the rela-
tion M,, = e‘l“Ell’l ~'-eﬁ"€Z"Mn“1y1,,,ﬂnyn, the three-point amplitude entering in the above
expression can be rewritten in terms of differential operators acting on M,,, given by [2, 3]:

M3 ((L kiy _<k2 + Q)) - QHDef;gZ [kz,u, - iqui up] [k'w - Z.qagi I/O':| ) (14)
where xp is related to Newton’s constant by kp = 87TGE\I,D) and where
. 0 0 - (. 0 _ 0

S'L'M,U =1 <€iuaeip — Gipae/’;> 3 S’L vo — 1 <€7;V8€;?_ — Eio—agiy> . (15)



Figure 1. Decomposition of an n+1-point amplitude into a factorizing set, involving an exchange of
a particle between the three-point amplitude M3 and the n-point amplitude M,,, and the reminder
set of diagrams N, .1, which excludes factorization through the former channel.

The two contributions in eq. (1.3) are not independently gauge invariant. We may
therefore use gauge invariance to put certain constraints on the remainder function Npy1.
Considering the kinematical region where ¢ < k; for any i, eq. (1.3) can be expanded in g.
At tree-level, N, 11 does not have any poles in ¢ and hence at leading order one recovers
Weinberg’s soft theorem (loops do not modify this leading order result, see e.g. [41, 42] for

a recent discussion):

& kR
Mn+l = KD€qu€qv Z L - an(kz) + O(qo) (16)
i=1 "

Actually, the previous expression is valid not only for hard massless particles, but also for
any kind of massive particles with arbitrary spin. To project the previous expression on the
physical states, one takes €, ,€,, = €4, to be the polarization tensor of either the graviton,
dilaton or B-field. If the soft state is projected onto the B-field, whose polarization tensor
is antisymmetric, this leading expression clearly vanishes, but also if it is projected onto the
dilaton, since eqL E'EY = k2 + O(q) = 0+ O(g). Only the graviton has a leading nonzero

pv N
singular soft behavior. The expression is gauge invariant due to momentum conservation

Yim1 K =0+ 0(g).

At every other order in the soft expansion, the two types of contributions are related
by gauge invariance; that is, by

e My = queu MYy = 0. (L.7)

These two conditions are sufficient to fix completely the orders ¢° and ¢! in the soft expan-
sion of the amplitude, when Mﬁil is symmetric in its indices pv; i.e. when the soft state
is either a graviton or a dilaton [2, 3]. We will in this work additionally show that if the
soft state is a B-field, i.e. if M#_’;l is antisymmetric in pv, this construction is sufficient to
fix completely its order ¢° soft behavior, with the result being:

(S; = S)* | My (ki €i,6) +O(q),  (1.8)
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Ramond soft operator, differently from the graviton case, depends only on the spin angular

where € = 1 (equéqv — €qv€qu) is the polarization tensor of the B-field. The Kalb-
momentum operator. This result is consistent with the ‘holomorphic soft theorem’ for the
B-field found in the bosonic string in ref. [20] (further details are given in section 3.1).

The leading soft theorem for the B-field can be added to the corresponding expression
derived for the dilaton and graviton [3, 20, 23] to define a unified operator that collects the
soft behaviour of amplitudes in theories of gravity coupled to a dilaton and a two form.
The full soft operator then turns out to be:

_ s [ERY i ke (Li +25) i kY g (Li +25)"
My = /@'DEq,uﬁq,u; |:k7, q D) ki q 9 ki q
o _ o
+ 2<5 S )}MnJr@(q) (1.9)

This expression generically reproduces the soft behavior of the graviton, dilaton and B-field
upon symmetrization, respectively, antisymmetrization of the polarization vectors €4 €4, -
As such, it can be considered the soft theorem of double-copied Yang-Mills theory.

As we will also show, contrary to the case of the dilaton and graviton, it is not possible
to fix completely the term of order ¢ in the soft behavior of the B-field by this construction.
To explain why, let us note that a caveat in the construction above is that the quantity Ny
in eq. (1.3) may, at a particular order in ¢, contain terms local in ¢ that are independently
gauge invariant. Such terms can for obvious reasons not be related to the factorizing set
of diagrams by gauge invariance. For the graviton and dilaton, this is avoided through
order ¢ in the soft momentum, since the most general local expression for a gauge invariant
symmetric two-index tensor is of O(q?) [2]:

B = q,q, APF A%V (1.10)

where, due to gauge invariance, A°* = — AMP is an antisymmetric function constructed out
of the momenta and polarization vectors of the external states, and is furthermore a local
function in q.

For the antisymmetric B-field, however, things are different, since it is possible to write
a general expression for an antisymmetric two-index tensor local in g, which obeys gauge
invariance starting already at O(q):

EY = g, AP (1.11)

where AP* is a totally antisymmetric tensor constructed from the external momenta and
polarizations, and is furthermore a local function in ¢. For this reason one is not able to
constraint N,4;1 through order ¢ in the case of a soft B-field. It is nevertheless possible
to decompose the amplitude through any order in the soft expansion into two separately



gauge invariant parts, as follows using the notation vj,w,) = % (vpwy, — vywy,):

n

. 1 v %
Mn-l—l(qa kl) = EqB/,LI/ qp AP#V(q, kz) - ZF':Dqu/J,I/ Z {2 |:S;A - S{L :| (112)
i=1
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where one part remains unconstrained due to the preceding discussion, but is local in g,
while the other part factorizes as a soft theorem (one can Taylor expand M, (k; + q)).
The factorizing part encodes the soft theorem, as well as containing all terms needed to
gauge covariantize the first part of eq. (1.3) involving Mj3. This expression can essentially
be seen as the main consequence of the B-field obeying a soft theorem. As we will show
in section 2, the order ¢ factorizing terms can compactly be written in terms of angular
momentum operators.

We will in this work first derive the above summarized results and then explicitly
derive the soft behavior of the Kalb-Ramond B-field both in the bosonic string and in
superstrings. We confirm the proposed soft relations, and furthermore we provide explicit
expression for AP*” showing that it is non-zero. In particular, we will see that the Bloch-
Wigner dilogarithm appears in AP#¥ in both string theories, which leads us to conclude
that AP*” cannot be written as a soft theorem. As regards the field theory limit, the form
of AP*¥ remains to be understood.

Let us conclude the introduction with the following two remarks. The soft theorem in
eq. (1.9) has been derived from eq. (1.3) after including, as a three-point amplidude, the
expression in eq. (1.4) corresponding to the coupling of the soft massless particle with two
other hard massless particles. This procedure can be easily generalized to the case in which
the two hard particles are massive with an arbitrary spin by using as Mj the corresponding
three-point amplitude. The second remark concerns the possibility of getting for the two-
form RR field of type IIB theory a soft theorem similar to the one that we have obtained
for the Kalb-Ramond field. One would expect so as a consequence of the fact that the
two-form fields are exchanged under the S-duality symmetry of type IIB theory. However,
we have not been able to show this by using the gauge invariance argument as done above
and the explicit calculation of amplitudes containing two RR fields is much more involved.
We hope to come back to this problem in the near future.

The paper is organized as follows: in section 2 we show that on-shell gauge invariance
fixes the leading soft behavior (of order ¢") of the B-field in tree-level amplitudes, while
the subleading part (of order ¢) can only be partially fixed. In section 3 and 4 we explicitly
compute amplitudes in the bosonic, respectively, the supersymmetric string theory involv-
ing a soft Kalb-Ramond state to confirm the new soft theorem as well as to show that the
subleading soft behavior cannot be factorized. In section 5 we provide our conclusions.



2 Soft theorem for B,, from gauge invariance

In this section we derive the soft theorem for the antisymmetric tensor B,,, in an amplitude
with only massless particles, i.e. Kalb-Ramond fields, gravitons and dilatons. We will see
that, unlike for the graviton and dilaton, in the case of the antisymmetric tensor we can
only determine the soft behavior through order ¢. The soft behavior of order ¢' cannot
be fixed by gauge invariance.

Let us start from the pole term given by the diagrams where the soft particle is
attached to one of the other external particles, as depicted in figure 1. As explained
in the introduction their sum is given by (we define My, 1 = eqé; M,,)

n . . oQ
pole __ [kiu — qus,up] [kiu —q Suo] '
where k; and q were put on shell, i.e. kf = ¢> = 0, the polarization tensors ef;EZ were

stripped off, and
. 0 0 - . 0 _ 0
S'L‘HP =1 (Eiuaep — 67;paeu) 5 S’L vo — 1 <€Z‘y86q — 67;0—861‘/) . (22)

In the case of a soft antisymmetric tensor, where M, fflo,le is antisymmetric under the exchange

of the indices p and v, the expression reduces to:

- _‘ki Ugiua_ ‘kiz/ pSi - pSi ggiuo
MﬁzlezﬁDZ WRilud” Rivie — Wiy Piplp — O Pi[ppd Piv] M (ki + q), (2.3)

i=1 ki q
where vj,w,) = % (vyw, —vywy). The previous expression is not gauge invariant, i.e. it is
not vanishing when we saturate it with ¢* or ¢”. It is possible, however, to add to it a

term, local in ¢, which will make it gauge invariant, i.e.:

u _iki[uqa‘gi vle iki[qusi e — q°S; [upqg‘gi vlo
M = kp ; [ ki - q
i _
‘1‘5 (Si,uu - Si/w):| Mn(kl + Q) + N,ul/(Q? kl) ) (2'4)

where N, is now the antisymmetric gauge-invariant remainder of the amplitude. It is easy
to see that the expression in the square bracket above vanishes when we saturate it with g*
or ¢¥. Gauge invariance then implies the following conditions on the additional term N, :

quN,uu(Q; kz) = QVNW(Q; kl) =0. (25)

Expanding around ¢ = 0, at the lowest order, we get two conditions:

qMNw/(q = 0) = qVN,uu(q = 0) =0 (2.6)
that are for N,, = —N,,, consistent with
Nuw(qg=0)=0. (2.7)



At the next order in the soft momentum ¢ we get

0 0

"0 5 N0 =0) = 04" 5 5N (g =0) =0, (2.8)

which implies that

0
aiquMV(q = O) = Apuy s (29)

where A,,, is a completely antisymmetric tensor under the exchange of the three indices,
and is only a function of the momenta and polarizations of the hard external particles.
Notice that the tensor IV, contains in general higher powers in the soft momentum g.
Since N, (q; ki) = ¢° Ay (ki) + O(¢g?) and since we assume that it is local in ¢, we may
just as well express it as:

N/J,l/(q; kz) = qup}Ll/(qﬂ kz) 9 (210)

to all orders in ¢, and automatically satisfying eq. (2.5), where now A,,, (g, k;) contains all
the higher order terms in q. We end up with:

kl S’Ll/0'+ k’LI/ S’L + S SZVO’
W:—nDzr 4" Piv] Z[qkl ;} @ ilupd” Piv]

—% (Sipw — S W)] My (ki + q) + ¢ Apu (g, ki) - (2.11)
This is an exact relation between the n+1 and n-point amplitudes, valid to any order in the
soft expansion. Obviously, since the last term is gauge invariant, A,,, cannot be fixed by
gauge invariance of the amplitude. To conclude, in the case of a soft antisymmetric tensor
scattering on other massless states, gauge invariance fixes the amplitude only through the
order ¢'. The term of order g contains a totally antisymmetric tensor that cannot be fixed
by gauge invariance.

It is convenient for later use to introduce a new tensor flpu,, for the leading order
expression of A,,,, in the following way

Apm/(q:O7ki) :Apuu(ki) (212)
P 9 9
—@Z[ Do 05— 55— ), g (51— 50, e | M)

This is possible since the operator in the squared bracket is just another totally antisym-
metric tensor. Expanding eq. (2.11) and inserting this alternative expression for A,,, at
leading order, we arrive at

(S; — 5 e 1 _ A =l
My, = —ikp Z {qp 2 = 5(Si = 5)" + g [Sip[uai] + 511 55]] (2.13)

+ Zp—qz [(kZ[“S;’]" + kll”sf]f’)a;f n i(Sf["S’f]U)] }Mn(k:i, € &) + qp AP (ki) +O(¢?)



where 0! = 0/0k;,. This expression can be written more compactly, by defining holomor-
phic and antiholomorphic total angular momentum operator, as follows:

TS L ST = L G L (R — RO, (214)

These operators especially turn useful, when considering the action on superstring ampli-
tude. Let us consider the operator:

B 990 plp vlo _ 9090 [yolugvle plp grlo plp rvlo plu grlo
eW wn I, qu s [L L+ LS 1 s 4+ 557 (2.15)

i—1
Considering the first term on the right—hand side, it can be shown to vanish due to anti-

symmetry and transversality of €2, | as well as the mass-shell condition ¢> = 0. Therefore

quv>
we get, after inserting the explicitly expression for L;,

4o40 v|o - doqo |. & V] o avlo
quvz p Jp[MJ] _ QHVZ{]{;K-).(] [Z(Sf[“—Sf[“)ki]E)i +Sf[“8i] }
i=1 ¢

igy(sP - sf[ﬂ)aﬂ} (2.16)

which is exactly equal to the order ¢ factorized part of eq. (2.13). In other words, we find
a more compact form for the expanded amplitude through order ¢, reading:

n

; 3 k[# vlp >
M1 = Kpeuéy Z {;(Si — S + 0% (;j qS) gpqup[”J Ao }Mn(km €is €i)
=1

T eu 4y AP (ki €1,8) + O(¢2). (2.17)

where we used that the contraction of uv is antisymmetric, and we can thus equally write
efy — €,€,. Notice that we could also trivially rewrite the first two terms in the right-hand
side of the previous expression in terms of J; and J;, since J;—J; = S;—5;. One may wonder
whether the part that remains unfixed by gauge invariance also factorizes in terms of a
soft and a hard part due to some other property of the amplitude. In the subsequent two
sections we investigate this question by computing explicitly the unfactorized part involving
APrV in the bosonic string as well as in the superstring. Our conclusion to this question is
negative, nevertheless, we provide the details and explicit expressions that may be useful
in other regards. The conclusion about the field theory limit of AP#” remains open.

3 Soft scattering of B, in the bosonic string

For the derivation of the scattering amplitude involving n + 1 massless closed string states
in the bosonic string we refer to section 2 in ref. [23]. Therein it was shown that the
(n + 1)-point amplitude, M, 1, can be written as a convolution

Mn+1 == Mn * S, (31)

where M, is just the n-point amplitude, and where by * a convolution of integrals is
understood, and S carries all the information of the additional external state. The point



is that the computation of the soft behavior of M, 1 is equivalent to computing the soft
expansion of S. Let us quote the expressions for M,, and S:

8 n 2 d i
o= () M J | [T | T s

1<J

PiPy [ oi( €ik;
Xexp[_Z(Zi—Zj)Q 67,] Z %i— 2 ] (32)
i#j

1<J

_ PiP; _ Pil€irj
Xexp[ Z(zz’—zg)2 GG 221_2317
l

1<)

and

d?z & €q€i o/ (egk; " €4€j o (€qk;
5=k o ; (‘Pi (z( 23)2 + 2,2 — zi) JZ: (ij (2( Zj))Q * \/;,(2 Zi)
o & (€ ] o' gk
exp | —1/ — i |z — 2| > 9%,
- [ V53 I

iq) o

SRIRENEe
where z; are the Koba-Nielsen variables of the hard states, and z is for the soft state.
Grassmannian variables ¢; have been introduced and in this notation ¢;, the holomorphic
polarization vector of the massless closed states, are also Grassmannian, and likewise for
the antiholomorphic counterparts, denoted with a bar. k; are the momenta of the hard
states, while ¢ is for the soft state, and o' is the string Regge slope.

The expansion of S was computed in the decomposition:

(3.3)

S =kp(S1 +SQ+53)+O((]2), (3.4)
defined by:
/ Z 6‘1 Zn: E k]) ﬁ |Z P ’a’qkl (3 5)
S g:l 7 =1

n —_ 2 n n _
X [ (Z th(e_hqz)h> + <Z ©Ph ;ihqz_)h> +2 ( (phz(E_th)h) ( @h;e_hi_)h> ] } )
h=1 h=1 h=1 h=1

2 €q€i) " (58 ‘ o’ qky
w5 Z@ q )tl(%(;f;jy)np_%, k (3.6)
€ 1/d
{1—[2( @k%>+2<2>
2 " ) 9 . . 7
J(Seden )+ (Zw@)ﬂ(Z%(ib@)( oot )]}
s h—1 T ch o F— A ) oo R A




(2153) (£42) (20) (2] -
x{l—(“? Elrm2) 40

2
—~ _ (&) - (€nq) (e
)+ (Soth) 2 (B2t (St |}

(3.7)

Each part was further split in Si(a)

, a=0,1,2, with the index a labelling the order of expansion
in ¢ of the integrand modulo the factor |z —z |O‘/qkl, which has to be integrated. The explicit
results for Si(a) can be found in ref. [23], and apply to any massless closed-string state. Here
we are interested in the antisymmetric part in eje o of those expressions. First, the result

for S%O) is:
0) Buv - o'\’ Zi — Zm . [ R~ Zm
Sl ‘B = Eq Z ki#kj,, 5 (qkm) L12 Z — — L12 o — 2
i#j#Em J ! J

—Hogi’ ]| log (Zm_zjzi_zj>
_—

|2 Zm — Zj % — %j

+0(4%) . (3.8)

We can show that the part in the square bracket is just the Bloch-Wigner Dilog, which is
analytic and continuous.! Denoting ¢ = (2;—2,)/(2i—2;) We can write the square bracket
of the antisymmetric part as:

Lia(§) ~ Lia(¢) ~ log ¢l log (1 =5 ) = ~2i(Im(Lia(0) + ang(1 — ) o ]

= —2iD5(() (3.9)

where in the second line we identified the Bloch-Wigner dilog, denoted as Do. This function
has the following properties (as well as many other, not relevant here):

e It is a real function on C, and analytic except at the points ¢ = {0,1}, where it
is only continuous, but not differentiable. For us, ( never takes these values, since

2 # Zm F Zj.
e [t has a six-fold symmetry:
Da(C) = Da(1 = () = Dz () = —Da(¢™Y) = —Da(1 = ¢) = =Dz (&)
and furthermore Do({) = —D2((), thus Da(R\{0,1}) = 0.
The antisymmetric part of Sio) can thus be written as

= o/ 2 Z2i—Z
SOl = 3 ) (1) s (32) Guan

: zi—zj
i#jFm J

'We thank Lance Dixon for pointing this out to us during the Nordita program Aspects of Amplitudes.
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It can be checked that this expression is gauge-invariant by itself by using e.g. the relation
Dy(¢) = Dg(ﬁ). In fact, we can write it in the form of eq. (1.11), making it explicitly

gauge invariant:

N\ 2 n
2 v v 17T Am
SO1p =il <C;> % ) 3 {kfnkz[ K+ kR + kﬁ‘nkzlpkj}]pg (Z_'ZZ ) . (3.11)
i#j#m L

where the symmetry properties of Dy were used to completely antisymmetrize the expres-
sion in the square bracket in the indices pvu.
It is convenient also for later use to introduce the tensorial function:
1
T (V, X,Y) = 3 (VPXHYY —VPXVYH 4+ VHXVYP
—VHEXPYY — VYV XHEYP + VYV XPYH) (3.12)

which is totally antisymmetric in its indices puv and in its variables V, X, Y.

In terms of this function, we compactly have:

s 21 2 Zm
0)|/§ — 3 < ) Z dp TPHY (k;“k‘],k‘ )DQ (Z p > . (3.13)
i#j#EmM

where we stripped off the polarization tensor.

(a)

The antisymmetric part of all other S;™ is simply obtained by antisymmetrizing the

expressions derived in refs. [20, 23] in the polarization indices of the soft state, leading to:

AR
Z z k] Pi€iq
V2 ki zi—z;

i#]

1+ Zoz gk log |zz—zl\]
1#1

+ o R | G Z A G0 |z~ 2| > 2 log |2 —a| | 1+ cc.
2(zi—zj) 2 iy AT A
(3.14)
n [N V]
/ kik: ( -e-q) wieq Splelq
s@ W:_ﬁ J \pi€ ( + >+c.c.
n #k’/] = =
a SDZGZQ)(SOZ Zq)
o 1
T3 ; ki (zi—z)(zZi—Zz) 1)
' & ki) (aky) (pie?)(@ie)
5O _ (aky LI
2 |B 2 ;; qk; (Zi—Zj)(Zi_zl)
| (e (8 gk + (orel) (@i ) aky) + (prel") (958 (ki) (3.16a)
(zi—2)(zi— ) ’ ’
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S \/722 {le ( (piel) (pje50) — (pjel )(%Equ (et

oyl (zi—2)*(zi—2)

_|_

QwﬁEqu@<wm%qum)@%éb}
+c.c (3.16D)

(2i—2;)(2i—2))?

irs 4 i I#i (zi—25) (7 —2)

ej0) — (9l (piciq) eN@ag) — (@) (@@
§: §:< ) (€50 £/ ) q)(@a )(@iEa) — (@) (@ @>,
(3.16¢)

2 2i—2j qk: 2i—2j 2 2i—2j

i#]

o ol &Ry gy K (pid) ol kY (pietyaky — K (i€l gk
S?()O)VIL3 _ Z[ (pi€;”) Ty J J

+d2mm$—mwm%% (k)i (piel)

Zi—Z
16 J

log |z — 2|

log |Zz_zl|

+ c.c. (3.17a)

n oty (kY]
, ¢;q)(gic?) (k. (piciq)(pje qk
sl Z{””() O S

oy (zi — 25) kiq  kjq (zi — 2)?

j{:qkz (s650) (iel K < 1 __10g|qn|>
2(

l# 2i—2j zi—21) (zi — 2j)

_72 qk:l 301 k }@jgjq+k;]@i€iQ)
(zi—zj)(2i—21)

[y .V]

(Pzﬁzq k

ta Z )(; ]) 1

log |z — 2]
I#Z (ZZ - 23)2

(pje;a) (e (1 log |2 — |
oy (% B >

o 2—2j 2i—21) (zi — 25)

i€ +k‘] €
= Z il cp 1 i lQ)} +c.c., (3.17Db)

o —Z])(zl—zl)

(zi—25)2(zi—21)

D _ \/ « [ (pre10) (el VK (pieiq) — (wiel Vi (0¢50)
l#1,j

v] _ _ v] — _
+(<Pj6§“)(s0i6iq) — (pie") (@j¢5) 3 (’“ Pieg + ky @iﬁi‘J)
(2i—2)? o (Zi— 7))

+c.c.. (3.17¢)

We note that when taking the complex conjugate one must also exchange the indices p <> v

B _ _.B _ B - L L
since €, = —€g,, = €, Which follows from the decomposition €., = €gu€q
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3.1 The soft theorem

The terms of O(q°) appear in egs. (3.14), (3.17a) and (3.17b) only. Summarizing, they read:

S S Ao BN CL A CER U L
B 2 qk; Zi—Zj 2 2 —Zj qk; 2 i —Zj

]

((pi50)(piel") = (picia) (psel )R]
4+cc+O 3.18
(ia) (i — ) (q) (3.18)
The soft theorem proposed to reproduce this is:
2Tk g8 — S)He 1 :
My 1 AP\ 4 _ (G QK L. E
M z; [ T 5 (Si = 8" | M (ki €3, &) + O(q)- (3.19)

Using that

(pie ) (wj€) = (pi€f ) (pief) e 3 (pief )k — K5 (pief)

_iSMNL — M. >
ZSZ n TL* Z (ZZ—ZJ)Q 2

Zi—2Z2j
i v

J#i
(3.20)

it is straightforward to see that eq. (3.19) exactly reproduces eq. (3.18). In order to check
this, we note that the terms with two ¢’s produced by (S; — S;)*¥ vanishes over the sum,
due to opposite parity of the numerator and denominator in the exchange of i < j.

We additionally like to make the remark that the soft operator in eq. (3.19) follows
also from earlier considerations in refs. [3, 20|, where it was noticed that the explicit
result in eq. (3.18) can be reproduced by the following ‘holomorphic’ soft theorem: by
separating the string amplitude into a holomorphic and an antiholomorphic part, and
promoting the momentum in the antiholomorphic sector to a (spurious) ‘antiholomorphic’
momentum, k — k, it can be shown that both the bosonic string amplitude and the
superstring amplitude at O(q°) can, for any soft state, be equivalently written as:

-~ [qpk:;’(Li + Si)‘up " qpk‘f(ljz + S’i)l’p

M 1= —1i€ El,
n+ a Z qk; qk;

] My, (ki €55 ki, &) i T O(q)
i=1 =

(3.21)

where L; denotes the antiholomorphic angular momentum operator that acts on the k
quantities. The notation |,_z means that the k is, after the action, identified again with

the physical momentum k. In ref. [3] it was shown that when the soft state is symmetrically

s
po

leading graviton soft theorem, while in ref. [20] it was remarked that for an antisymmetric

polarized, i.e. €,€, — €, then the above expression is easily seen to match the known sub-

soft state the expression reduces to:

1 _ kY _ _
Mn+1 - _ieugy Z |:2(LZ - LZ,),UV + ]:;73;(51 B Si)wj Mn(kza €3 ki7 gi) _+ O(Q) (322)
i=1 v
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B+

Now, notice that under a gauge transformation for the Kalb-Ramond field, eq w — €q

quXv — QuXp, the amplitude changes as follows

n
Mn+1 — Mn+1 + iqpx# Z [(Lz + Si)#p - (le + S’i)#P Mn(ki, €i3 Ei, Ei) e (3.23)
=1

Since for any ¢, and any Y, the additional term has to vanish, the following identity
must hold

n n

;(Lz - Li)upMn(k‘ia €55 ki; gl) Lo = ;(S”L - Si)upMn(kiv €5 kia E,L) ek , (324)

which can be checked by a direct calculation. From this we conclude that eq. (3.22) for an
antisymmetric soft state reduces to:

M, (ki,€i; kig;)| 4+ O(q) (3.25)

. i 1 v av k[y Sz - gz M]p
Myt = —Zefyz [2(51'“ - S + 9ok ( o )
i=1 v

Since this expression no longer involves the L operator, we may readily identify k = k,
making M, (k;, €;; ki€;) = M, the physical n-point amplitude. This reproduces, and thus
confirms once again, the soft theorem in eq. (3.19).

3.2 The order ¢ soft behavior

While there does not exist a complete soft operator reproducing the terms at O(q), we
are still able to greatly reduce the terms into a gauge invariant part that factorizes, and a
gauge invariant part that can be written in terms of a totally antisymmetric tensor.

The soft behavior is proposed to admit the form:

MW = 22 {gpqq (K800 4 ks ) oy + i (018017 ] (3.26)

S EACARSC }Mn(ki, €, &) + ap AP (ki) + O(q?)

The action of the soft operators on the lower-point amplitude read:

[l/

—zquq”( S0P 1 kY SIP) o7 My = M, *Zk -

i#£]
" piciq cpjejq
kilog |zi—zj] — | = e
X [aq og |z —zj] o 7% ]
. #l / ,H} k- _ . k#]
<3 (pie) sozech) (90216@(1)(90161 ) g(%ez ki q) = (pici)k” | (3.27)
e (zi—2) 2 2i— 7
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Z 4p4o SP[MSV]UM = M, * Z

— ki-q
S [(pic)(pje5) - <wieiq><¢je§“> L [ @b ) — (e’
j#i (zi—2)? 2 %i—2j
s (i) i) = (Diesa) (@) | [o (@) -0) — (it (328)
=L (zi—zl) 2 Zi— X
-iiq ERCAR
Pq/’ 7 7 + 7 7
=1
v _ _[v
_ o e[ PIG) [ (85
_Mn*;[a k; log |2 — ;] 2 nz, 2 53
(picia) (2re))) — (pie)(@aq) [ (wieq)kt" — (piet) (ki - q)
XZ L +1/ = L +c.c. (3.29)
oy (zi—21)? 2 Zi—2

It is now a straightforward, but very tedious task, to show that all terms in
egs. (3.14)—(3.17c) which have a 1/g-pole exactly match the terms given by eq. (3.27)
and (3.28). These simply come from the Feynman diagrams where the soft state is at-
tached to an external leg. This confirms that all other Feynman diagrams only produce
terms that are local in q.

Most of the terms given by eq. (3.29) also matches similar terms in the explicit expres-
sions eq. (3.14)—(3.17c). However, the term involving ¢;p;j¢; in eq. (3.29) does not have a
counterpart in the explicit expressions. It therefore has to be gauge invariant on its own,
and indeed:

n ] .“]
. v (e )((pies”) (@req) — (gi€)" ) pi€iq)
_qupsip[#ai]MnWw = ZZ : ] 2 l

(zi—25)(zi—21)?

i=1 l;ﬁj I#i
\f et (prerg)
;;:] —2)(zi—21)
STy ";’Tff; feif;?’@“”, 3.0)
75 iy G2 =) (=)

To arrive at the second line we used that the first line vanishes for [ = j, because p;p; = 0,
and for the third line we used the definition in eq. (3.12), making the expression explicitly
gauge invariant.

The terms with two ¢’s coming from eq. (3.29) also do not match with the terms
in the explicit expression, however, as we will see below, they ensure gauge invariance of
what remains, when we subtract the terms coming from eq. (3.27)-(3.29) from the explicit
expressions. Indeed, our most reduced expression for the soft behavior through the order
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q reads:

M, * (Sl + S9 + Sg)|w/

Hl | (R wl s )og +i(sTs17) | + g 5100+ 57 } M

AR vl Zi—Zm
+ M, * [z <2> Z 2k, K (qkm) Do (Zi_zj>
ij#m

N 3/2 AyRd i€ + kM ilf} k. k:[ Zu] k;
+<c;> sk 5 (picia) + k; (pig; ) (ak;) — k5 (vi€; ) (g )+C.C.

. Ri—Zj
i#] J

. <o/)3/2 Kk reia + k) (piel) (ak) = K (o3¢ (ak)

: log |2 — 2| + c.c.

i£j I#£i aTA

LIy (se/) (@& )ak) = (ese/ )k (@iaa) = (2" )k jeiq
(Zi—Zj)(Zi_Zl)

i£j 1
L ZZ (ps6i0) (piel e + (pieia) (0e ki — (0562 ) (piet) (aka)

z;é] 1#i (zi—2;)(2i—21) +c.c.
] € 5“] €
o ZZ )Esm')z(q)._ (sﬁé ) (wi€iq)) +C.C.] s
25 A (2i—2j)(zi—21)

We can express this more compactly in terms of the totally antisymmetric tensor given in
eq. (3.12):

M, = (Sl + S5 + Sg)’lw

kY §
= QPAkp)t)LsVomc — 1 Z { qkqﬂ (S Si)H]P - 5(‘5’1 - Si)lw
=1

Wl [ (nge g W sieYor +i(57507)] + g, 500 + 5t } ne (3.32)

i d
with

7 . / 3/2 n
~ o _ «o 21 [« L Zi— Zm
= §E{5 (5) X st an, (222)

i#£j#l

I\ TP (e ko o / TPV (5cs i ko

+ <> (801617 19 ]) + (Oé) Z (90]6]7 19 l) log‘zi_zl|2
Zi —Z] 2 17 Zi_zj
o ZTP z,%E]aSOlﬁz e’ ZTW pi€i, ki, o1€r)
(zi—z)(Zi—2) (zi—zj)(zi—21)
TPuv

4= Z (QDZEZ, Pj€j, Solel) + e, (3‘33)

l7él ] Z])(z] _Zl)(Zl )
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It is tempting to think that, besides the dilogarithm term, all the other non-factorizing
terms above may be reproducible in terms of gauge-invariant soft operators acting on the
lower-point amplitude. We have investigated an exhaustive number of possibilities, and
have not found any reduction as compared to the above expression. For instance, one
could consider an operator involving €0 167, where 8 = 0/0¢;g. This type of operator

leads to the following type of terms

o (pje)) o' (#5€))
egagazMn:Mn*z(aszlogm—zn—\/2ZZ._;.— =

J#i

B B

1#£1

and is made gauge invariant by the combination:
ap (L'ortor + ool - drozel’) (3.35)

This operator produces the same four types of terms as the last four lines in eq. (3.31)
plus two additional and different types of terms. However, among the four types that are
similar it is only possible to match one of them, while the other three are different in their
Koba-Nielsen structure. Therefore in total, while matching one line in eq. (3.31), five new
gauge-invariant expressions are generated.

One instance, where one may introduce an additional soft operator, without elongating
the expression, is

/

v . 174 1 v
ap (K e00r) + ke or, — kbl o) i, = il (kl[“sﬂ’ + kSt ) M,

of = K (p5eN) (ieiq) + K (piel) (0je50) — (aka) (piel ) (e
M, = Z

o (2i—2)?

. (d)w 5 He (icia) + B (et (aky) — (ki) (iel )R] }

— Z2i—Zj
J#i J

e 9074617 (3 SDJGJ) O/ 1 puy(@ieia kiv kj)
* 4/ \ = + | = 3.36
Qp{ Z z —z 9 Z Zi—zj ( )

i

The last term matches the similar term in eq. (3.33), but the first term is new. Therefore
this operator effectively exchanges one type of term with another. We note that, although
this operator is not exactly matching terms in eq. (3.33) one-to-one, it shows that terms of
the form of the right-hand side above are terms of order o/, because the operator explicitly
carries such a factor.
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4 Soft scattering of B, in superstrings

For the derivation of the scattering amplitude involving n + 1 massless closed string states
in superstrings we refer to ref. [3]. As was shown in ref. [3], we can take advantage of
knowing the results in the bosonic string case, which were presented in the previous section.
This follows by realizing that the n-point tree-level scattering amplitudes, M,,, of closed
massless superstrings can generically be written as a convolution of a bosonic part, M?,
with a supersymmetric part, M;}, as follows:

My = MP s« M, (4.1)

The expressions for bosonic and supersymmetric parts of the n-point supersymmetric string
amplitude are defined by:

8T (kp\n2 I d?z;
Mp==2(32) dVabc|le_Z2|2Hd90 Hd99 Hd9 Hd%Hd@ Hd(p,
% H ‘Zi _ zj|o/ki'kj exp % Z — \/72 P —|— c.c.| , (42)

i<j i#]

1 A - A
M;:exp[—QZ Z . +c.c.

(4.3)

where kp is the D-dimensional Newton’s constant, dV. is the volume of the Mobius group,
z; are the Koba-Nielsen variables, ¢; and 8; are Grassmannian integration variables, and
we have introduced the following superkinematical quantities:

a/
Al = el + \/;9114:;‘ . CF = pibel’ (4.4)

where €' and k' are respectively the holomorphic polarization vector and momentum of
the state ¢, and o/ is the string Regge slope.

Apart from the integration measure, Mﬁ is equivalent to the same amplitude in the
bosonic string, given in eq. (3.2); the integrands, in fact, become equal if one makes the
identification 8;¢; — ¢; and remembers that, after this substitution, ¢; becomes a Grass-
mann variable. The difference between M? and the bosonic string amplitude eq. (3.2),
is only the presence in M? of the integrals over the Grassmann variables 6;, 6;, and the
additional factor H?Zl 0:0;/|z1 — 22| coming from the correlator of the superghosts.

As in the case of the bosonic string, it is also useful to factorize the superstring am-
plitude, at the integrand level, into a soft part S and a hard part as follows:

./\/ln—l-l == Mn *S (45)

where M, is the full superstring amplitude of n closed massless states, and S is a function
that when convoluted with the integral expression for M,, provides the additional soft state
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involved in the amplitude. The function S can further be decomposed into its bosonic part
and supersymmetric part as follows:

S=S5,+8s+8S;, (4.6)

where Sj is the purely bosonic part, given by:

5 = mp/dzznyz \aqkzexp[ \Ez_zl \/gq c]

i=1 =1

(4.7)

which is simply equal to the similar expression in the bosonic string, given in eq. (3.3),
after identifying 6;¢; — ¢; (whereby €; becomes a Grassmann variable). Sg and S, are the
complex conjugates of each other and they provide the contributions from the additional
supersymmetric states. They are given by

HD 2 o'q-k
d _ q-Rqi
/ H|Z 2l exp[ \/22sz 2,2721

Z[f_’izz_zjiffﬁéi : 19

P e JIEE= S EE 1

and S is given by the complex conjugate of this expression, where complex conjugation
sends z; — %, €' — 6 , 0; — 0;, and p; — @;, while the momenta k; are left invariant.
This decomp051t10ns is of course useful, since we already dealt with the bosonic integral
S, in the previous section. The additional part coming from supersymmetry, S; 4+ S, was
furthermore computed through the order ¢ in ref. [3]. Here we explicitly construct their
functional form, when the soft state is an antisymmetric Kalb-Ramond field. The general
result found in ref. [3] reads:

5 Al 2 N TR
— _ Qp i B (0 q 505 5 i J

s s :2 v — — . — - -
s {(ki'Q) (2 — %)) +qp<2) Zi—% q-ki  q-k

1#]
6.49) q-kif G \/? p 2 cl _\/?u 2
+q'o\/; Zi—Z; ;[ (Zz_zl+ 9 ki log |zi—zi|” | + o 5 k)" log |z — 2|
AP v *[a" y] =, "
+gpao| [ 247, A7 _\/>C Z 245, 4h CdCTRCT RS
o 9 i, 5} {3, ]} q-ki(zi—zj)(zi—2z) 2 (zi-z)2 \q-k q kK
o AP v 10 AP v o y
- 2’ i <C A{Z Al} C A{] Al}> 20[’ CﬁAﬁlA} +c.c. —i-(’)(qQ)
2 oy q-ki(zi—%)(Zi—7z) o q-ki(zi—2)2(Z—72) )

(4.9)
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where the brackets and curly-brackets in the indices denotes commutation and anticom-
mutation of the indices, e.g.:

CPI = - (CPRY — CYRD)

— N =

(4.10)
v v
Al J}:7<A AY 4 A A).
These definitions differ by a factor of two with the ones in ref. [3], where also appropriate
factors of two have been introduced in eq. (4.9).

We must now project out the antisymmetric part, in €,€,, to obtain the expression for
the Kalb-Ramond field. At order ¢" we find:

Aﬂ A[Nk.l’] Aﬂ A[ kﬂ]
+

HY qp {i" 75} {i" 7}
N A NCEr el R

At the next order, it can be checked that the antisymmetric part can be written as:

n 3 ~ AT AV (OIP LM
S B o'\ 2 TP (Cy, ki k) o G4, A7 A; Cj k;
Ss+Sslo@=rpel, S {qp <2> — 5 VIok Gy (4.12)
i#£j v % )

<o T (1,0 14 v ~lrg0]
(Y > 44,00 A Ay ki i log |2 — 2| + \/72 quqcf A{%AJ}C{Z i)
2 q-ki  zZi—z z %)= )

1£i
AP v
n Z QQp% z, J}A{l Al} Z 44p4o C[ ¢ ]A{Z Al}
_Z])(Z’L_Zl) q-k; ( z_ZJ)Q(Zz_Zl)

l;éz 1#£1
o.M P v oLl AP v

[ qpq Z Ck’A A B /g,qpqo'z QC’k:A{ZA} e
Zi—Zj) zz—zl) 2q-k; bryf (zi—Z%j)(Zi—7Z)

where TP* was defined in eq. (3.12). It can be checked that the term involving TP in
fact, cancels out with the similar term coming from the bosonic part in eq. (3.33).

4.1 The soft theorem

As remarked in section 3.1, the soft theorem can be equivalently written as in eq. (3.22).
Since the soft theorem operator is a linear operator, and since we know that it repro-
duces the bosonic part, when acting on M, b, we only need to show that it reproduces the
supersymmetric part, given in eq. (4.11), when acting on M}, i.e

B Qp]_ffl;(Li + Sz’)up + qpk‘f(le + Sri)up
v qki qki

—ie€ :|Mn8(ki7 €i; ki)

=1

which is easily checked by noticing the relations:

(Li + S AT = idy; (P AY ="M AY) , (Li + Si)iP AT = idij (n°P Al — 7t A7) (4.14)
. .

(Li + Si)"°C§ =ibij (n°PCl —n?tCP) , (Li + Si)"*CF = idy; (n°PCl —n7HCY) .

where the quantities A and C' are defined in eq. (4.4).
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4.2 The order ¢ soft behavior

Let us now consider the order ¢ soft operator, which up to the totally antisymmetric tensor
according to eq. (2.17), reads:

a(1 4p4c v)o
s;>:egw kquﬂ“g] (4.15)

The action of this operator on M, can be decomposed as follows

SPM, = (S(”Mb) « M+ M« (S5 02)

€l /w Z 4pl4o

“ [ Jp[uMb) (Z?]UMZ) + (jzf’[”Mg) * (Ji“}prL) (4.16)
i=1 Z

The action 5’](31)Mf; is equivalent to the one studied in the bosonic string. We need to
analyze the remaining terms. Let us notice that

Ji AL = 2 Al V],,’ JLCY = 2
(4.17)

and likewise for the antiholomorphic counterpart. We find that

JPTYT My ~ — AMS %y Z

JF#L I
JJT R AATAT | [l bk A AT
2 (zi—2)(zi—2) 2 (zi—z)(zi—2)

The first term above reproduces exactly a similar term of the explicit result of eq. (4.12).

PAMA[ Al} ékZ[pA'u]@ k:[ A o]

a
(zi—2j) zz—zl) 2 (Zi—%)(zi—2)

(4.18)

The terms with one 6; can be reduces as follows, using that 6; AL = —C*":
7 1.lp zul 7lv 7o .1.p ik gl zo] K AP AV
4 /g/ O:k" A7 A A - /ﬁ/ O:ki ASA; Ay [ Cok! A{]Al} (4.19)
2 (fi—Zj)(Zi—fl) 2 (Zi—Zj)(Zi—fl) 2 (Zi—Zj)(Zz—Zl)
ALA7

where we also used that ¢,q G = 0, because the denominator and the numerator

have different parity. The other term with one 6; is the complex conjugate of this expression.
The second term above also reproduces a similar term of the explicit result of eq. (4.12).

It is finally useful to simplify the terms with 6;0;, which due to €2 k**k¥ = 0, can be

v Vg
reduced to:
Qoo o Ok ALG KD AT of 0:0; (kY AL AD — k0 AN AY + kI ALAY)
q ki 2 (zi—%)(zi—2) L) (Zi—2;)(zi—21)

o 0:0; TP (k;, Az, Ay)
T G ()

, (4.20)

showing that this term is totally gauge invariant and local in gq.
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Next, consider the second line of eq. (4.16). It is easy to derive the following action:

(J{" M) * (J77 M) =

C[Pcﬂ] 7 C[pk‘M Cy[pky]
4Mn*z ak[pk“]log|zl Z]H__J.2+\/§ {i J}+ g

oy (zi—zj) 2% Zi—2Zj

Al a7 \/? 0kl A7
XZ —zl 2 Z2i— 2]

The antiholomorphic version of this is simply recovered by complex conjugation, i.e.

(4.21)

(77 My) * (JEP M) =

C[ Cf v] 7 QC[ V] C[Uku}
V] [ {i J} i
AM,, ; ak: k. log|zi—z;| + G zj)2 + 5 — :

[k 4] ALY
Ai” Af n / ﬁ/ Giki“ Af
Zi— 2] 2 zZi—2z
Let us call the terms in first square bracket L1, L2, L3 and L4, and the terms in the second
square bracket R1 and R2.

It is fairly easy to see that the multiplication of (L1 + L2 4 L3) x R1 produces terms
that can directly be matched with terms in eq. (4.12). The term L4 x R1 can be written as:

e CrE Abar [ GOk AGAY [ (AR AR,

2 (2i—2j) (zi—z1) zi—zj) (zi—21) zi—zj) (zi—21)

X (4.22)

I£i

The first term on the right hand side matches a similar term in eq. (4.12), while the second
term, which was rewritten using C; = —6;A;, remains unmatched.

All the terms multiplying R2 above also remain unmatched, however, they all can be
combined into a local, totally antisymmetric expression, due to §;C; = 0 and kl'k} =
Specifically we find:

[o AV] [0 v [cr 1/] =1 [u 70]
4 o o,V C C ! 20 7 C /gik'ﬂAP
24p90 /k‘[ ]loglzz Zj’+7j2+ @ {i ]} % 2_27_1
q-k; (Zi—%;) 2\ zZ—% 2 — 2 2 zi—z
ro_ TEVEF AP — RVEP A 4 KV KR AP
:gquei \/af A A A log |2 —zj|?
2 2 Zi— 7
| OTRVAL — CYRIAT + OYky AL | —CIRYAY — CYR{AT + CYRLAY
(zi—zj)(zi—21) (zi—zj)(zi—21)
b Jal TP (R Ky, A TP (ki Cyy A THP(k;, Cj, A
= a—qpé?i —(—Jl)log\zi—zj|2— - (7 =] f) — ( =] f) (4.24)
2 2 z—Z (Z—2z)(z—2) (zi—2)(5i—=)

Up to the totally antisymmetric terms local in ¢, there remains three terms that need
to be rewritten; one is an unmatched term in the explicit result of eq. (4.12), and the other
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two are the unmatched terms of eq. (4.19) and (4.23). Subtracting the latter two from the
former, we find:

o | ArArC 6, A1 Al A g Al AYAL

o 2(2 —%) +2Z 5 ZZ_ZI)—2Z

l# Z; o (zi—2;) (zi—21)

fec  (4.25)

Let us consider the expression when [ = j. Then the last term vanishes, since 0;4;A; = 0,
and we are left with (up to the prefactor and the complex conjugates):

1

(zi—2%)?

— 1 o ~v Ayl _ APARLY | o T’m’p(c_'i,ki?éj)
= a3 brose —cgers] =[5 T (420

where in the end we also used antisymmetry of the pvr indices. This shows that the terms

[;Amgég " 292-217,42[%51] _ [C”A“Ap Loraray

(zi—%)?

above for | = j form a gauge invariant combination. Next we consider the [ # j terms
(again suppressing the overall prefactors):

GALAVAY g A ALAL

(zi—zj)(zi—z) (zi—%)) (Zi—2)

l#£1,j
ArAy Ay
D N P S R () T
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where for the first equality we manipulated the summation indices i, j,[, for the second
equality we manipulated the expression using both uv antisymmetry and j,! symmetry.
Again the final expression is, consistently, a totally antisymmetric, gauge invariant term.

We are now in a position to write our entire result in terms of the totally antisymmetric
tensor. Adding also the bosonic part, derived in eq. (3.32) with ¢; — 0;¢;, we find:

My # (Sp+ S5 + 55) o) Z it JP“J”]”M — g, Ape (4.28)
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with
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As in the bosonic string, we conclude, based on the dilogarithmic terms, that the expression

above cannot be expressed as an operator acting on the lower point amplitude. In particu-
lar, we have not been able to see how supersymmetry could provide enough simplifications
for this to happen. We have not attempted to study the field theory implications of these
results, where especially the dilogarithmic terms should vanish, and the conclusions about
the order g factorization there remains an open question.

5 Conclusion

We have shown using gauge invariance that the soft behavior of the antisymmetric B-field is
fixed at the order ¢° in the soft momentum in amplitudes involving gravitons, dilatons and
other B-fields. We have furthermore explained why gauge invariance cannot fix completely
its soft behavior at order g, in contrast to the case of a soft graviton or dilaton. By using
the leading soft theorem, it is nevertheless possible to explicitly decompose the amplitude
into two separately gauge invariant parts to all orders in the soft momentum.

The new soft theorem provides, together with the soft theorems through the same order
for the graviton and dilaton, the basis for the unification of the three soft theorems, which
we have offered in eq. (1.9). This universal expression is a step towards understanding the
interplay between the infrared behaviors of Yang-Mills theory and gravity as Yang-Mills
squared theory [19].

We have explicitly checked the new soft theorem of the B-field in the bosonic string
as well as in superstrings, and we have furthermore computed the soft behavior through
order ¢ in both theories, expressed in terms of a convoluted integral of a hard and a soft
part. Based on the structure of the soft integrand we conclude in both theories that the
soft behavior at order g cannot be factorized in form of a soft theorem. As regards the
field theory limit of these expression, the conclusion remains an open question and should
be further studied.
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