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Abstract: In theories of Einstein gravity coupled with a dilaton and a two-form, a soft

theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In

this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons,

dilatons and B-fields in any tree-level scattering amplitude involving the three massless

states. The new soft theorem is fixed by means of on-shell gauge invariance and enters

at the subleading order of the graviton’s soft theorem. In contrast to the subsubleading

soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this

order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible

to establish a gauge invariant decomposition of the amplitudes to any order in the soft

expansion. We check explicitly the new soft theorem in the bosonic string and in Type

II superstring theories, and furthermore demonstrate that, at the next order in the soft

expansion, totally gauge invariant terms appear in both string theories which cannot be

factorized into a soft theorem.
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1 Introduction

There has been a huge effort in the last few years to connect the soft behavior of scattering

amplitudes of massless particles to underlying symmetries of the theory. This connection

has been made explicit in the case of gauge, gravity and higher-spin theories, where the soft

factorization theorems of the scattering amplitudes through subleading orders have been

shown to follow from their on-shell gauge invariance [1–5]. Their relation to asymptotic

symmetries were recently suggested [6, 7], and are now being being vastly explored (see

e.g. the recent review [8] and references therein, as well as the more recent paper [9], which

discusses also scalar soft theorems from asymptotic symmetries).

Similar results have, on the other hand, also recently been obtained in theories where

global internal [10–13] or global space-time symmetries [4, 14–18] are spontaneously broken.

In these cases, it is the spontaneously broken symmetry that determines the soft behavior

of amplitudes with soft Nambu-Goldstone bosons.

The focus of this paper concerns the gravitational S-matrix in theories of gravity cou-

pled with a dilaton and a two-form. It is well known from string theory that amplitudes of

this theory can be described in a unified way, which we in short will describe. Nevertheless,

while it is known that the graviton and dilaton obey soft theorems, a soft theorem for the

two form is still missing [19, 20]. The aim of this paper is to fill this gap, and to derive a

unified soft theorem valid universally for the graviton, dilaton and the two-form.

The two-form appears particularly in theories of supergravity and string theory, where

it is known as the Kalb-Ramond two-form B-field. In string theory it enters as a closed

string massless state accompanying the graviton and dilaton. Their soft behavior, and par-

ticularly the soft theorems obeyed by the string graviton and dilaton were recently derived
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in refs. [3, 20–26], extending the well-known graviton [27–30] and less-known dilaton [31, 32]

soft theorems from the 60s and 70s to one higher order. (See also refs. [33–38] for other

string theory related soft theorems.)

The B-field also appears in gravity as a double-copy Yang-Mills theory. An easy way to

understand this, which will later be useful, is by decomposing the double-copied Yang-Mills

field into its constituent fields:

Aµ(k)Ãν(k) =

[
AµÃν +AνÃµ

2
−

ε⊥µν√
D − 2

A · Ã

]
+

[
ε⊥µν√
D − 2

A · Ã

]
+

[
AµÃν −AνÃµ

2

]

= gµν(k) +
ε⊥µν√
D − 2

φ(k) +Bµν(k) (1.1)

where D is the number of spacetime dimensions and

ε⊥µν =
ηµν − kµk̄ν − kν k̄µ√

D − 2
, k2 = k̄2 = 0 , k · k̄ = 1 (1.2)

such that ηµνε⊥µν =
√
D − 2, and ε⊥µνε

⊥µν = 1, while k̄ is an unphysical reference mo-

mentum. The fields gµν , φ, and Bµν are naturally identified with the gravitational field,

the dilaton and the antisymmetric B-field, while ε⊥µν can be thought of as the dilaton

‘polarization tensor’ (or dilaton projector). By the Kawai-Lewellen-Tye [39] and Bern-

Carrasco-Johansson [40] relations, double-copied amplitudes of Yang-Mills theory can be

identified with amplitudes of gravity coupled with the dilaton and B-field, providing a

unified description for amplitudes involving any of the three fields.

From this double-copy construction one may näıvely expect that also the B-field should

obey soft theorems at the same order. After all, one may compute the amplitudes gener-

ically, and only in the end project the external states appropriately. However, the näıve

expectation turns out not to hold, and we will explain why.

It is useful to first review how the soft theorems for the graviton and dilaton can be

derived by using gauge invariance of the amplitude. Considering an (n+1)-point amplitude

involving double-copied Yang-Mills states, i.e. gravitons, dilatons, and B-fields, it is possible

to decompose it into two contributions, as depicted in figure 1. The decomposition of the

amplitude as given in figure 1 can be written as:

Mn+1 =

n∑
i=1

M3(q; ki)
1

(ki + q)2
Mn(ki + q) +Nn+1(q; ki) , (1.3)

where dependence on all other kj 6= ki is implicit. We are giving a special role to the

state carrying momentum q, since we will consider its soft behavior. By using the rela-

tion Mn = εµ11 ε̄ν11 · · · ε
µn
n ε̄νnn Mnµ1ν1...µnνn , the three-point amplitude entering in the above

expression can be rewritten in terms of differential operators acting on Mn, given by [2, 3]:

M3 (q, ki,−(ki + q)) = 2κDε
µ
q ε̄
ν
q

[
kiµ − iqρSi µρ

][
kiν − iqσS̄i νσ

]
, (1.4)

where κD is related to Newton’s constant by κD =

√
8πG

(D)
N and where

Si µρ = i

(
εiµ

∂

∂ερi
− εiρ

∂

∂εµi

)
; S̄i νσ = i

(
ε̄iν

∂

∂ε̄σi
− ε̄iσ

∂

∂ε̄νi

)
. (1.5)

– 2 –
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= +

q

ki

ki + q
M3

Mn+1

q

ki

ϵµi
i ϵ̄νii

ϵµq ϵ̄
ν
q

Mn Nn+1

q

ki

Figure 1. Decomposition of an n+1-point amplitude into a factorizing set, involving an exchange of

a particle between the three-point amplitude M3 and the n-point amplitude Mn, and the reminder

set of diagrams Nn+1, which excludes factorization through the former channel.

The two contributions in eq. (1.3) are not independently gauge invariant. We may

therefore use gauge invariance to put certain constraints on the remainder function Nn+1.

Considering the kinematical region where q � ki for any i, eq. (1.3) can be expanded in q.

At tree-level, Nn+1 does not have any poles in q and hence at leading order one recovers

Weinberg’s soft theorem (loops do not modify this leading order result, see e.g. [41, 42] for

a recent discussion):

Mn+1 = κDεq µε̄q ν

n∑
i=1

kµi k
ν
i

ki · q
Mn(ki) +O(q0) (1.6)

Actually, the previous expression is valid not only for hard massless particles, but also for

any kind of massive particles with arbitrary spin. To project the previous expression on the

physical states, one takes εq µε̄q ν = εq µν to be the polarization tensor of either the graviton,

dilaton or B-field. If the soft state is projected onto the B-field, whose polarization tensor

is antisymmetric, this leading expression clearly vanishes, but also if it is projected onto the

dilaton, since ε⊥q µν k
µ
i k

ν
i = k2

i +O(q) = 0 +O(q). Only the graviton has a leading nonzero

singular soft behavior. The expression is gauge invariant due to momentum conservation∑
i=1 k

µ
i = 0 +O(q).

At every other order in the soft expansion, the two types of contributions are related

by gauge invariance; that is, by

qµε̄νM
µν
n+1 = qνεµM

µν
n+1 = 0 . (1.7)

These two conditions are sufficient to fix completely the orders q0 and q1 in the soft expan-

sion of the amplitude, when Mµν
n+1 is symmetric in its indices µν; i.e. when the soft state

is either a graviton or a dilaton [2, 3]. We will in this work additionally show that if the

soft state is a B-field, i.e. if Mµν
n+1 is antisymmetric in µν, this construction is sufficient to

fix completely its order q0 soft behavior, with the result being:

Mn+1 = −iκDεBq µν
n∑
i=1

[
kνi qρ
ki · q

(Si − S̄i)µρ −
1

2
(Si − S̄i)µν

]
Mn(ki, εi, ε̄i) +O(q) , (1.8)

– 3 –
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where εBq µν = 1
2 (εq µε̄q ν − εq ν ε̄q µ) is the polarization tensor of the B-field. The Kalb-

Ramond soft operator, differently from the graviton case, depends only on the spin angular

momentum operator. This result is consistent with the ‘holomorphic soft theorem’ for the

B-field found in the bosonic string in ref. [20] (further details are given in section 3.1).

The leading soft theorem for the B-field can be added to the corresponding expression

derived for the dilaton and graviton [3, 20, 23] to define a unified operator that collects the

soft behaviour of amplitudes in theories of gravity coupled to a dilaton and a two form.

The full soft operator then turns out to be:

Mn+1 = κDεq,µε̄q,ν

n∑
i=1

[
kµi k

ν
i

ki · q
− i

2

kµi qρ
(
Li + 2S̄i

)νρ
ki · q

− i

2

kνi qρ
(
Li + 2Si

)µρ
ki · q

+
i

2

(
Sµν − S̄µν

)]
Mn +O(q) (1.9)

This expression generically reproduces the soft behavior of the graviton, dilaton and B-field

upon symmetrization, respectively, antisymmetrization of the polarization vectors εq,µε̄q,ν .

As such, it can be considered the soft theorem of double-copied Yang-Mills theory.

As we will also show, contrary to the case of the dilaton and graviton, it is not possible

to fix completely the term of order q in the soft behavior of the B-field by this construction.

To explain why, let us note that a caveat in the construction above is that the quantity Nn+1

in eq. (1.3) may, at a particular order in q, contain terms local in q that are independently

gauge invariant. Such terms can for obvious reasons not be related to the factorizing set

of diagrams by gauge invariance. For the graviton and dilaton, this is avoided through

order q in the soft momentum, since the most general local expression for a gauge invariant

symmetric two-index tensor is of O(q2) [2]:

EµνS = qρqσA
ρµAσν (1.10)

where, due to gauge invariance, Aρµ = −Aµρ is an antisymmetric function constructed out

of the momenta and polarization vectors of the external states, and is furthermore a local

function in q.

For the antisymmetric B-field, however, things are different, since it is possible to write

a general expression for an antisymmetric two-index tensor local in q, which obeys gauge

invariance starting already at O(q):

EµνA = qρA
ρµν , (1.11)

where Aρµν is a totally antisymmetric tensor constructed from the external momenta and

polarizations, and is furthermore a local function in q. For this reason one is not able to

constraint Nn+1 through order q in the case of a soft B-field. It is nevertheless possible

to decompose the amplitude through any order in the soft expansion into two separately

– 4 –



J
H
E
P
1
0
(
2
0
1
7
)
0
1
7

gauge invariant parts, as follows using the notation v[µwν] = 1
2 (vµwν − vνwµ):

Mn+1(q, ki) = εBq µν qρA
ρµν(q, ki)− iκDεBq µν

n∑
i=1

{
1

2

[
Sµνi − S̄

µν
i

]
(1.12)

+
1

ki · q

[
qρ

(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
+ iqρqσ

(
S
ρ[µ
i S̄

ν]σ
i

)]}
Mn(ki + q, εi, ε̄i) .

where one part remains unconstrained due to the preceding discussion, but is local in q,

while the other part factorizes as a soft theorem (one can Taylor expand Mn(ki + q)).

The factorizing part encodes the soft theorem, as well as containing all terms needed to

gauge covariantize the first part of eq. (1.3) involving M3. This expression can essentially

be seen as the main consequence of the B-field obeying a soft theorem. As we will show

in section 2, the order q factorizing terms can compactly be written in terms of angular

momentum operators.

We will in this work first derive the above summarized results and then explicitly

derive the soft behavior of the Kalb-Ramond B-field both in the bosonic string and in

superstrings. We confirm the proposed soft relations, and furthermore we provide explicit

expression for Aρµν showing that it is non-zero. In particular, we will see that the Bloch-

Wigner dilogarithm appears in Aρµν in both string theories, which leads us to conclude

that Aρµν cannot be written as a soft theorem. As regards the field theory limit, the form

of Aρµν remains to be understood.

Let us conclude the introduction with the following two remarks. The soft theorem in

eq. (1.9) has been derived from eq. (1.3) after including, as a three-point amplidude, the

expression in eq. (1.4) corresponding to the coupling of the soft massless particle with two

other hard massless particles. This procedure can be easily generalized to the case in which

the two hard particles are massive with an arbitrary spin by using as M3 the corresponding

three-point amplitude. The second remark concerns the possibility of getting for the two-

form RR field of type IIB theory a soft theorem similar to the one that we have obtained

for the Kalb-Ramond field. One would expect so as a consequence of the fact that the

two-form fields are exchanged under the S-duality symmetry of type IIB theory. However,

we have not been able to show this by using the gauge invariance argument as done above

and the explicit calculation of amplitudes containing two RR fields is much more involved.

We hope to come back to this problem in the near future.

The paper is organized as follows: in section 2 we show that on-shell gauge invariance

fixes the leading soft behavior (of order q0) of the B-field in tree-level amplitudes, while

the subleading part (of order q) can only be partially fixed. In section 3 and 4 we explicitly

compute amplitudes in the bosonic, respectively, the supersymmetric string theory involv-

ing a soft Kalb-Ramond state to confirm the new soft theorem as well as to show that the

subleading soft behavior cannot be factorized. In section 5 we provide our conclusions.

– 5 –
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2 Soft theorem for Bµν from gauge invariance

In this section we derive the soft theorem for the antisymmetric tensor Bµν in an amplitude

with only massless particles, i.e. Kalb-Ramond fields, gravitons and dilatons. We will see

that, unlike for the graviton and dilaton, in the case of the antisymmetric tensor we can

only determine the soft behavior through order q0. The soft behavior of order q1 cannot

be fixed by gauge invariance.

Let us start from the pole term given by the diagrams where the soft particle is

attached to one of the other external particles, as depicted in figure 1. As explained

in the introduction their sum is given by (we define Mn+1 = εµq ε̄νqMµν)

Mpole
µν = κD

n∑
i=1

[kiµ − iqρSµρ][kiν − iqσS̄νσ]

ki · q
Mn(ki + q) , (2.1)

where ki and q were put on shell, i.e. k2
i = q2 = 0, the polarization tensors εµq ε̄νq were

stripped off, and

Si µρ = i

(
εiµ

∂

∂ερi
− εiρ

∂

∂εµi

)
; S̄i νσ = i

(
ε̄iν

∂

∂ε̄σi
− ε̄iσ

∂

∂ε̄νi

)
. (2.2)

In the case of a soft antisymmetric tensor, where Mpole
µν is antisymmetric under the exchange

of the indices µ and ν, the expression reduces to:

Mpole
µν = κD

n∑
i=1

−iki[µqσS̄i ν]σ − iki[νqρSi µ]ρ − qρSi [µρqσS̄i ν]σ

ki · q
Mn(ki + q) , (2.3)

where v[µwν] = 1
2 (vµwν − vνwµ). The previous expression is not gauge invariant, i.e. it is

not vanishing when we saturate it with qµ or qν . It is possible, however, to add to it a

term, local in q, which will make it gauge invariant, i.e.:

Mµν = κD

n∑
i=1

[
−iki[µqσS̄i ν]σ − iki[νqρSi µ]ρ − qρSi [µρqσS̄i ν]σ

ki · q

+
i

2

(
Si µν − S̄i µν

)]
Mn(ki + q) +Nµν(q; ki) , (2.4)

where Nµν is now the antisymmetric gauge-invariant remainder of the amplitude. It is easy

to see that the expression in the square bracket above vanishes when we saturate it with qµ

or qν . Gauge invariance then implies the following conditions on the additional term Nµν :

qµNµν(q; ki) = qνNµν(q; ki) = 0 . (2.5)

Expanding around q = 0, at the lowest order, we get two conditions:

qµNµν(q = 0) = qνNµν(q = 0) = 0 (2.6)

that are for Nµν = −Nνµ consistent with

Nµν(q = 0) = 0 . (2.7)

– 6 –
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At the next order in the soft momentum q we get

qµqρ
∂

∂qρ
Nµν(q = 0) = qνqρ

∂

∂qρ
Nµν(q = 0) = 0 , (2.8)

which implies that

∂

∂qρ
Nµν(q = 0) = Aρµν , (2.9)

where Aρµν is a completely antisymmetric tensor under the exchange of the three indices,

and is only a function of the momenta and polarizations of the hard external particles.

Notice that the tensor Nµν contains in general higher powers in the soft momentum q.

Since Nµν(q; ki) = qρAρµν(ki) + O(q2) and since we assume that it is local in q, we may

just as well express it as:

Nµν(q; ki) = qρAρµν(q, ki) , (2.10)

to all orders in q, and automatically satisfying eq. (2.5), where now Aρµν(q, ki) contains all

the higher order terms in q. We end up with:

Mµν = −κD
n∑
i=1

[
iki[µq

σS̄i ν]σ + iki[νq
ρSi µ]ρ + qρSi [µρq

σS̄i ν]σ

ki · q

− i
2

(
Si µν − S̄i µν

)]
Mn(ki + q) + qρAρµν(q, ki) . (2.11)

This is an exact relation between the n+1 and n-point amplitudes, valid to any order in the

soft expansion. Obviously, since the last term is gauge invariant, Aρµν cannot be fixed by

gauge invariance of the amplitude. To conclude, in the case of a soft antisymmetric tensor

scattering on other massless states, gauge invariance fixes the amplitude only through the

order q0. The term of order q contains a totally antisymmetric tensor that cannot be fixed

by gauge invariance.

It is convenient for later use to introduce a new tensor Ãρµν for the leading order

expression of Aρµν , in the following way

Aρµν(q=0, ki) = Ãρµν(ki) (2.12)

− i
2
κD

n∑
i=1

[(
Si − S̄i

)
µν

∂

∂kρi
−
(
Si − S̄i

)
ρν

∂

∂kµi
−
(
Si − S̄i

)
µρ

∂

∂kνi

]
Mn(ki)

This is possible since the operator in the squared bracket is just another totally antisym-

metric tensor. Expanding eq. (2.11) and inserting this alternative expression for Aρµν at

leading order, we arrive at

Mµν =− iκD
n∑
i=1

{
qρk

[ν
i (Si − S̄i)µ]ρ

ki · q
− 1

2
(Si − S̄i)µν + qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]
(2.13)

+
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]}
Mn(ki, εi, ε̄i) + qρ Ã

ρµν(ki)+O(q2)

– 7 –
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where ∂µi ≡ ∂/∂kiµ. This expression can be written more compactly, by defining holomor-

phic and antiholomorphic total angular momentum operator, as follows:

Jµνi = Lµνi + Sµνi , J̄µνi = Lµνi + S̄µνi , Lµνi = i (kµi ∂
ν
i − kνi ∂

µ
i ) , (2.14)

These operators especially turn useful, when considering the action on superstring ampli-

tude. Let us consider the operator:

εBq µν

n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i = εBq µν

n∑
i=1

qρqσ
ki · q

[
L
ρ[µ
i L

ν]σ
i + L

ρ[µ
i S̄

ν]σ
i + S

ρ[µ
i L

ν]σ
i + S

ρ[µ
i S̄

ν]σ
i

]
(2.15)

Considering the first term on the right-hand side, it can be shown to vanish due to anti-

symmetry and transversality of εBqµν , as well as the mass-shell condition q2 = 0. Therefore

we get, after inserting the explicitly expression for Li,

εBq µν

n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i = εBq µν

n∑
i=1

{
qρqσ
ki · q

[
i(S

ρ[µ
i − S̄ρ[µ

i )k
ν]
i ∂

σ
i + S

ρ[µ
i S̄

ν]σ
i

]
− iqρ(Sρ[µ

i − S̄ρ[µ
i )∂

ν]
i

}
(2.16)

which is exactly equal to the order q factorized part of eq. (2.13). In other words, we find

a more compact form for the expanded amplitude through order q, reading:

Mn+1 = κDεµε̄ν

n∑
i=1

{
i

2
(Si − S̄i)µν + i

qρk
[µ
i (Si − S̄i)ν]ρ

ki · q
+
qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i

}
Mn(ki, εi, ε̄i)

+ εµε̄ν qρ Ã
ρµν(ki, εi, ε̄i) +O(q2) . (2.17)

where we used that the contraction of µν is antisymmetric, and we can thus equally write

εBµν → εµε̄ν . Notice that we could also trivially rewrite the first two terms in the right-hand

side of the previous expression in terms of Ji and J̄i, since Ji−J̄i = Si−S̄i. One may wonder

whether the part that remains unfixed by gauge invariance also factorizes in terms of a

soft and a hard part due to some other property of the amplitude. In the subsequent two

sections we investigate this question by computing explicitly the unfactorized part involving

Ãρµν in the bosonic string as well as in the superstring. Our conclusion to this question is

negative, nevertheless, we provide the details and explicit expressions that may be useful

in other regards. The conclusion about the field theory limit of Ãρµν remains open.

3 Soft scattering of Bµν in the bosonic string

For the derivation of the scattering amplitude involving n+ 1 massless closed string states

in the bosonic string we refer to section 2 in ref. [23]. Therein it was shown that the

(n+ 1)-point amplitude, Mn+1, can be written as a convolution

Mn+1 = Mn ∗ S , (3.1)

where Mn is just the n-point amplitude, and where by ∗ a convolution of integrals is

understood, and S carries all the information of the additional external state. The point
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is that the computation of the soft behavior of Mn+1 is equivalent to computing the soft

expansion of S. Let us quote the expressions for Mn and S:

Mn =
8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc

∫ [ n∏
i=1

dϕi

n∏
i=1

dϕ̄i

]∏
i<j

|zi − zj |α
′kikj

× exp

[
−
∑
i<j

ϕiϕj
(zi − zj)2

(εiεj) +

√
α′

2

∑
i 6=j

ϕi(εikj)

zi − zj

]

× exp

[
−
∑
i<j

ϕ̄iϕ̄j
(z̄i − z̄j)2

(ε̄iε̄j) +

√
α′

2

∑
i 6=j

ϕ̄i(ε̄ikj)

z̄i − z̄j

]
,

(3.2)

and

S ≡κD
∫
d2z

2π

n∑
i=1

(
ϕi

(εqεi)

(z − zi)2
+

√
α′

2

(εqki)

z − zi

)
n∑
j=1

(
ϕ̄j

(ε̄q ε̄j)

(z̄ − z̄j)2
+

√
α′

2

(ε̄qki)

z̄ − z̄i

)

× exp

[
−
√
α′

2

n∑
i=1

ϕi
(εiq)

z − zi

]
exp

[
−
√
α′

2

n∑
i=1

ϕ̄i
(ε̄iq)

z̄ − z̄i

]
n∏
i=1

|z − zi|α
′qki ,

(3.3)

where zi are the Koba-Nielsen variables of the hard states, and z is for the soft state.

Grassmannian variables ϕi have been introduced and in this notation εi, the holomorphic

polarization vector of the massless closed states, are also Grassmannian, and likewise for

the antiholomorphic counterparts, denoted with a bar. ki are the momenta of the hard

states, while q is for the soft state, and α′ is the string Regge slope.

The expansion of S was computed in the decomposition:

S = κD (S1 + S2 + S3) +O(q2) , (3.4)

defined by:

S1 =
α′

2

∫
d2z

2π

n∑
i=1

(εqki)

z − zi

n∑
j=1

(ε̄qkj)

z̄ − z̄j

n∏
i=1

|z − zi|α
′qki (3.5)

×

{
1−

√
α′

2

n∑
k=1

(
ϕk

(εkq)

z − zk
+ ϕ̄k

(ε̄kq)

z̄ − z̄k

)
+

1

2

(
α′

2

)

×

[(
n∑
h=1

ϕh
(εhq)

z − zh

)2

+

(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)2

+ 2

(
n∑
h=1

ϕh
(εhq)

z − zh

)(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)]}
,

S2 =

∫
d2z

2π

n∑
i=1

(
ϕi

(εqεi)

(z − zi)2

) n∑
j=1

(
ϕ̄j

(ε̄q ε̄j)

(z̄ − z̄j)2

) n∏
`=1

|z − z`|α
′qk` (3.6)

×

{
1−

√
α′

2

n∑
k=1

(
ϕk

εkq

z − zk
+ ϕ̄k

(ε̄kq)

z̄ − z̄k

)
+

1

2

(
α′

2

)

×

[(
n∑
h=1

ϕh
(εhq)

z − zh

)2

+

(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)2

+ 2

(
n∑
h=1

ϕh
(εhq)

z − zh

)(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)]}
,
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S3 =

√
α′

2

∫
d2z

2π

n∑
i=1

n∑
j=1

[(
ϕi(εqεi)

(z − zi)2

)(
(ε̄qkj)

z̄ − z̄j

)
+

(
ϕ̄i(ε̄q ε̄i)

(z̄ − z̄i)2

)(
(εqkj)

z − zj

)] n∏
`=1

|z − z`|α
′qk`

×

{
1−

(√
2α′

2

)
n∑
k=1

(
ϕk

εkq

z − zk
+ ϕ̄k

(ε̄kq)

z̄ − z̄k

)
+

1

2

(
α′

2

)

×

[(
n∑
h=1

ϕh
(εhq)

z − zh

)2

+

(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)2

+ 2

(
n∑
h=1

ϕh
(εhq)

z − zh

)(
n∑
h=1

ϕ̄h
(ε̄hq)

z̄ − z̄h

)]}
.

(3.7)

Each part was further split in S
(a)
i , a=0,1,2, with the index a labelling the order of expansion

in q of the integrand modulo the factor |z−zl|α
′qkl , which has to be integrated. The explicit

results for S
(a)
i can be found in ref. [23], and apply to any massless closed-string state. Here

we are interested in the antisymmetric part in εµq ε̄νq of those expressions. First, the result

for S
(0)
1 is:

S
(0)
1 |B = εBµνq

n∑
i 6=j 6=m

kiµkjν

(
α′

2

)2

(qkm)

[
Li2

(
z̄i − z̄m
z̄i − z̄j

)
− Li2

(
zi − zm
zi − zj

)

+ log
|zi − zj |
|zi − zm|

log

(
zm − zj
z̄m − z̄j

z̄i − z̄j
zi − zj

)]
+O(q2) . (3.8)

We can show that the part in the square bracket is just the Bloch-Wigner Dilog, which is

analytic and continuous.1 Denoting ζ ≡ (zi−zm)/(zi−zj) we can write the square bracket

of the antisymmetric part as:

Li2(ζ̄)− Li2(ζ)− log |ζ| log

(
1− ζ
1− ζ̄

)
= −2i(Im(Li2(ζ)) + arg(1− ζ) log |ζ|)

= −2iD2(ζ) (3.9)

where in the second line we identified the Bloch-Wigner dilog, denoted as D2. This function

has the following properties (as well as many other, not relevant here):

• It is a real function on C, and analytic except at the points ζ = {0, 1}, where it

is only continuous, but not differentiable. For us, ζ never takes these values, since

zi 6= zm 6= zj .

• It has a six-fold symmetry:

D2(ζ) = D2(1− ζ−1) = D2

(
1

1−ζ

)
= −D2(ζ−1) = −D2(1− ζ) = −D2

(
ζ
ζ−1

)
and furthermore D2(ζ̄) = −D2(ζ), thus D2(R\{0, 1}) = 0.

The antisymmetric part of S
(0)
1 can thus be written as

S
(0)
1 |B = iεBµνq

n∑
i 6=j 6=m

(kiνkjµ − kiµkjν)

(
α′

2

)2

(qkm)D2

(
zi−zm
zi−zj

)
(3.10)

1We thank Lance Dixon for pointing this out to us during the Nordita program Aspects of Amplitudes.
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It can be checked that this expression is gauge-invariant by itself by using e.g. the relation

D2(ζ) = D2( 1
1−ζ ). In fact, we can write it in the form of eq. (1.11), making it explicitly

gauge invariant:

S
(0)
1 |B = iεBqµν

(
α′

2

)2

qρ

n∑
i 6=j 6=m

2

3

[
kρmk

[ν
i k

µ]
j + kνmk

[µ
i k

ρ]
j + kµmk

[ρ
i k

ν]
j

]
D2

(
zi−zm
zi−zj

)
, (3.11)

where the symmetry properties of D2 were used to completely antisymmetrize the expres-

sion in the square bracket in the indices ρνµ.

It is convenient also for later use to introduce the tensorial function:

T ρµν(V,X, Y ) =
1

2
(V ρXµY ν − V ρXνY µ + V µXνY ρ

−V µXρY ν − V νXµY ρ + V νXρY µ) (3.12)

which is totally antisymmetric in its indices ρµν and in its variables V,X, Y .

In terms of this function, we compactly have:

S
(0)
1 |

µν
B =

2i

3

(
α′

2

)2 n∑
i 6=j 6=m

qρT
ρµν(ki, kj , km)D2

(
zi−zm
zi−zj

)
. (3.13)

where we stripped off the polarization tensor.

The antisymmetric part of all other S
(a)
i is simply obtained by antisymmetrizing the

expressions derived in refs. [20, 23] in the polarization indices of the soft state, leading to:

S
(1)
1 |

µν
B =

√
α′

2

∑
i 6=j

{
k

[µ
i k

ν]
j

qki

ϕiεiq

zi−zj

[
1 +

∑
l 6=i

α′qkl log |zi−zl|

]

+ α′k
[µ
i k

ν]
j

[
ϕiεiq

2(zi−zj)
+
∑
l 6=i

ϕlεlq

zi−zl
log |zi−zj | −

∑
l 6=i,j

ϕlεlq

zi−zl
log |zj−zl|

]}
+ c.c.

(3.14)

S
(2)
1 |

µν
B =− α′

2

n∑
i 6=j

(
k

[µ
i k

ν]
j

qki

(ϕiεiq)

(zi−zj)
∑
l 6=i

(
ϕlεlq

(zi − zl)
+

ϕ̄lε̄lq

(z̄i−z̄l)

)
+ c.c.

)

+
α′

2

n∑
i 6=j 6=l

k
[µ
j k

ν]
l

qki

(ϕiεiq)(ϕ̄iε̄iq)

(zi−zj)(z̄i−z̄l)
(3.15)

S
(0)
2 |

µν
B =

α′

2

n∑
i 6=j

∑
l 6=i

{
(qkj)(qkl)

qki

(ϕiε
[µ
i )(ϕ̄iε̄

ν]
i )

(zi−zj)(z̄i−z̄l)

+
(ϕiε

[µ
i )(ϕ̄j ε̄

ν]
j )(qkl) + (ϕlε

[µ
l )(ϕ̄iε̄

ν]
i )(qkj) + (ϕlε

[µ
l )(ϕ̄j ε̄

ν]
j )(qki)

(zi−zl)(z̄i−z̄j)

}
, (3.16a)

– 11 –



J
H
E
P
1
0
(
2
0
1
7
)
0
1
7

S
(1)
2 |

µν
B =

√
α′

2

n∑
i 6=j

∑
l 6=i

{
qkl
qki

(
(ϕiε

[µ
i )(ϕjεjq)− (ϕjε

[µ
j )(ϕiεiq)

)
(ϕ̄iε̄

ν]
i )

(zi−zj)2(z̄i−z̄l)

+

(
(ϕiε

[µ
i )(ϕlεlq)− (ϕlε

[µ
l )(ϕiεiq)

)
(ϕ̄j ε̄

ν]
j )

(z̄i−z̄j)(zi−zj)2

}
+ c.c. , (3.16b)

S
(2)
2 |

µν
B =

∑
i 6=j

1

qki

∑
l 6=i

(
(ϕiε

[µ
i )(ϕjεjq)− (ϕjε

[µ
j )(ϕiεiq)

(zi−zj)2

)(
(ϕ̄iε̄

ν]
i )(ϕ̄lε̄lq)− (ϕ̄lε̄

ν]
l )(ϕ̄iε̄iq)

(z̄i−z̄l)2

)
,

(3.16c)

S
(0)
3 |

µν
B =

√
α′

2

n∑
i 6=j

[
k

[ν
i (ϕiε

µ]
i )

zi−zj
qkj
qki
−
k

[ν
j (ϕiε

µ]
i )

zi−zj
+
α′

2

k
[ν
i (ϕiε

µ]
i )qkj − k[ν

j (ϕiε
µ]
i )qki

zi−zj

+ α′
∑
l 6=i

[(qkl)k
[ν
i − (qki)k

[ν
l ](ϕjε

µ]
j )− (qkj)k

[ν
l (ϕiε

µ]
i )

zi−zj
log |zi−zl|

+ α′
∑
l 6=i

(qkj)(qkl)

qki

k
[ν
i (ϕiε

µ]
i )

zi−zj
log |zi−zl|

]
+ c.c. , (3.17a)

S
(1)
3 |

µν
B =

n∑
i 6=j

{
(ϕjεjq)(ϕiε

[µ
i )

(zi − zj)2

(
k
ν]
i

kiq
−
k
ν]
j

kjq

)
−α′

(ϕiεiq)(ϕjε
[µ
j )k

ν]
i

(zi − zj)2

∑
l 6=i

qkl
qki

log |zi−zl|

−α′
∑
l 6=i

qkl
qki

(ϕjεjq)(ϕiε
[µ
i )k

ν]
i

zi−zj

(
1

2(zi−zl)
− log |zi−zl|

(zi − zj)

)

−α
′

2

∑
l 6=i

qkl
qki

(ϕiε
[µ
i )(k

ν]
i ϕ̄j ε̄jq + k

ν]
j ϕ̄iε̄iq)

(z̄i−z̄j)(zi−zl)

+ α′
∑
l 6=i

(ϕiεiq)(ϕjε
[µ
j )k

ν]
l

(zi − zj)2
log |zi−zl|

+ α′
∑
l 6=i

(ϕjεjq)(ϕiε
[µ
i )k

ν]
l

zi−zj

(
1

2(zi−zl)
− log |zi−zl|

(zi − zj)

)

− α′

2

∑
l 6=i

(ϕjε
[µ
j )(k

ν]
l ϕ̄iε̄iq + k

ν]
i ϕ̄lε̄lq)

(zi−zj)(z̄i−z̄l)

}
+ c.c. , (3.17b)

S
(2)
3 |

µν
B =

√
α′

2

n∑
i 6=j

1

qki

[
n∑

l 6=i,j

(ϕlεlq)((ϕjε
[µ
j )k

ν]
i (ϕiεiq)− (ϕiε

[µ
i )k

ν]
i (ϕjεjq))

(zi−zj)2(zi−zl)

+
(ϕjε

[µ
j )(ϕiεiq)− (ϕiε

[µ
i )(ϕjεjq)

(zi−zj)2

∑
l 6=i

(
k
ν]
i ϕ̄lε̄lq + k

ν]
l ϕ̄iε̄iq

)
(z̄i−z̄l)

]
+ c.c. . (3.17c)

We note that when taking the complex conjugate one must also exchange the indices µ↔ ν,

since εBqµν = −εBqµν = εBqνµ, which follows from the decomposition εq µν = εqµε̄q ν .
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3.1 The soft theorem

The terms of O(q0) appear in eqs. (3.14), (3.17a) and (3.17b) only. Summarizing, they read:

S|µνB =
∑
i 6=j

{√
α′

2

k
[µ
i k

ν]
j

qki

ϕiεiq

zi−zj
+

√
α′

2

k
[ν
i (ϕiε

µ]
i )

zi−zj
qkj
qki
−
√
α′

2

k
[ν
j (ϕiε

µ]
i )

zi−zj

+
((ϕjεjq)(ϕiε

[µ
i )− (ϕiεiq)(ϕjε

[µ
j ))k

ν]
i

(kiq)(zi − zj)2

}
+ c.c +O(q) (3.18)

The soft theorem proposed to reproduce this is:

Mµν
B = −i

n∑
i=1

[
k

[ν
i qρ(Si − S̄i)µ]ρ

qki
− 1

2
(Si − S̄i)µν

]
Mn(ki, εi, ε̄i) +O(q). (3.19)

Using that

−iSµρi Mn = Mn ∗

∑
j 6=i

(ϕiε
µ
i )(ϕjε

ρ
j )− (ϕjε

µ
j )(ϕiε

ρ
i )

(zi−zj)2
+

√
α′

2

∑
j 6=i

(ϕiε
µ
i )kνj − k

µ
j (ϕiε

ρ
i )

zi−zj


(3.20)

it is straightforward to see that eq. (3.19) exactly reproduces eq. (3.18). In order to check

this, we note that the terms with two ϕ’s produced by (Si − S̄i)µν vanishes over the sum,

due to opposite parity of the numerator and denominator in the exchange of i↔ j.

We additionally like to make the remark that the soft operator in eq. (3.19) follows

also from earlier considerations in refs. [3, 20], where it was noticed that the explicit

result in eq. (3.18) can be reproduced by the following ‘holomorphic’ soft theorem: by

separating the string amplitude into a holomorphic and an antiholomorphic part, and

promoting the momentum in the antiholomorphic sector to a (spurious) ‘antiholomorphic’

momentum, k → k̄, it can be shown that both the bosonic string amplitude and the

superstring amplitude at O(q0) can, for any soft state, be equivalently written as:

Mn+1 = −iεµε̄ν
n∑
i=1

[
qρk̄

ν
i (Li + Si)

µρ

qki
+
qρk

µ
i (L̄i + S̄i)

νρ

qki

]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

+O(q)

(3.21)

where L̄i denotes the antiholomorphic angular momentum operator that acts on the k̄

quantities. The notation |k=k̄ means that the k̄ is, after the action, identified again with

the physical momentum k. In ref. [3] it was shown that when the soft state is symmetrically

polarized, i.e. εµε̄ν → εSµν , then the above expression is easily seen to match the known sub-

leading graviton soft theorem, while in ref. [20] it was remarked that for an antisymmetric

soft state the expression reduces to:

Mn+1 = −iεµε̄ν
n∑
i=1

[
1

2
(Li − L̄i)µν +

kνi qρ
kiq

(Si − S̄i)µν
]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

+O(q) (3.22)
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Now, notice that under a gauge transformation for the Kalb-Ramond field, εBq µν → εBq µν +

qµχν − qνχµ, the amplitude changes as follows

Mn+1 →Mn+1 + iqρχµ

n∑
i=1

[
(Li + Si)

µρ − (L̄i + S̄i)
µρ
]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

. (3.23)

Since for any qρ and any χµ the additional term has to vanish, the following identity

must hold

n∑
i=1

(Li − L̄i)µρMn(ki, εi; k̄i, ε̄i)
∣∣∣
k=k̄

=
n∑
i=1

(S̄i − Si)µρMn(ki, εi; k̄i, ε̄i)
∣∣∣
k=k̄

, (3.24)

which can be checked by a direct calculation. From this we conclude that eq. (3.22) for an

antisymmetric soft state reduces to:

Mn+1 = −iεBµν
n∑
i=1

[
1

2
(Sνµi − S̄

νµ
i ) +

qρk
[ν
i (Si − S̄i)µ]ρ

qki

]
Mn(ki, εi; k̄iε̄i)

∣∣∣
k=k̄

+O(q) (3.25)

Since this expression no longer involves the L̄ operator, we may readily identify k̄ = k,

making Mn(ki, εi; k̄iε̄i) = Mn the physical n-point amplitude. This reproduces, and thus

confirms once again, the soft theorem in eq. (3.19).

3.2 The order q soft behavior

While there does not exist a complete soft operator reproducing the terms at O(q), we

are still able to greatly reduce the terms into a gauge invariant part that factorizes, and a

gauge invariant part that can be written in terms of a totally antisymmetric tensor.

The soft behavior is proposed to admit the form:

Mµν =− i
n∑
i=1

{
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]
(3.26)

+ qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]}
Mn(ki, εi, ε̄i) + qρ Ã

ρµν(ki) +O(q2)

The action of the soft operators on the lower-point amplitude read:

− i
n∑
i=1

qρqσ
ki · q

(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi Mn = Mn ∗

∑
i 6=j

k
[ν
i

ki · q

×

[
α′qkj log |zi−zj | −

√
α′

2

ϕjεjq

zi−zj
−
√
α′

2

ϕ̄j ε̄jq

z̄i−z̄j

]

×
∑
l 6=i

[
(ϕiε

µ]
i )(ϕlεlq)− (ϕiεiq)(ϕlε

µ]
l )

(zi−zl)2
+

√
α′

2

(ϕiε
µ]
i )(kl · q)− (ϕiεiq)k

µ]
l

zi−zl

]
+ c.c (3.27)
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n∑
i=1

qρqσ
ki · q

S
ρ[µ
i S̄

ν]σ
i Mn = Mn ∗

∑
i=1

1

ki · q

×
∑
j 6=i

[
(ϕiε

[µ
i )(ϕjεjq)− (ϕiεiq)(ϕjε

[µ
j )

(zi−zj)2
+

√
α′

2

(ϕiε
[µ
i )(kj · q)− (ϕiεiq)k

[µ
j

zi−zj

]

×
∑
l 6=i

[
(ϕ̄iε̄

ν]
i )(ϕ̄lε̄lq)− (ϕ̄iε̄iq)(ϕ̄lε̄

ν]
l )

(z̄i−z̄l)2
+

√
α′

2

(ϕ̄iε̄
ν]
i )(kl · q)− (ϕ̄iε̄iq)k

ν]
l

z̄i−z̄l

]
(3.28)

− i
n∑
i=1

qρqρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]
Mn

= Mn ∗
∑
i 6=j

[
α′k

[ν
j log |zi−zj | −

√
α′

2

(ϕjε
[ν
j )

zi−zj
−
√
α′

2

(ϕ̄j ε̄
[ν
j )

z̄i−z̄j

]

×
∑
l 6=i

[
(ϕiεiq)(ϕlε

µ]
l )− (ϕiε

µ]
i )(ϕlεlq)

(zi−zl)2
+

√
α′

2

(ϕiεiq)k
µ]
l − (ϕiε

µ]
i )(kl · q)

zi−zl

]
+ c.c. (3.29)

It is now a straightforward, but very tedious task, to show that all terms in

eqs. (3.14)–(3.17c) which have a 1/q-pole exactly match the terms given by eq. (3.27)

and (3.28). These simply come from the Feynman diagrams where the soft state is at-

tached to an external leg. This confirms that all other Feynman diagrams only produce

terms that are local in q.

Most of the terms given by eq. (3.29) also matches similar terms in the explicit expres-

sions eq. (3.14)–(3.17c). However, the term involving ϕiϕjϕl in eq. (3.29) does not have a

counterpart in the explicit expressions. It therefore has to be gauge invariant on its own,

and indeed:

−i
n∑
i=1

qρS
ρ[µ
i ∂

ν]
i Mn|ϕϕϕ =

√
α′

2

∑
i 6=j

∑
l 6=i

(ϕjε
[ν
j )((ϕiε

µ]
i )(ϕlεlq)− (ϕlε

µ]
l )ϕiεiq)

(zi−zj)(zi−zl)2

=

√
α′

2

∑
i 6=j

∑
l 6=i,j

(ϕjε
[ν
j )(ϕiε

µ]
i )(ϕlεlq)

(zi−zj)(zj−zl)(zi−zl)

=
1

3

√
α′

2

∑
i 6=j

∑
l 6=i,j

qρT
ρµν(ϕiεi, ϕjεj , ϕlεl)

(zi−zj)(zj−zl)(zl−zi)
, (3.30)

To arrive at the second line we used that the first line vanishes for l = j, because ϕjϕj = 0,

and for the third line we used the definition in eq. (3.12), making the expression explicitly

gauge invariant.

The terms with two ϕ’s coming from eq. (3.29) also do not match with the terms

in the explicit expression, however, as we will see below, they ensure gauge invariance of

what remains, when we subtract the terms coming from eq. (3.27)–(3.29) from the explicit

expressions. Indeed, our most reduced expression for the soft behavior through the order
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q reads:

Mn ∗ (S1 + S2 + S3)|µνB

=− i
n∑
i=1

{
k

[ν
i qρ
qki

(Si − S̄i)µ]ρ − 1

2
(Si − S̄i)µν

+
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]
+ qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]}
Mn

+Mn ∗

[
i

(
α′

2

)2 n∑
i 6=j 6=m

2k
[ν
i k

µ]
j (qkm)D2

(
zi−zm
zi−zj

)

+

(
α′

2

)3/2∑
i 6=j

k
[µ
i k

ν]
j (ϕiεiq) + k

[ν
i (ϕiε

µ]
i )(qkj)− k[ν

j (ϕiε
µ]
i )(qki)

zi−zj
+ c.c.

+

(
α′

2

)3/2∑
i 6=j

∑
l 6=i

k
[µ
i k

ν]
l ϕjεjq + k

[ν
i (ϕjε

µ]
j )(qkl)− k

[ν
l (ϕjε

µ]
j )(qki)

zi−zj
log |zi−zl|2 + c.c.

+
α′

2

∑
i 6=j

∑
l 6=i

(ϕjε
[µ
j )(ϕ̄lε̄

ν]
l )(qki)− (ϕjε

[µ
j )k

ν]
i (ϕ̄lε̄lq)− (ϕ̄lε̄

[ν
l )k

µ]
i ϕjεjq

(zi−zj)(z̄i−z̄l)

+
α′

2

∑
i 6=j

∑
l 6=i

(ϕjεjq)(ϕiε
[µ
i )k

ν]
l + (ϕiεiq)(ϕjε

[ν
j )k

µ]
l − (ϕjε

[ν
j )(ϕiε

µ]
i )(qkl)

(zi−zj)(zi−zl)
+ c.c.

−
√
α′

2

∑
i 6=j

∑
l 6=i

(ϕjε
[ν
j )((ϕiε

µ]
i )(ϕlεlq)− (ϕlε

µ]
l )(ϕiεiq))

(zi−zj)(zi−zl)2
+ c.c.

]
(3.31)

We can express this more compactly in terms of the totally antisymmetric tensor given in

eq. (3.12):

Mn ∗ (S1 + S2 + S3)|µνB

= qρÃ
ρµν
bosonic − i

n∑
i=1

{
k

[ν
i qρ
qki

(Si − S̄i)µ]ρ − 1

2
(Si − S̄i)µν

+
qρqσ
ki · q

[(
k

[µ
i S̄

ν]ρ
i + k

[ν
i S

µ]ρ
i

)
∂σi + i

(
S
ρ[µ
i S̄

ν]σ
i

)]
+ qρ

[
S
ρ[µ
i ∂

ν]
i + S̄

ρ[ν
i ∂

µ]
i

]}
Mn , (3.32)

with

Ãρµνbosonic = Mn ∗
√
α′

2

∑
i 6=j

{
2i

3

(
α′

2

)3/2 n∑
i 6=j 6=l

T ρµν(ki, kj , kl)D2

(
zi−zm
zi−zj

)

+

(
α′

2

)
T ρµν(ϕiεi, ki, kj)

zi−zj
+

(
α′

2

)∑
l 6=i

T ρµν(ϕjεj , ki, kl)

zi−zj
log |zi−zl|2

+
1

2

√
α′

2

∑
l 6=i

T ρµν(ki, ϕjεj , ϕ̄lε̄l)

(zi−zj)(z̄i−z̄l)
+

√
α′

2

∑
l 6=i

T ρµν(ϕiεi, kj , ϕlεl)

(zi−zj)(zi−zl)

+
1

3

∑
l 6=i,j

T ρµν(ϕiεi, ϕjεj , ϕlεl)

(zi−zj)(zj−zl)(zl−zi)

}
+ c.c. . (3.33)
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It is tempting to think that, besides the dilogarithm term, all the other non-factorizing

terms above may be reproducible in terms of gauge-invariant soft operators acting on the

lower-point amplitude. We have investigated an exhaustive number of possibilities, and

have not found any reduction as compared to the above expression. For instance, one

could consider an operator involving εαi ∂
β
εi∂

γ
i , where ∂βεi ≡ ∂/∂εiβ . This type of operator

leads to the following type of terms

εαi ∂
β
εi∂

γ
iMn = Mn ∗

∑
j 6=i

(
α′kγj log |zi−zj | −

√
α′

2

(ϕjε
γ
j )

zi−zj
−
√
α′

2

(ϕ̄j ε̄
γ
j )

z̄i−z̄j

)

×
∑
l 6=i

(
(ϕiε

α
i )(ϕlε

β
l )

(zi−zl)2
+

√
α′

2

(ϕiε
α
i )kβl

zi−zl

)
(3.34)

and is made gauge invariant by the combination:

qρ

(
ε
[µ
i ∂

ν]
εi ∂

ρ
i + ερi ∂

[µ
εi ∂

ν]
i − ε

[µ
i ∂

ρ
εi∂

ν]
i

)
Mn (3.35)

This operator produces the same four types of terms as the last four lines in eq. (3.31)

plus two additional and different types of terms. However, among the four types that are

similar it is only possible to match one of them, while the other three are different in their

Koba-Nielsen structure. Therefore in total, while matching one line in eq. (3.31), five new

gauge-invariant expressions are generated.

One instance, where one may introduce an additional soft operator, without elongating

the expression, is

α′

2
qρ

(
k

[µ
i ε

ρ
i ∂

ν]
εi + k

[ν
i ε

µ]
i ∂

ρ
εi − k

ρ
i ε

[µ
i ∂

ν]
εi

)
Mn = i

α′qρ
2

(
k

[µ
i S

ν]ρ
i +

1

2
kρi S

µν
i

)
Mn

= Mn ∗

{
α′

2

∑
j 6=i

k
[µ
i (ϕjε

ν]
j )(ϕiεiq) + k

[ν
i (ϕiε

µ]
i )(ϕjεjq)− (qki)(ϕiε

[µ
i )(ϕjε

ν]
j )

(zi−zj)2

+

(
α′

2

)3/2∑
j 6=i

k
[µ
i k

ν]
j (ϕiεiq) + k

[ν
i (ϕiε

µ]
i )(qkj)− (qki)(ϕiε

[µ
i )k

ν]
j

zi−zj

}

= Mn ∗
√
α′

2
qρ

{√
α′

2

∑
j 6=i

T ρµν(ϕiεi, ki, ϕjεj)

(zi−zj)2
+

(
α′

2

)∑
j 6=i

T ρµν(ϕiεi, ki, kj)

zi−zj

}
(3.36)

The last term matches the similar term in eq. (3.33), but the first term is new. Therefore

this operator effectively exchanges one type of term with another. We note that, although

this operator is not exactly matching terms in eq. (3.33) one-to-one, it shows that terms of

the form of the right-hand side above are terms of order α′, because the operator explicitly

carries such a factor.
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4 Soft scattering of Bµν in superstrings

For the derivation of the scattering amplitude involving n+ 1 massless closed string states

in superstrings we refer to ref. [3]. As was shown in ref. [3], we can take advantage of

knowing the results in the bosonic string case, which were presented in the previous section.

This follows by realizing that the n-point tree-level scattering amplitudes, Mn, of closed

massless superstrings can generically be written as a convolution of a bosonic part, M b
n,

with a supersymmetric part, M s
n, as follows:

Mn = M b
n ∗M s

n , (4.1)

The expressions for bosonic and supersymmetric parts of the n-point supersymmetric string

amplitude are defined by:

M b
n =

8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc|z1 − z2|2
2∏
i=1

dθiθi

2∏
i=1

dθ̄iθ̄i

n∏
i=3

dθi

n∏
i=1

dϕi

n∏
i=3

dθ̄i

n∏
i=1

dϕ̄i

×
∏
i<j

|zi − zj |α
′ki·kj exp

1

2

∑
i 6=j

Ci · Cj
(zi−zj)2

+

√
α′

2

∑
i 6=j

Ci · kj
zi−zj

+ c.c.

 , (4.2)

M s
n = exp

[
− 1

2

∑
i 6=j

Ai ·Aj
zi−zj

+ c.c.

]
. (4.3)

where κD is the D-dimensional Newton’s constant, dVabc is the volume of the Möbius group,

zi are the Koba-Nielsen variables, ϕi and θi are Grassmannian integration variables, and

we have introduced the following superkinematical quantities:

Aµi = ϕiε
µ
i +

√
α′

2
θik

µ
i ; Cµi = ϕiθiε

µ
i , (4.4)

where εµi and kµi are respectively the holomorphic polarization vector and momentum of

the state i, and α′ is the string Regge slope.

Apart from the integration measure, M b
n is equivalent to the same amplitude in the

bosonic string, given in eq. (3.2); the integrands, in fact, become equal if one makes the

identification θiεi → εi and remembers that, after this substitution, εi becomes a Grass-

mann variable. The difference between M b
n and the bosonic string amplitude eq. (3.2),

is only the presence in M b
n of the integrals over the Grassmann variables θi, θ̄i, and the

additional factor
∏2
i=1 θiθ̄i/|z1 − z2|2 coming from the correlator of the superghosts.

As in the case of the bosonic string, it is also useful to factorize the superstring am-

plitude, at the integrand level, into a soft part S and a hard part as follows:

Mn+1 =Mn ∗ S (4.5)

whereMn is the full superstring amplitude of n closed massless states, and S is a function

that when convoluted with the integral expression forMn provides the additional soft state
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involved in the amplitude. The function S can further be decomposed into its bosonic part

and supersymmetric part as follows:

S = Sb + Ss + S̄s , (4.6)

where Sb is the purely bosonic part, given by:

Sb =
κD
2π

∫
d2z

n∏
i=1

|z − zi|α
′qki exp

[
−
√
α′

2

q · Ci
z − zi

−
√
α′

2

q · C̄i
z̄ − z̄i

]

×

[
n∑
i=1

ε · Ci
(z − zi)2

+
n∑
i=1

√
α′

2

ε · ki
z − zi

][
n∑
i=1

ε̄ · C̄i
(z̄ − z̄i)2

+
n∑
i=1

√
α′

2

ε̄ · ki
z̄ − z̄i

]
,

(4.7)

which is simply equal to the similar expression in the bosonic string, given in eq. (3.3),

after identifying θiεi → εi (whereby εi becomes a Grassmann variable). Ss and S̄s are the

complex conjugates of each other and they provide the contributions from the additional

supersymmetric states. They are given by

S̄s =
κD
2π

∫
d2z

n∏
i=1

|z − zi|α
′q·ki exp

[
−
√
α′

2

q · Ci
z − zi

−
√
α′

2

q · C̄i
z̄ − z̄i

]

×

1

2

n∑
i=1

√
α′

2

q ·Ai
z − zi

n∑
j=1

ε ·Aj
z − zj

n∑
l=1

√
α′

2

q · Āl
z̄ − z̄l

n∑
m=1

ε̄ · Ām
z̄ − z̄m

+

(
n∑
i=1

ε · Ci
(z − zi)2

+

n∑
i=1

√
α′

2

ε · ki
z − zi

)
n∑
j=1

√
α′

2

q · Āj
z̄ − z̄j

n∑
l=1

ε̄ · Āl
z̄ − z̄l

 ,
(4.8)

and Ss is given by the complex conjugate of this expression, where complex conjugation

sends zi → z̄i, ε
µ
i → ε̄µi , θi → θ̄i, and ϕi → ϕ̄i, while the momenta ki are left invariant.

This decompositions is of course useful, since we already dealt with the bosonic integral

Sb in the previous section. The additional part coming from supersymmetry, Ss + S̄s, was

furthermore computed through the order q in ref. [3]. Here we explicitly construct their

functional form, when the soft state is an antisymmetric Kalb-Ramond field. The general

result found in ref. [3] reads:

Ss + S̄s = 2κDεµε̄ν
∑
i 6=j

{
qρ

(ki · q)
Ā

[ρ
i Ā

ν]
j k

µ
i

(z̄i − z̄j)
+ qρ

(
α′

2

) 3
2 q · kjC̄ [ρ,

i k
ν]
i

z̄i−z̄j

(
kµi
q · ki

−
kµj
q · kj

)

+ qρ

√
α′

2

Āρ{i,Ā
ν
j}

z̄i−z̄j

∑
l 6=i

[
q · kl
q · ki

(
Cµi
zi−zl

+

√
α′

2
kµi log |zi−zl|2

)
+

(
Cµl
zi−zl

−
√
α′

2
kµl log |zi−zl|2

)]

+ qρqσ

[(
1

2
Aσ{i,A

µ
j} −

√
α′

2
Cσ{i,k

µ
j}

)∑
l 6=i

2Āρ{i,Ā
ν
l}

q · ki(zi−zj)(z̄i−z̄l)
− α′

2

C̄
[σ,
i k

ν]
i C̄

ρ
j

(z̄i−z̄j)2

(
kµj
q · kj

−
kµi
q · ki

)

−
√
α′

2

∑
l 6=i,j

kµi

(
C̄σj Ā

ρ
{i,Ā

ν
l} + 1

2 C̄
σ
i Ā

ρ
{j,Ā

ν
l}

)
q · ki(z̄i−z̄j)(z̄i−z̄l)

−
∑
l 6=i

2Cσ[i,C
µ
j]Ā

ρ
{i,Ā

ν
l}

q · ki(zi−zj)2(z̄i−z̄l)

]}
+ c.c. +O(q2) ,

(4.9)
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where the brackets and curly-brackets in the indices denotes commutation and anticom-

mutation of the indices, e.g.:

C
[ρ,
i k

ν]
i ≡

1

2
(Cρi k

ν
i − Cνi k

ρ
i )

Aµ{iA
ν
j} ≡

1

2

(
Aµi A

ν
j +AµjA

ν
i

)
.

(4.10)

These definitions differ by a factor of two with the ones in ref. [3], where also appropriate

factors of two have been introduced in eq. (4.9).

We must now project out the antisymmetric part, in εµε̄ν , to obtain the expression for

the Kalb-Ramond field. At order q0 we find:

Ss + S̄s

∣∣∣µν
B

=
∑
i 6=j

qρ
(ki · q)

Aρ{iA[µ
j}k

ν]
i

(zi − zj)
+
Āρ{iĀ

[ν
j}k

µ]
i

(z̄i − z̄j)

+O(q) (4.11)

At the next order, it can be checked that the antisymmetric part can be written as:

Ss+S̄s|O(q) =κDε
B
µν

n∑
i 6=j

{
qρ

(
α′

2

) 3
2 T ρµν(C̄i, ki, kj)

z̄i−z̄j
+

√
α′

2

qρqσ
q · ki

Āσi Ā
ν
i C̄

ρ
j k

µ
i

(z̄i−z̄j)2
(4.12)

+

(
α′

2

)∑
l 6=i

4qρqσ
q · ki

Āρ{i,Ā
ν
j}k

[µ
i k

σ]
l

z̄i−z̄j
log |zi−zl|2 +

√
α′

2

∑
l 6=i

8qρqσ
q · ki

Āρ{i,Ā
ν
j}C

[µ
{ik

σ]
l}

(z̄i−z̄j)(zi−zl)

+
∑
l 6=i

2qρqσ
q · ki

Aσ{i,A
µ
j}Ā

ρ
{i,Ā

ν
l}

(zi−zj)(z̄i−z̄l)
−
∑
l 6=i

4qρqσ
q · ki

Cσ[i,C
µ
j]Ā

ρ
{i,Ā

ν
l}

(zi−zj)2(z̄i−z̄l)

−
√
α′

2

qρqσ
q · ki

∑
l 6=i

C̄σi k
µ
i Ā

ρ
{j,Ā

ν
l}

(z̄i−z̄j)(z̄i−z̄l)
−
√
α′

2

qρqσ
q · ki

∑
l 6=i,j

2C̄σj k
µ
i Ā

ρ
{i,Ā

ν
l}

(z̄i−z̄j)(z̄i−z̄l)

}
+ c.c.

where T ρµν was defined in eq. (3.12). It can be checked that the term involving T ρµν , in

fact, cancels out with the similar term coming from the bosonic part in eq. (3.33).

4.1 The soft theorem

As remarked in section 3.1, the soft theorem can be equivalently written as in eq. (3.22).

Since the soft theorem operator is a linear operator, and since we know that it repro-

duces the bosonic part, when acting on M b
n, we only need to show that it reproduces the

supersymmetric part, given in eq. (4.11), when acting on M s
n, i.e.

−iεBµν
n∑
i=1

[
qρk̄

ν
i (Li + Si)

µρ

qki
+
qρk

µ
i (L̄i + S̄i)

νρ

qki

]
M s
n(ki, εi; k̄iε̄i)

∣∣∣
k=k̄

= M s
n ∗ (Ss + S̄s) (4.13)

which is easily checked by noticing the relations:

(Li + Si)
µρAσj = iδij (ησρAµi − η

σµAρi ) , (L̄i + S̄i)
µρ
i Ā

σ
j = iδij

(
ησρĀµi − η

σµĀρi
)
,

(Li + Si)
µρCσj = iδij (ησρCµi − η

σµCρi ) , (L̄i + S̄i)
µρC̄σj = iδij

(
ησρC̄µi − η

σµC̄ρi
)
.

(4.14)

where the quantities A and C are defined in eq. (4.4).
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4.2 The order q soft behavior

Let us now consider the order q soft operator, which up to the totally antisymmetric tensor

according to eq. (2.17), reads:

Ŝ
(1)
B = εBq µν

n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i (4.15)

The action of this operator on Mn can be decomposed as follows

Ŝ
(1)
B Mn = (Ŝ

(1)
B M b

n) ∗M s
n +M b

n ∗ (Ŝ
(1)
B M s

n)

+ εBq µν

n∑
i=1

qρqσ
ki · q

[
(J

ρ[µ
i M b

n) ∗ (J̄
ν]σ
i M s

n) + (J̄
σ[ν
i M b

n) ∗ (J
µ]ρ
i M s

n)
]

(4.16)

The action Ŝ
(1)
B M b

n is equivalent to the one studied in the bosonic string. We need to

analyze the remaining terms. Let us notice that

Jµνi Aρi = 2iA
[µ
i η

ν]ρ , Jµνi Cρi = 2iC
[µ
i η

ν]ρ

Jµνi Āρi = 2i

√
α′

2
θ̄ik

[µ
i η

ν]ρ , Jµνi C̄ρi = 0
(4.17)

and likewise for the antiholomorphic counterpart. We find that

Jρµi J̄νσi M s
n ∼− 4M s

n ∗
∑
j 6=i

∑
l 6=i

[
A

[ρ
i A

µ]
j Ā

[ν
i Ā

σ]
l

(zi−zj)(z̄i−z̄l)
+
α′

2

θ̄ik
[ρ
i Ā

µ]
j θik

[ν
i A

σ]
l

(z̄i−z̄j)(zi−zl)

+

√
α′

2

θ̄ik
[ρ
i Ā

µ]
j Ā

[ν
i Ā

σ]
l

(z̄i−z̄j)(z̄i−z̄l)
+

√
α′

2

θik
[σ
i A

ν]
j A

[µ
i A

ρ]
l

(zi−zj)(zi−zl)

]
. (4.18)

The first term above reproduces exactly a similar term of the explicit result of eq. (4.12).

The terms with one θi can be reduces as follows, using that θiA
µ
i = −Cµi :

−4

√
α′

2

θ̄ik
[ρ
i Ā

µ]
j Ā

[ν
i Ā

σ]
l

(z̄i−z̄j)(z̄i−z̄l)
=− 2

√
α′

2

θ̄ik
ρ
i Ā

µ
j Ā

[ν
i Ā

σ]
l

(z̄i−z̄j)(z̄i−z̄l)
−
√
α′

2

C̄σi k
µ
i Ā

ρ
{jĀ

ν
l}

(z̄i−z̄j)(z̄i−z̄l)
(4.19)

where we also used that qρqσ
Āρj Ā

σ
l

(z̄i−z̄j)(z̄i−z̄l) = 0, because the denominator and the numerator

have different parity. The other term with one θi is the complex conjugate of this expression.

The second term above also reproduces a similar term of the explicit result of eq. (4.12).

It is finally useful to simplify the terms with θiθ̄i, which due to εBµνk
µ
i k

ν
i = 0, can be

reduced to:

−4
qρqσ
q · ki

α′

2

θ̄ik
[ρ
i Ā

µ]
j θik

[ν
i A

σ]
l

(z̄i−z̄j)(zi−zl)
= −qρ

α′

2

θiθ̄i(k
ν
i Ā

µ
jA

ρ
l − k

ρ
i Ā

µ
jA

ν
l + kµi Ā

ρ
jA

ν
l )

(z̄i−z̄j)(zi−zl)

= −qρ
α′

2

θiθ̄i T
ρµν(ki, Aj , Āl)

(z̄i−z̄l)(zi−zj)
, (4.20)

showing that this term is totally gauge invariant and local in q.
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Next, consider the second line of eq. (4.16). It is easy to derive the following action:

(Jρµi M b
n) ∗ (J̄νσi M s

n) =

4Mn ∗
∑
j 6=i

α′k[ρ
i k

µ]
j log |zi−zj |+

C
[ρ
i C

µ]
j

(zi−zj)2
+

√
α′

2

2C
[ρ
{ik

µ]
j}

zi−zj
+
C̄

[ρ
j k

µ]
i

z̄i−z̄j


×
∑
l 6=i

[
Ā

[ν
i Ā

σ]
l

z̄i−z̄l
+

√
α′

2

θik
[ν
i A

σ]
l

zi−zl

]
(4.21)

The antiholomorphic version of this is simply recovered by complex conjugation, i.e.

(Jσνi M b
n) ∗ (J̄µρi M s

n) =

4Mn ∗
∑
j 6=i

α′k[σ
i k

ν]
j log |zi−zj |+

C̄
[σ
i C̄

ν]
j

(z̄i−z̄j)2
+

√
α′

2

2C̄
[σ
{ik

ν]
j}

z̄i−z̄j
+
C

[σ
j k

ν]
i

zi−zj


×
∑
l 6=i

[
A

[µ
i A

ρ]
l

zi−zl
+

√
α′

2

θ̄ik
[µ
i Ā

ρ]
l

z̄i−z̄l

]
(4.22)

Let us call the terms in first square bracket L1, L2, L3 and L4, and the terms in the second

square bracket R1 and R2.

It is fairly easy to see that the multiplication of (L1 + L2 + L3)×R1 produces terms

that can directly be matched with terms in eq. (4.12). The term L4×R1 can be written as:

4

√
α′

2

C
[σ
j k

ν]
i

(zi−zj)
A

[µ
i A

ρ]
l

(zi−zl)
= 2

√
α′

2

Cσj k
ν
i

(zi−zj)
Aµ{iA

ρ
l}

(zi−zl)
− 2

√
α′

2

(−θjAνj )kσi
(zi−zj)

Aµ{iA
ρ
l}

(zi−zl)
(4.23)

The first term on the right hand side matches a similar term in eq. (4.12), while the second

term, which was rewritten using Cj = −θjAj , remains unmatched.

All the terms multiplying R2 above also remain unmatched, however, they all can be

combined into a local, totally antisymmetric expression, due to θiCi = 0 and kµi k
ν
i = 0.

Specifically we find:

4qρqσ
q · ki

α′k[σ
i k

ν]
j log |zi−zj |+

C̄
[σ
i C̄

ν]
j

(z̄i−z̄j)2
+

√
α′

2

2C̄
[σ
{ik

ν]
j}

z̄i−z̄j
+
C

[σ
j k

ν]
i

zi−zj

×√α′

2

θ̄ik
[µ
i Ā

ρ]
l

z̄i−z̄l

=
a′

2
qρθ̄i

[√
a′

2

kνj k
µ
i Ā

ρ
l − k

ν
j k

ρ
i Ā

µ
l + kνi k

ρ
j Ā

µ
l

z̄i−z̄l
log |zi−zj |2

+
−C̄ρj kνi Ā

µ
l − C̄

ν
j k

µ
i Ā

ρ
l + C̄νj k

ρ
i Ā

µ
l

(z̄i−z̄j)(z̄i−z̄l)
+
−Cρj kνi Ā

µ
l − C

ν
j k

µ
i Ā

ρ
l + Cνj k

ρ
i Ā

µ
l

(zi−zj)(z̄i−z̄l)

]

=
a′

2
qρθ̄i

[√
a′

2

Tµνρ(ki, kj , Āl)

z̄i−z̄l
log |zi−zj |2 −

Tµνρ(ki, C̄j , Āl)

(z̄i−z̄j)(z̄i−z̄l)
− Tµνρ(ki, Cj , Āl)

(zi−zj)(z̄i−z̄l)

]
(4.24)

Up to the totally antisymmetric terms local in q, there remains three terms that need

to be rewritten; one is an unmatched term in the explicit result of eq. (4.12), and the other
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two are the unmatched terms of eq. (4.19) and (4.23). Subtracting the latter two from the

former, we find:

√
α′

2
qρ

 Āµi Ā
ν
i C̄

ρ
j

2(z̄i−z̄j)2
+ 2

∑
l 6=i

θ̄iĀ
µ
j Ā

[ν
i Ā

ρ]
l

(z̄i−z̄j)(z̄i−z̄l)
− 2

∑
l 6=i

θ̄jĀ
µ
j

(z̄i−z̄j)
Āν{iĀ

ρ
l}

(z̄i−z̄l)

+ c.c (4.25)

Let us consider the expression when l = j. Then the last term vanishes, since θjAjAj = 0,

and we are left with (up to the prefactor and the complex conjugates):

1

(z̄i−z̄j)2

[
1

2
Āµi Ā

ν
i C̄

ρ
j + 2θ̄iĀ

µ
j Ā

[ν
i Ā

ρ]
j

]
=

1

(z̄i−z̄j)2

[
C̄νj Ā

µ
i Ā

ρ
i −

1

2
C̄ρj Ā

µ
i Ā

ν
i

]

=
1

(z̄i−z̄j)2

√
α′

2

[
2C̄νj C̄

[µ
i k

ρ]
i − C̄

ρ
j C̄

µ
i k

ν
i

]
= −

√
α′

2

Tµνρ(C̄i, ki, C̄j)

(z̄i−z̄j)2
(4.26)

where in the end we also used antisymmetry of the µν indices. This shows that the terms

above for l = j form a gauge invariant combination. Next we consider the l 6= j terms

(again suppressing the overall prefactors):

2
∑
l 6=i,j

[
θ̄iĀ

µ
j Ā

[ν
i Ā

ρ]
l

(z̄i−z̄j)(z̄i−z̄l)
−

θ̄jĀ
µ
j

(z̄i−z̄j)
Āν{iĀ

ρ
l}

(z̄i−z̄l)

]

= 2
∑
l 6=i,j

θ̄i

[
Āµj Ā

[ν
i Ā

ρ]
l

(z̄i−z̄j)(z̄i−z̄l)
+ Āµi Ā

ν
{jĀ

ρ
l}

(
1

2(z̄i−z̄j)(z̄j−z̄l)
+

1

2(z̄i−z̄l)(z̄l−z̄j)

)]

=
∑
l 6=i,j

θ̄i

[
Āµi Ā

ν
j Ā

ρ
l + Āρi Ā

µ
j Ā

ν
l + Āνi Ā

ρ
j Ā

µ
l

(z̄i−z̄j)(z̄i−z̄l)

]
=
∑
l 6=i,j

θ̄i
Tµνρ(Āi, Āj , Āl)

(z̄i−z̄j)(z̄i−z̄l)
(4.27)

where for the first equality we manipulated the summation indices i, j, l, for the second

equality we manipulated the expression using both µν antisymmetry and j, l symmetry.

Again the final expression is, consistently, a totally antisymmetric, gauge invariant term.

We are now in a position to write our entire result in terms of the totally antisymmetric

tensor. Adding also the bosonic part, derived in eq. (3.32) with εi → θiεi, we find:

Mn ∗ (Sb + Ss + S̄s)|O(q) − εBq µν
n∑
i=1

qρqσ
ki · q

J
ρ[µ
i J̄

ν]σ
i Mn = qρÃ

ρµν
super , (4.28)
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with

Ãρµνsuper =Mn ∗ κDεBµν

√
α′

2

∑
i 6=j

{
−
√
α′

2

Tµνρ(C̄i, ki, C̄j)

(z̄i−z̄j)2

+

(
α′

2

)∑
l 6=i

T ρµν(Cj − θiAj , ki, kl)
zi−zj

log |zi−zl|2

+
1

2

√
α′

2

∑
l 6=i

T ρµν(ki, Cj , C̄l)− 2θiT
ρµν(ki, Aj , C̄l)− θiθ̄iT ρµν(ki, Aj , Āl)

(zi−zj)(z̄i−z̄l)

+

√
α′

2

∑
l 6=i

T ρµν(Ci, kj , Cl) + θiT
ρµν(ki, Cj , Al)

(zi−zj)(zi−zl)
+
∑
l 6=i,j

θi
Tµνρ(Ai, Aj , Al)

(zi−zj)(zi−zl)

+
1

3

∑
l 6=i,j

T ρµν(Ci, Cj , Cl)

(zi−zj)(zj−zl)(zl−zi)

+
2i

3

(
α′

2

)3/2 n∑
l 6=i,j

T ρµν(ki, kj , kl)D2

(
zi−zm
zi−zj

)}
+ c.c (4.29)

As in the bosonic string, we conclude, based on the dilogarithmic terms, that the expression

above cannot be expressed as an operator acting on the lower point amplitude. In particu-

lar, we have not been able to see how supersymmetry could provide enough simplifications

for this to happen. We have not attempted to study the field theory implications of these

results, where especially the dilogarithmic terms should vanish, and the conclusions about

the order q factorization there remains an open question.

5 Conclusion

We have shown using gauge invariance that the soft behavior of the antisymmetric B-field is

fixed at the order q0 in the soft momentum in amplitudes involving gravitons, dilatons and

other B-fields. We have furthermore explained why gauge invariance cannot fix completely

its soft behavior at order q, in contrast to the case of a soft graviton or dilaton. By using

the leading soft theorem, it is nevertheless possible to explicitly decompose the amplitude

into two separately gauge invariant parts to all orders in the soft momentum.

The new soft theorem provides, together with the soft theorems through the same order

for the graviton and dilaton, the basis for the unification of the three soft theorems, which

we have offered in eq. (1.9). This universal expression is a step towards understanding the

interplay between the infrared behaviors of Yang-Mills theory and gravity as Yang-Mills

squared theory [19].

We have explicitly checked the new soft theorem of the B-field in the bosonic string

as well as in superstrings, and we have furthermore computed the soft behavior through

order q in both theories, expressed in terms of a convoluted integral of a hard and a soft

part. Based on the structure of the soft integrand we conclude in both theories that the

soft behavior at order q cannot be factorized in form of a soft theorem. As regards the

field theory limit of these expression, the conclusion remains an open question and should

be further studied.

– 24 –



J
H
E
P
1
0
(
2
0
1
7
)
0
1
7

Acknowledgments

We owe special thanks to Josh Nohle for collaborating with us in the early stages of this

work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and

graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].

[2] Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and

Gravitons from Gauge Invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987]

[INSPIRE].

[3] P. Di Vecchia, R. Marotta and M. Mojaza, Soft behavior of a closed massless state in

superstring and universality in the soft behavior of the dilaton, JHEP 12 (2016) 020

[arXiv:1610.03481] [INSPIRE].

[4] P. Di Vecchia, R. Marotta, M. Mojaza and J. Nohle, New soft theorems for the gravity

dilaton and the Nambu-Goldstone dilaton at subsubleading order, Phys. Rev. D 93 (2016)

085015 [arXiv:1512.03316] [INSPIRE].

[5] R. Roiban and A.A. Tseytlin, On four-point interactions in massless higher spin theory in

flat space, JHEP 04 (2017) 139 [arXiv:1701.05773] [INSPIRE].

[6] A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151

[arXiv:1308.0589] [INSPIRE].

[7] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152

[arXiv:1312.2229] [INSPIRE].

[8] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory,

arXiv:1703.05448 [INSPIRE].

[9] M. Campiglia, L. Coito and S. Mizera, Can scalars have asymptotic symmetries?,

arXiv:1703.07885 [INSPIRE].

[10] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?,

JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

[11] K. Kampf, J. Novotny and J. Trnka, Tree-level Amplitudes in the Nonlinear σ-model, JHEP

05 (2013) 032 [arXiv:1304.3048] [INSPIRE].

[12] I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev.

D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].
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