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SUMMARY

Glutamate is a ubiquitous neurotransmitter, medi-
ating information flow between neurons. Defects in
the regulation of glutamatergic transmission can
result in glutamate toxicity, which is associated with
neurodegeneration. Interestingly, glutamate recep-
tors are expressed in glia, but little is known about
their function, and the effects of their misregulation,
in these non-neuronal cells. Here, we report a glio-
protective role for Drosophila mir-263a mediated
by its regulation of glutamate receptor levels in glia.
mir-263a mutants exhibit a pronounced movement
defect due to aberrant overexpression of CG5621/
Grik,Nmdar1, andNmdar2.mir-263amutants exhibit
excitotoxicdeathof a subset of astrocyte-like anden-
sheathing glia in theCNS.Glial-specificnormalization
of glutamate receptor levels restores cell numbers
and suppresses the movement defect. Therefore,
microRNA-mediated regulation of glutamate recep-
tor levels protects glia from excitotoxicity, ensuring
CNS health. Chronic low-level glutamate receptor
overexpression due tomutations affectingmicroRNA
(miRNA) regulation might contribute to glial dysfunc-
tion and CNS impairment.
INTRODUCTION

Glutamate is an abundant neurotransmitter in vertebrates

and invertebrates. Glutamatergic neurotransmission is mediated

by ionotropic and metabotropic glutamate receptors. Ionotropic

receptors of the AMPA, NMDA, and kainate types are cation-

permeable, membrane-bound ion channels, while metabotropic

receptors are G protein coupled and function through a second-

arymessenger. Glutamatergic signaling is critical for normal syn-

aptic and circuit development, as well as for mature CNS func-

tions, including cognition, learning, and memory. Reduced

receptor function retards synaptic development and alters

normal neuronal function (reviewed by van Zundert et al., 2004;

Zhang and Poo, 2001). Excessive receptor activation, on the

other hand, can lead to excitotoxic cell death, which is associ-
Ce
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ated with many CNS pathologies (Choi, 1988; Zipfel et al.,

2000). The subunit composition of individual receptors confers

different ligand binding and channel properties; consequently,

glutamate receptor expression, assembly, trafficking, and activ-

ity are highly regulated (Sanz-Clemente et al., 2013).

In addition to cell-intrinsic regulation of glutamate responsive-

ness in neurons, clearance of released neurotransmitters from

the synaptic cleft is essential for synaptic function. Astrocytic

glia take up extracellular glutamate for recycling via excitatory

amino acid transporters (EAATs) (Anderson and Swanson,

2000). Sustained activation of neuronal glutamate receptors

due to defects in glutamate clearance can result in excitotoxicity

(Rothstein et al., 1996). Evidence is emerging that glutamatergic

signaling is also important in glia. Astrocytes and oligodendro-

cytes (which produce themyelin sheaths that wrap neuronal pro-

jections) express all the major classes of glutamate receptors

(Porter and McCarthy, 1997; Verkhratsky and Steinhäuser,

2000) and are susceptible to injury from excess exposure

to glutamate in vitro (McDonald et al., 1998; David et al., 1996;

Chen et al., 2000). Glia can interact with neurons in vitro by

sending and receiving glutamatergic signals (Parpura et al.,

1994; Cornell-Bell et al., 1990; Lalo et al., 2006). Interestingly,

glial glutamate receptors may differ in composition and proper-

ties from neuronal glutamate receptors (Palygin et al., 2011).

The importance of glial glutamate receptor function in normal

brain physiology is only beginning to be understood (Kolodziejc-

zyk et al., 2010; Saab et al., 2012).

In this report we present evidence for microRNA-mediated

regulation of glutamate receptors in glia. Neuroprotective roles

have previously been documented for neuronally expressed mi-

croRNAs (Kim et al., 2007; Karres et al., 2007; Liu et al., 2012;

Gehrke et al., 2010). Neuronal mir-181 and mir-223 regulate

glutamate receptors, thereby affecting postsynaptic neurotrans-

mitter responsiveness (Saba et al., 2012; Harraz et al., 2012).

mir-223-mediated repression of glutamate receptors in hippo-

campal neurons has been shown protect against excitotoxic

cell death (Harraz et al., 2012). Presynaptic activity of mir-

1000/137 has also been shown to be neuroprotective via regula-

tion of vesicular glutamate transporter expression (Verma et al.,

2015). Blocking overall microRNA (miRNA) biogenesis through

deletion of Dicer from astrocytes or oligodendrocytes resulted

in neuronal dysfunction, indicating key roles for miRNAs (Tao

et al., 2011; Shin et al., 2009). Here, we present evidence that ac-

tivity of miRNA mir-263a is required for healthy nervous system
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Figure 1. Movement Defect Phenotype in mir-263a Mutants

(A) Diagram of themir-263a locus showing the CR43312 non-coding RNA and

the insertion site of the GS14711 P element. Deletions are shown as gaps

flanked by parentheses. Parentheses after allele designations show the short

names used in other figures. Box at left: relative level of mir-263a expression

measured by miRNA qPCR (Figure S1).

(B) Climbing assay at 2 and 21 days. Data were analyzed using a two-way

ANOVA with Tukey’s multiple comparisons test. ****p < 0.0001. p < 0.0001

when comparing mutants at 2 and 21 d. G4KO, mir-263aGal4KO; UAS-263a,

UAS-mir-263a.

(C) Climbing assay at 35 days. Expression of the sponge was effective when

one copy of the mir-263a gene was removed to lower the starting level
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function by limiting glutamate receptor levels in a subset of glia.

Excess glutamatergic signaling in mir-263a mutants leads to

excitotoxic glial death and movement defects. Active miRNA-

mediated modulation of glutamate sensitivity is therefore impor-

tant in glia as well as neurons and might be linked to glio-degen-

erative disease and movement disorders.

RESULTS

Early-Onset, Age-Progressive Climbing Defects in
mir-263a Mutants
In order to identify miRNAs with functional roles in the nervous

system, we carried out a climbing assay screen on a collection

of Drosophila miRNA mutants (Chen et al., 2014) at 2, 14, and

21 days of age.mir-263a was selected for further study because

it exhibited a climbing defect that worsens progressively with

age. Figure 1A and Table S1 describe themir-263amutant alleles

and Gal4 drivers used in this study. The sequences encoding

mir-263a are located near the 30 end of the long non-coding tran-

script, CR43314. bft24 is a deletion encompassing the start of

this transcription unit that reduces mir-263a expression (Hilgers

et al., 2010). A deletion allele removing the miRNA sequences

(mir-263aKO) and a Gal4 knockin allele in which the miRNA was

replaced byGal4 (mir-263aGal4KO ormir-263aKO-Gal4) were pre-

viously generated by targeted homologous recombination

(Hilgers et al., 2010). Fewer than 50% of bft24/mir-263aGal4KO

mutant males were able to climb normally at 2 days of age

(Figure 1B). This defect became markedly worse with age, with

almost none able to climb at day 21 (Figure 1B). These mutant

flies stayed at the bottom of the vial, shaking and trembling

(see Movie S1). Climbing ability was significantly improved

by restoring expression of the miRNA in the mir-263aGal4KO/

bft24 mutant background (Figure 1B). Similar results were ob-

tained with female flies and with two other combinations

of mutant alleles: mir-263aGal4KO/mir-263aKO and mir-263aKO /

Df(2L)BSC323 (Figure S1). We carried out subsequent experi-

ments with the bft24/mir-263aGal4KO mutant combination. Climb-

ing assays for experiments done in this bft24/mir-263aGal4KO

mutant background were carried out at 18 days. Testing at this

age produced consistent phenotypes, which could be made

worse by reducing miRNA activity or improved by increasing

miRNA activity.

qPCR showed that mir-263aKO-Gal4-driven expression of

UAS-mir-263a produced only �20% of the normal level of the

miRNA (Figure S1). This level of expression was sufficient

to only partially rescue the climbing phenotype. In order to

generate a stronger Gal4 line, we used P element replacement

to introduce a Gal4 P element at a position near the 50 end of

CR43314 (Figure 1A). The resulting mir-263aGal4 (or mir-263a-

Gal4) allele expressed mir-263a at �70% of the level of control

flies, indicating that it is a mild hypomorph (Figures 1A and S1).

The mir-263aGal4 insertion in trans to the knockout produced
of miRNA. p values were determined using the Kruskal-Wallis test with

Dunn’s multiple comparisons post hoc test. Sponge, UAS-mir-263a sponge

transgene.

See also Figure S1.



Figure 2. mir-263a Is Required in Glia

(A) Maximum projection (anterior view) of a series of optical sections of an adult brain expressing UAS-histone-RFP under mir-263a-Gal4 control. Glia were

labeled with anti-Repo. Neurons were labeled with anti-Elav. Overlap betweenmir-263a-Gal4 and Elav was limited to a few cells (see Figure S2). The inset shows

a close-up of the overlap in expression between mir-263a-Gal4 and Repo.

(B) Climbing assay at 35 days. Left: 263aG4/KO represents the hypomorphicmir-263aGal4 in trans to themir-263aKO allele.mir-263a-Gal4was used to express the

miRNA sponge in mir-263a-expressing cells. Right: RepoGal80 was used to block Gal4 activity in glia. p values were determined using the Mann-Whitney test.

(C) Climbing assay at 18 days. Flies were mutant (bft24/mir-263aKO) and carried the Gal4 (G4) drivers indicated. ‘‘263a’’ indicates the UAS-mir-263a transgene

introduced into the mutant background using the indicated Gal4 driver; + indicates control chromosome. p values were determined using theMann-Whitney test.

(D) Climbing assay at 35 days. Flies carried mir-263aKO (KO) allele in addition to the Gal4 (G4) drivers. + indicates a control chromosome. p values were

determined using the Mann-Whitney test.

263aG4, mir-263aGal4; Sponge, mir-263a-sponge. See also Figure S2.
no discernable climbing defect compared with controls. Climb-

ing defects were observed when mir-263a levels were further

lowered by mir-263a-Gal4-directed expression of a mir-263a

miRNA sponge (Figure 1C).

mir-263a Is Required in Astrocyte-like and Ensheathing
Glia
To visualize the domain of mir-263a expression, we crossed the

mir-263aGal4 insertion allele with a UAS-histone-RFP transgene.

mir-263a-Gal4 activity showed considerable overlap with Repo,

a glial transcription factor (Figure 2A). Co-expression with

the neuronal marker Elav accounted for fewer than 2% of cells

expressing mir-263a (Figure S2). This expression pattern was

similar to that seen with mir-263aKO-Gal4 (Figure S1).

To ask if mir-263a acts in glia, we used Repo-Gal4 to express

the mir-263a sponge transgene selectively in glia. When ex-

pressing the sponge under mir-263a-Gal4 control, we found

that it was necessary to lower the starting level of the mir-263a

miRNA, by introducing one copy of themir-263aKO allele, in order

to reveal a phenotype (Figure 1C). However, we could not use

this approach with Repo-Gal4, because introducing one copy

of the mir-263aKO allele into the Repo-Gal4 background on its

own caused a strong climbing defect, suggesting a genetic inter-

action in the absence of the sponge transgene (Figure S2). As an

alternative, we used Repo-Gal80 to selectively block Gal4 activ-

ity in the glial subset of the mir-263a-Gal4 expression domain,
while allowing activity in other cells. When Gal4 activity was

blocked in the glial subset of the mir-263a-expressing cell pop-

ulation, the climbing defect caused by expression of the miRNA

spongewas suppressed (Figure 2B). This provided evidence that

mir-263a activity is required in glia.

We used two additional genetic strategies to explore the

requirement for mir-263a in different types of glia and neurons.

First, we used Gal4 drivers to restore expression of mir-263a in

selected glial and neuronal cells in the mir-263a mutant back-

ground. Without any Gal4 driver, UAS-mir-263a did not rescue

the climbing defect (Figure 2C). Expression of the miRNA with

the glia drivers Eaat1-Gal4 or Alrm-Gal4 (Doherty et al., 2009)

was sufficient to restore climbing (Figure 2C). Alrm-Gal4 is an

astrocyte driver, and Eaat1 is expressed predominantly in astro-

cytes, with some expression in ensheathing and cortex glia

(Doherty et al., 2009) (Figure S3). Expression of the miRNA

with the ensheathing glia driver NP6520-Gal4 (Awasaki et al.,

2008) also improved climbing, but expression with the neuronal

driver Elav-Gal4 did not (Figure 2C). We also expressed the mir-

263a sponge in each glial subtype in themir-263aKO/+ heterozy-

gous background to ask if the miRNA was necessary in each

glial subtype. Depleting the miRNA from astrocyte-like glia

using Eaat1-Gal4 and Alrm-Gal4 or from ensheathing glia with

NP6520-Gal4 produced climbing defects (Figure 2D). Depletion

of the miRNA with the cortex glia driver NP2222-Gal4 was inef-

fective (Figure S2). These results indicate that mir-263a is
Cell Reports 19, 1783–1793, May 30, 2017 1785



Figure 3. mir-263a Is Required in a Subset of Astrocyte-like and Ensheathing Glia Expressing Both Eaat1 and mir-263a

(A) Adult brains expressing mir-263a-Gal4–driven UAS-histone-RFP (red) and Eaat1-LexA-driven LexAOp-nls.GFP (green). Top: maximum projection (anterior

view). Bottom: overlap between the two drivers in a single section. The inset shows a close-up of the dashed region.

(B) Left: scheme for generation of a driver expressing Gal4 activity only in cells expressing both mir-263a-Gal4 and Eaat1-LexA (see text for details). Right top:

completemir-263a-Gal4 expression domain. Right bottom: overlap between cells expressing Eaat1-LexA andmir-263a-Gal4. The insets show close-ups of the

dashed regions.

(C) Climbing assay at 35 days. All flies expressed the driver for the overlap population, Overlap-Gal4 (B): mir-263aGal4, aTub84B > FRT.Gal80 > ; Eaat1-LexA,

LexAOp-FLP, with the addition of the indicated transgenes. + indicates awild-type copy ofmir-263a;KO indicatesmir-263aKO; and KO, spg indicatesmir-263aKO

withmir-263a sponge. p values were determined using an ordinary one-way ANOVA (p < 0.05) followed by a protected Fisher’s least significant difference (LSD)

test.

(D) Climbing assay at 35 days. All flies expressed the driver for the overlap population, Overlap-Gal4 (B), with addition of the indicated transgenes. KO, spg

indicates mir-263aKO with mir-263a sponge. p values were determined using the Mann-Whitney test.

(E) Representative images of dissected CNS from 35 day control and mir-263a-depleted flies from (D), showing the areas for quantification in (F). Images are

maximum projections (posterior view for optimal imaging of the connective). Genotypes: WT, Overlap-Gal4, UAS-hisRFP; and KO, spg, Overlap-Gal4/

mir-263aKO; UAS-hisRFP, UAS-mir-263a-sponge. The insets show close-ups of the respective dashed regions.

(F) Quantification of the Eaat1-LexA/mir-263a-Gal4 overlap glial population of animals from (D). Each data point represents one fly. p values were determined

using the Mann-Whitney test. Control sample average: 222 ± 10 (SEM; n = 6) His+ cells. mir-263a-depleted sample average: 169 ± 13 (n = 11).

See also Figure S3.
required in astrocyte-like and ensheathing glia to support climb-

ing behavior.

mir-263a Is Required in a Population of Glia Expressing
Both mir-263a and Eaat1

Given that the mir-263a-Gal4 driver is expressed in a subset of

glia and that expression of the miRNA in Eaat1-Gal4 expressing

cells rescued the phenotype, we infer that the miRNA acts in the

population of glia in which these two Gal4 drivers overlap. To

compare their expression, we made use of an Eaat1-LexA driver

to drive nuclear-GFP expression together with mir-263a-Gal4-

directed expression of histone-RFP. As a control for Eaat1-

LexA, we first compared its expression with that of Eaat1-

Gal4. All Eaat1-LexA cells expressed Eaat1-Gal4 (Figure S3).
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The Eaat1-LexA and mir-263a-Gal4 drivers were each ex-

pressed in hundreds of neuropil glia, but the population in which

the two overlap was considerably smaller (Figure 3A).

Ifmir-263a activity is required in this overlap population, selec-

tively depleting the miRNA from these cells with the sponge

transgene should phenocopy the climbing defect in the mutant.

In order to do this experiment, we required ameans to allowGal4

activity selectively in the overlap population. This was done by

ubiquitously expressing Gal80 from a transgene in which the

Gal80 sequence was flanked by FLP recombinase target sites.

These sites were oriented so that FLP recombinasewould excise

the Gal80 cassette, allowing Gal4 activity. We used Eaat1-LexA

to drive expression of FLP recombinase together withmir-263a-

Gal4-directed expression of RFP (see Figure 3B). This strategy



proved to be effective in limiting the extent of mir-263a-Gal4

expression (Figure 3B). Glia expressing both mir-263a-Gal4

and Eaat1-LexA were located in the central brain and cervical

connective and ventral nerve cord (VNC) (Figures 3B and 3E). Ex-

pressing themir-263a sponge selectively in these cells produced

a climbing defect (Figure 3C). Although the climbing defect was

mild compared with the null mutant, the difference between con-

trol and experimental samples was significant, indicating that

mir-263a acts in the population of glia in which its expression

overlaps with that of Eaat1. We note that this does not exclude

the possibility that mir-263a is also required in other cells.

Although Eaat1-LexA co-expresses strongly with Alrm-Gal4,

it also shows overlap with NP6520-Gal4 (Figure S3). Alrm-Gal4

is expressed predominantly in astrocytes and NP6520 in en-

sheathing glia, and both drivers are expressed in the functional

domain of mir-263a (Figures 2C and 2D). Eaat1-Gal4 and

NP6520Gal4 are also expressed in cortex glia; however, our

data suggest that mir-263a function in this population does not

contribute to the climbing defects (Figure S2). Hence, mir-263a

functions in a subset of astrocytes and ensheathing glia.

To examine the consequences of selective depletion of mir-

263a on the population of glia expressing both mir-263a

and Eaat1, we used the FLP-out Gal80 strategy (Figure 3C), add-

ing UAS-histone-RFP as a reporter. The flies expressing both

sponge and histone-RFP in the heterozygous background ex-

hibited climbing defects compared with flies expressing his-

tone-RFP alone (Figure 3D). Dissection of the brain and cervical

connective and VNC revealed �20% decrease in the number of

RFP-positive nuclei when mir-263a was depleted (Figures 3E

and 3F). Therefore, depletion ofmir-263a from this specific pop-

ulation causes a loss of these glia and a concomitant climbing

defect.

mir-263a Limits Glutamatergic Signaling
miRNAs typically downregulate their targets. To identify mir-

263a targets, we carried out expression profiling on RNA isolated

from heads of control flies, mir-263aGal4KO/mir-263aKO mutants,

and the rescuedmir-263aGal4KO/mir-263aKOmutants expressing

the UAS-mir-263a transgene. We selected for further analysis 71

transcripts that were upregulated in the mutant and reduced

again in the rescued mutant and that contained plausible

mir-263a target sites (Table S2). Another 20 computationally pre-

dicted targets with nervous system functions were also tested.

If upregulation of a target transcript contributes to the mutant

phenotype, reducing its expression should suppress that pheno-

type. We made use of UAS-RNAi transgenes as well as defi-

ciencies or P-element mutant alleles to individually reduce activ-

ity of the 91 candidate genes in the mir-263aGal4KO/bft24 mutant

background. Only one target showed significant suppression of

the mutant phenotype using both genetic tests. Depletion of

CG5621 by RNAi improved climbing in the mutant background

(Figure 4A; Movie S1). Similarly, introducing one copy of a

CG5621P element insertion allele improved climbing (Figure 4A).

CG5621 (previously annotated on Flybase as DKaiRIC) encodes

a glutamate receptor that is most similar to members of theGRIK

human kainate receptor family. We henceforth refer to it as Grik.

Like other glutamate receptor types, kainate receptors are tet-

ramers. Methionine 589 in human GluK1 has been identified as a
key residue in the conserved pore domain required for ion bind-

ing, and mutation of M589 to arginine produces a dominant-

negative subunit that blocks endogenous receptor function

when incorporated into a heteromeric complex (Robert et al.,

2002). On the basis of sequence alignment, we infer that

leucine 601 in the Drosophila Grik protein corresponds to

mammalian M589 (Figure 4B). We prepared a similar GrikL601R

dominant-negative transgene and introduced this into the mir-

263aGal4KO/bft24 mutant background. Expression of GrikL601R

improved climbing performance of the mutant (Figure 4B).

Together with the preceding experiments in which lowering

Grik expression suppressed the climbing defect, we conclude

that limiting Grik activity can improve climbing performance in

mir-263a mutants. Grik expression was monitored using a Gal4

P-element insertion allele in CG5621 (Grik-Gal4). The Gal4 line

was largely expressed in glia (Figure S4).

Although Grik/CG5621 was the only glutamate receptor de-

tected among the transcripts that were significantly upregulated

in the expression profiling of mir-263a mutant brains, potential

mir-263a target sites were predicted in the 30 UTRs of seven

other glutamate receptors (Figure S5). We tested depleting

expression of these receptors using RNAi in themir-263amutant

background. Depletion ofmGluR, clumsy, and GluRIIE was inef-

fective, but RNAi-mediated knockdown of the NMDA receptors

Nmdar1 and Nmdar2 and the kainate receptors CG11155 and

Ekar suppressed the climbing defect (Figure 4C). Expression of

the RNAi transgenes for Grik, Nmdar1, and Nmdar2 with mir-

263a-Gal4 in an otherwise wild-type background did not cause

climbing defects (Figure S5).

Expression levels ofmir-263a targets are expected to be upre-

gulated in mir-263a mutants. The levels of Nmdar1, Nmdar2,

CG11155, and to a smaller extent, Grik, increased in RNA iso-

lated from mir-263a mutant heads when assayed by qPCR,

and this was offset in the rescued mutant (Figure 4D). However,

the fold change observed was low. This would be expected if the

affected cells constituted a limited subset of the expression

domain of these receptors. To address this, we measured tran-

scripts in RNA recovered selectively from Eaat1-positive glia

by thio-labeling RNA using Eaat1-Gal4-driven uracil phosphori-

bosyltransferase (Miller et al., 2009). In RNA from Eaat1-express-

ing glia, the levels of Nmdar1, Nmdar2, and Grik increased by

2.4-fold, 3.4-fold, and 1.5-fold, respectively, inmir-263amutants

compared with controls (Figure 4E). Upregulation of Nmdar1

transcript was accompanied by an increase in Nmdar1 protein

in the mutant. Nmdar1 protein normally takes on a speckled,

ubiquitous distribution, representing weak expression in most

neurons (Wu et al., 2007; Xia et al., 2005). Depletion of mir-

263a caused upregulation of Nmdar1 protein in a subset of

mir-263a-Gal4-expressing glia in the nervous system, including

in the central brain (Figure 4F). This was not observed in control

samples (Figure 4F).

To determine if the climbing defects seen inmir-263amutants

could be caused by glial cell loss, we asked if the number ofmir-

263a-Gal4, Eaat1-LexA overlap cells (Figure 3B) was rescued

by lowering glutamate receptor levels. When the mir-263a

sponge was expressed in this overlap population, climbing de-

fects were again observed, and glial cell number decreased (Fig-

ure 4G). When Grik was downregulated by RNAi in this overlap
Cell Reports 19, 1783–1793, May 30, 2017 1787



Figure 4. Functional Rescue by Depletion of Glutamate Receptors

(A–C) Climbing assay at 18 days. All flies were in the mutant background (mir-263aGal4KO/bft24). + indicates mutant alone. (A) Grik pMB05324 (Mi{ET1}

CG5621MB05324) has a P element inserted into Grik (exon 7). RNAi47549GD is a UAS-RNAi transgene targeting Grik. p values were determined using the Kruskal-

Wallis test. (B) GrikL601R indicates a UAS transgene for a dominant-negative Grik. p values were determined using the Mann-Whitney test. (C) RNAi: the target of

each RNAi transgene is indicated. p values were determined using the Kruskal-Wallis test with Dunn’s multiple comparisons post hoc test.

(D) Glutamate receptor levels in mir-263a mutant brains. Transcript levels of glutamate receptors that were putative targets for mir-263a (from C) measured by

qPCR using RNA frommir-263aGal4KO/+ heterozygote,mir-263aGal4KO/bft24mutant, andmir-263aGal4KO/bft24;UAS-263a/+ rescuedmutant heads. Data are from

three biological replicates.

(E) Glutamate receptor levels in Eaat1-Gal4-expressing cells in mir-263a mutant brains measured by qPCR using RNA from Eaat1-Gal4-expressing cells in

control (Eaat1-Gal4/+, UAS-UPRT/+) and mutant (Eaat1-Gal4, bft24/mir-263aKO; UAS-UPRT/+) heads.

(F) Single optical sections of anti-Nmdar1 (green) in the CNS (posterior views) of mir-263aGal4/+; UAS-Histone-RFP/+ control cells compared with mir-263aGal4

cells using themir-263aKO allele with themir-263a sponge to further lowermir-263a levels (KO, spg,mir-263aGal4/mir-263aKO; UAS-histone-RFP/UAS-mir-263a-

sponge). The insets show close-ups of the respective dashed regions.

(G) Cell-type-specific depletion ofGrik rescues climbing defect and cell numbers ofmir-263a-Gal4/Eaat1-LexA overlap cells (Overlap-G4) depleted ofmiR-263a.

Climbing assays (i) and cell quantification (ii–iv) in central brain (ii), cervical connective (iii), and ventral nerve cord (VNC) (iv) performed at 35 days. In (i), each data

point represents a biological replicate of 15–20 flies. In (ii–iv), each data point represents the dissected CNS region from a single fly (n = 25–30 brains for each of

the nine data sets). All flies expressed Overlap-Gal4 driving UAS-Histone-RFP (mir-263aGal4, aTub84B > FRT.Gal80 > /Eaat1-LexA; LexAOp-FLP/UAS-hisRFP),

(legend continued on next page)
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glial population, the climbing defects were suppressed (Fig-

ure 4Gi). Interestingly, central brain glia were rescued under

these conditions (Figure 4Gii), although cells were lost in all re-

gions in the mutant. Cell numbers were partially restored in the

cervical connective and VNC, but this was not statistically signif-

icant (Figures 4Giii and 4Giv). These experiments support the hy-

pothesis that the climbing defects seen in mir-263a mutants are

due to the loss of glia, primarily in the central brain, caused by

excess glutamate receptor levels.

Modulating Glial Cell Membrane Polarization
Can modulating glutamate signaling by other means affect the

severity of the mutant phenotype? Excitatory amino acid trans-

porters remove extracellular glutamate from the synaptic cleft

to prevent glutamate accumulation that could lead to excitotoxic

cell death. We expressed UAS-Eaat1 in its endogenous domain

under Eaat1-Gal4 control to lower extracellular glutamate levels.

This improved climbing performance in the mir-263a mutant

(Figure 5A).

Ligand binding to glutamate receptors typically leads to cell

depolarization. We asked if reducing depolarization of mir-

263a-expressing cells by overexpression of the potassium chan-

nel Kir2.1 (KCNJ2; Baines et al., 2001) could rescue the climbing

defect in mir-263a mutants. This proved to be effective (Fig-

ure 5B). Reciprocally, to mimic the effects of excessive gluta-

mate signaling, we used a temperature-sensitive UAS-TrpA1

channel (Pulver et al., 2009) to selectively depolarize mir-263a-

expressing cells. This caused a severe climbing defect, similar

to what was observed in the mir-263a mutant (Figure 5C). We

then examined the number of mir-263a-expressing cells when

TrpA1 was activated and found that these flies had a �20%

fewer mir-263a-expressing cells in the central brain, but not in

the connective or VNC (Figures 5D and 5E). Thus, mimicking

excess glutamate receptor activation by excess depolarization

appears to compromise the survival of these central brain cells.

These experiments support the hypothesis that mir-263a-

expressing glia show increased sensitivity to ambient levels

of extracellular glutamate. This can be offset by increased

glutamate scavenging, reduced glutamate receptor expression

or activity, and modulating membrane depolarization in a cell-

type-specific manner. We hypothesized that the loss of cells

accompanying the increased glutamate sensitivity was a result

of glutamate-induced excitotoxic cell death. Expression of

UAS-Diap1 to block cell death in the mutant improved climbing

(Figure 5F). Our data support a mechanism of glutamate-

induced excitotoxic cell death in mir-263a mutant glia, caused

by misregulation of glutamate receptors.

DISCUSSION

Glutamate is an important neurotransmitter at many excitatory

synapses. Astrocytic glia protect synapses and help to maintain
with the addition of the indicated transgenes: KO, mir-263aKO; Spg = mir-263a

one-way ANOVA (p < 0.0001) followed by a protected Fisher’s least significant d

(SEM, n = 28) His+ cells; miR-263a-depleted average: 68 ± 4.5 (n = 30); Grik-RN

See also Figure S4.
neuronal function by clearing glutamate. This allows rapid cycles

of synaptic neurotransmission and protects neurons from the ef-

fects of extracellular glutamate buildup (Anderson and Swanson,

2000; Rothstein et al., 1996). A growing body of evidence points

to glutamate signaling in glia themselves (Cornell-Bell et al.,

1990; Lalo et al., 2006). Although the functional impact of this

signaling is not well understood for the most part (reviewed by

Kolodziejczyk et al., 2010), there are some indications of specific

functions. For example, glutamate has been reported to regulate

glial glutamate transporter expression, suggesting active feed-

back to control extracellular glutamate levels (López-Bayghen

et al., 2003). One study found that loss of AMPA receptors re-

sulted in retraction of glial processes from synapses, leading to

impairment in fine motor coordination (Saab et al., 2012). Evi-

dence has also been presented for glutamatergic regulation of

signaling from glia to neurons (Mothet et al., 2005).

Our findings provide evidence that miRNA-mediated regula-

tion of glutamate receptor levels in astrocyte-like glia and en-

sheathing glia in Drosophila is required to prevent excitotoxic

death of these glia. The movement defects in mir-263a mutants

were rescued by preventing depolarization of these glia, sug-

gesting that excess glutamate signaling was the cause of glial

death. Both the cell loss and concomitant climbing defects in

the mutant were rescued by lowering glutamate receptor levels

in these cells. Increasing glutamate scavenging and blocking

cell death also rescued the climbing defect in the mutant.

Together, these findings provide evidence that elevated gluta-

mate sensitivity was causative. In addition, the rescue of cells

in the overlap population due to reduced target expression

correlated with restored climbing ability. mir-263a appears

to modulate glutamate responsiveness in these cells by regu-

lating expression of several glutamate receptors. The targeting

of groups of glutamate receptors by one miRNA might be an

efficient mode of regulation, because subunits may be interde-

pendent for the functional assembly of heteromeric receptors

(Qin et al., 2005). The endogenous functions of these gluta-

mate receptors in glia will be an interesting topic for future

study.

miRNA-mediated repression of glutamate receptor subunits

has been shown to be neuroprotective (Harraz et al., 2012).

Alterations in glutamate receptor levels may change receptor

composition, altering channel properties (Sans et al., 2003) and

glutamate response (Harraz et al., 2012). For example, AMPA

channels lacking GluR2 show increased susceptibility to excito-

toxicity (Hollmann et al., 1991; Peng et al., 2006). Notably, motifs

that control voltage-dependent Mg2+ block are only somewhat

conserved in Drosophila NMDARs, suggesting that they may

exhibit higher Ca2+ permeability (Xia et al., 2005), which is asso-

ciatedwith excitotoxic cell death (Arundine and Tymianski, 2003;

Randall and Thayer, 1992). These subtle receptor abnormalities

can lead to chronic, slow excitotoxicity (Warmus et al., 2014;

Beal, 1992). It is important to distinguish the cell-autonomous
sponge; RNAi, UAS-RNAi line against Grik. p values were determined using

ifference test. In the central brain, control samples had an average of 87 ± 6.7

Ai rescue: 85 ± 6.7 (n = 30).
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Figure 5. Phenotypic Modulation by Manipulating Extracellular Glutamate Levels, Membrane Polarization of Glia, and Blocking Cell Death

(A) Climbing assay at 18 days. All flies carried bft24 recombined with Eaat1-Gal4 in trans tomir-263aKO. + indicates mutant. p values were determined by Mann-

Whitney test.

(B) Climbing assay at 18 days. All flies carried mir-263aGal4KO in trans to bft24. p values were determined by Mann-Whitney test.

(C) Climbing assay at 11 days. Flies were reared at 18�C, shifted to 29�C 3 days before eclosion, and kept at 29�C until tested. 263aG4, mir-263a-Gal4. TrpA1

indicates a UAS-TrpA1 transgene. p values were determined using an ordinary one-way ANOVA (p < 0.0001) followed by a protected Fisher’s least significant

difference test.

(D) Representative images of dissected whole CNS from control flies and flies expressing activated TrpA1 in mir-263a-Gal4-expressing cells from (C),

demonstrating the demarcation of areas for quantification in (E).

(E) Quantification of mir-263a-Gal4-expressing glia in animals from (C). p values were determined using the Mann-Whitney test. In the central brain, control

samples had an average of 349 ± 19 (SEM, n = 10) His+ cells; TrpA1-activated samples had 284.5 ± 10.4 (n = 13). There was no significant difference in the

cervical connective and ventral nerve cord.

(F) Climbing assay at 18 days. All flies carried mir-263aGal4KO in trans to bft24. p values were determined by Mann-Whitney test.
effects due to increased glutamate sensitivity, like those

observed in this study, from the widespread excitotoxicity to

neurons and glia that occurs due to excessive glutamate release

or impaired glutamate clearance, which can affect neighboring

cells, as was seen in the case of miR-1000/137 (Verma et al.,

2015) and in stroke and traumatic brain injury (Beal, 1992). It

would be interesting to find out if slow glial excitotoxicity due to

cell-autonomous glutamate receptor upregulationmay be a rele-

vant contributing mechanism to human movement disorders.

Neurons and muscles use miRNAs to regulate glutamate re-

ceptor levels (Harraz et al., 2012; Letellier et al., 2014; Saba

et al., 2012; Karr et al., 2009). Neurons, with their elongated

and highly branched morphology, traffic mRNAs over long dis-

tances into axons and dendrites, accumulating compartmental-

ized pools of mRNAs for onsite translation in response to local

stimuli (Cajigas et al., 2012). There is accumulating evidence

that miRNAs locally regulatemRNAs post-synaptically, tomodu-

late synaptic plasticity (Schratt et al., 2006) as well as pre-synap-

tically to modulate glutamate release (Verma et al., 2015). Astro-

cytes, like neurons, have irregular and complex morphologies

andmay also exhibit subcellular trafficking and localized transla-

tion of transcripts (Gerstner et al., 2012). As in axons,miRNAs are

well suited to confer local regulation of target mRNAs at distal

sites in glia with elongated morphologies.
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How might loss of this specific glial population lead to

the observed climbing defects? It had previously been shown

that acute elimination of neuropil glia causes misguidance

and abnormal fasciculation of secondary axon tracts (Spindler

et al., 2009). A separate study showed that elimination of astro-

cytes resulted in changes in synapse number (Muthukumar et al.,

2014). Adults that emerged under these conditions exhibited se-

vere motor defects and extremely short lifespan (Muthukumar

et al., 2014; Spindler et al., 2009). In this study, we show that

loss of mir-263a led to loss of a small, specific population of

astrocyte and ensheathing glia and that loss of this population

is associated with severe climbing defects. It would be reason-

able to assume that loss of these glia impacts the function

of interacting neurons. Variation in the severity of this indirect

effect likely explains why some mutant animals climb better

than others.

mir-263a is similar in sequence to the mammalian mir-

183/-96/-182 cluster. Interestingly, mir-182 is expressed in as-

trocytes and upregulated in glioblastoma (Kouri et al., 2015).

mir-182 is also predicted to target the kainate receptor GRIK3,

AMPA receptorsGRIA1 andGRIA3, the metabotropic glutamate

receptor GRM5, and glutamate receptor GRID1 (http://www.

targetscan.org). mir-182 is upregulated in glial Schwann cells

in response to nerve injury (Yu et al., 2012). It will be of interest

http://www.targetscan.org
http://www.targetscan.org


to learn whether mir-183/-96/-182 have a comparable glio-

protective function through regulating glutamate receptors in

mammalian glia. The potent effects on glutamate sensitivity

observed from loss of a single miRNA, as seen in this study, sug-

gests potential use of miRNAs to regulate glutamate receptor

expression for treatment of disease.

EXPERIMENTAL PROCEDURES

Fly Strains

Flies and crosses were reared at 25�C, 70% humidity in an environmentally

controlled incubator on a 12 hr light-dark schedule unless otherwise indicated.

Control flies were yw unless otherwise indicated. Data are from males unless

otherwise indicated.

mir-263aKO, mir-263aGal4KO, and UAS-mir-263a are described in Hilgers

et al. (2010). Df(2L)BSC323 (removes mir-263a), Mi{ET1}CG5621[MB05324]

(CG5621 allele), P{w[+m*] = GAL4}repo (repo-Gal4), P{GAL4-elav.L}2

(elav-Gal4), P{Eaat1-GAL4.R}2 (Eaat1-Gal4), P{8XLexAop2-FlpL}attP2

(LexAOp-FLP), P{w[+m*] = lexA-2xhrGFP.nls}2a (LexAOp-nlsGFP),

P{alphaTub84B(FRT.GAL80)}2 (tub > FlpoutGal80 > ), P{GMR75H11-lexA}

attP40 (Eaat1-LexA), P{y[+t7.7] w[+mC] =UAS-TrpA1(B).K}attP2 (UAS-TrpA1),

P{w[+mC] = UAS-HsapyKCNJ2.EGFP}7 (UAS-Kir2.1), and P{UAS-

Eaat1.Exel}3 (UAS-Eaat1) were fromBloomingtonDrosophila Stock Center (In-

diana University). P{GawB}NP6520 (NP6520-Gal4), P{GawB}Akap200NP2222

(NP2222), P{GawB}NP577 (NP577-Gal4), and P{GSV6}GS14711 (mir-263a

insertion used for P-element replacement) were from DGRC. Alrm-Gal4 was

provided by Marc Freeman. bft24 was provided by Rolf Bodmer. RepoGal80

was provided by Tzumin Lee. ItGal43.1 was provided by David Foronda.

P(KK 102270)v103736(mGluR-RNAi), P(KK104645)v105870 (clumsy-RNAi),

P(GD16345)v49547 (GluRIIE-RNAi), P(KK111536)v102351 (Ekar-RNAi), P(KK

107519)v104773 (Nmdar1-RNAi), P(KK105030)v100883 (CG11155-RNAi),

P(GD 3192)v12189(Nmdar2-RNAi), and P(GD3092)v47549 (CG5621/Grik-

RNAi), were from the Vienna Drosophila Research Center.

Climbing Assays

Crosses were set up with 25 females per bottle and flipped every 2 days to pre-

vent overcrowding. Groups of 15–20males were collected within 24 hr of eclo-

sion and aged without further CO2 exposure. Flies were flipped onto fresh food

every 2–3 days. Each data point represents 15–20 flies in one vial. Climbing ex-

periments were carried out between 3 and 6 pm to minimize circadian differ-

ences. Flies were transferred to cylindrical vials measuring 2.5 3 9 cm, with

a line at the 5 cm mark, and allowed to acclimate undisturbed for 15–30 min

before testing. Flies were lightly tapped down to the bottom of the vial, and

the number that crossed the 5 cm mark in 30 s were counted. Vials were

placed horizontally and retested 15–30 min later. The average of the two tech-

nical replicates for each vial was recorded, and the percentage climbing was

plotted as a single point. The knockouts and mutants, being a complete loss

of function, show a defect at a younger age than the flies in which miRNA func-

tion is partially reduced using the sponge. Thus, climbing analysis of mutants

were carried out at 18 days and sponge experiments at 35 days.

P Element Replacement for Generation of mir-263aGal4

The mir-263aGal4 allele was made by replacing the P element insertion in

P{GSV6}GS14711 with the Gal4 P-element ItGal43.1 using D2-3 recombinase.

Candidates were screened for changes to UAS-histone-RFP expression. One

candidate with a distinct pattern was found and the insertion mapped by

inverse PCR. The insertion was mapped to 2L:11,969,151 indicating that it

had replaced the P{GSV6}GS14711 target.

UAS-TrpA1

Crosses were set up with 25 females per bottle and flipped every 3 days.

Crosses were kept at 18�C until pupariation (3 days before eclosion) and

shifted to 29�C. Flies were collected within 24 hr of eclosion and kept at

29�C. Groups of 15–20 males were kept at 29�C without further exposure to

CO2 and assayed for climbing ability on day 11 post-eclosion.
TU Tagging

Eaat1-Gal4/+; UAS-UPRT/+ (control) and Eaat1-Gal4, bft24/263aKO; UAS-

UPRT/+ (mutant) flies were raised until 4 days of age. They were placed in vials

with 1%agarose for 12 hr and then transferred to food with 1mM4-TU (24 hr in

the dark). Flies were frozen in liquid nitrogen and agitated to remove the heads.

Three hundred heads were used for each sample. Tagged RNAwas purified as

previously described (Miller et al., 2009) and used for qRT-PCR. Samples were

tested to ensure that repo mRNA was enriched in the bound fraction and that

elav mRNA was enriched in the unbound fraction.

Cell Counting

Dissection, fixing, staining, imaging, and analysis were carried out blind.

Samples were mounted for view from posterior. Two-micrometer optical sec-

tions were taken through the entire depth of each sample. Because UAS-his-

tone-RFP cells were sparse with minimal overlap, a maximum projection was

used for counting. Demarcation of central brain, connective, and the first

thoracic segment of the VNC was carried out without reference to the his-

tone-RFP channel (see Figure S3) using Nrg (Figure 3) or DIC bright-field (Fig-

ures 4 and 5). The histone-RFP channel was then extracted from the selection,

and the number of RFP-positive nuclei were counted using the ITCN plugin

(Center for Bio-Image Informatics, University of California, Santa Barbara) in

ImageJ. The ITCN settings were determined on a control brain in the first

experiment so that most visible nuclei were selected with no false positives,

and the same setting was applied to all images (width = 9, minimum distance =

4.5, threshold = 2.2). For Figure 3F, only fully intact samples were counted. For

Figures 4G and 5E, only intact regions were counted.

Statistical Analysis

Statistical analysis was carried out using Prism 6 (GraphPadSoftware). Scatter

plots were used except if n > 25, in which case box-and-whisker plots were

used (the ends of the whiskers represent the minimum and maximum of all

the data). When comparing two populations (mutant versus treatment), a

two-tailed non-parametric Mann-Whitney test was used. When comparing

three or more populations for the purposes of phenotypic characterization

(Figures 1B and 1D) or candidate screening (Figures 4A and 4D), a non-para-

metric Kruskal-Wallis test was used, with Dunn’s multiple comparisons post

hoc test to determine which were statistically significant outcomes. When

comparing three or more populations for testing specific hypotheses (Figures

3C, 4C, 4H, and 5C) one-way ANOVAwas used, with a protected Fisher’s least

significant difference (LSD) test to determine if each comparison was statisti-

cally significant (in all cases, the overall ANOVA F ratio was <0.05).

Determination of Sample Sizes

On the basis of our initial sponge results, comparing G4/KO (mean = 56.3, SD =

16.4) with G4/KO, sponge (mean = 20.2, SD = 15.5), the effect size of the miR-

263a phenotypewas found to be relatively large (Cohen’s d = 2.261). The effect

size comparing mutant to controls was still larger. To uncover effects at a 0.05

significance level with 80% power, a minimum of five samples in each group

was required. Because it was not possible to obtain a technical replicate of

each fly’s climbing performance in the group, we reported the climbing ability

as percentages of a group.
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