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Abstract

Deuterium fractionation, i.e., the enhancement of deuterated species with respect to non-deuterated ones, is
considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-
para H2 ratio. In this Letter we explore the effect of the ortho–para (o–p) H2 conversion on grains on the
deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this
complex process. We show that (i) the o–p H2 conversion on grains is not strongly influenced by the uncertainties
on the conversion time and the sticking coefficient, and (ii) that the process is controlled by the temperature and the
residence time of ortho-H2 on the surface, i.e., by the binding energy. We find that for binding energies between
330 and 550 K, depending on the temperature, the o–p H2 conversion on grains can shorten the deuterium
fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration
fraction Dfrac in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated
through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed.
However, more accurate measurements of the binding energy are needed in order to better assess the overall role of
this process.
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1. Introduction

Stars form in dense and cold regions within molecular
clouds, and this process is regulated by different physical
phenomena that act at small scales. In fact, magnetic pressure,
turbulence, and rotation can delay the collapse, inducing long
timescales for stars to form. These processes are particularly
relevant for determining timescales for the formation of
massive stars.

Despite their fundamental astrophysical importance, the path-
ways of high-mass star formation remain highly controversial
(see Zinnecker & Yorke 2007). In particular, do they form
through slow collapse supported by magnetic pressure and/or
turbulence (McKee & Tan 2003), or during a fast global collapse
process (Bonnell et al. 2001)? That is, the timescales of the
process remain elusive to date. Chemistry, and in particular
deuteration chemistry, provides a tool with which to measure
these timescales (Fontani et al. 2011). A high deuteration
fraction, Dfrac, i.e., the ratio of deuterated to non-deuterated
species, has been observed in infrared dark clouds (IRDCs). The
latter are characterized by large amounts of molecular freeze-out
(e.g., Chen et al. 2011; Hernandez et al. 2011; Giannetti
et al. 2014), which favor a high level of deuteration (Caselli
et al. 2002; Fontani et al. 2011). Several studies reported a [D/H]
ratio well above the expected cosmic value of∼10−5, with values
ranging from 0.001 to 0.1 (Chen et al. 2011; Fontani et al. 2011;
Barnes et al. 2016; Kong et al. 2016).

Deuterium fractionation is a complex problem that depends on
the interplay between many different processes and very peculiar
conditions (Ceccarelli et al. 2014; Körtgen et al. 2017). It starts to
be effective when low temperatures favor the freeze-out of
molecules such as CO on the surface of grains (Tafalla

et al. 2002). Molecular freeze-out, together with the initial H2

ortho-to-para ratio (OPR) regulates the speed of the deuteration
process and determines its timescale. CO and o-H2 are known to
destroy H2D

+, a key molecule for deuteration, slowing down the
entire process (Ceccarelli et al. 2014). While CO depletion could
be estimated from observations, the H2 OPR cannot be inferred
(Pagani et al. 2009, 2013). H2 does not emit cooling radiation in
cold regions and cannot be detected unless probed indirectly
through other tracers such as H2CO (Troscompt et al. 2009). This
means that the knowledge of the H2 OPR merely comes from
theoretical studies. The values assessed by modeling observations
vary from 0.1 in the pre-stellar core L183 (Pagani et al. 2009),
10−4 toward IRAS 16293-2422 (Brünken et al. 2014), to higher
values when moving to diffuse environments (Crabtree
et al. 2011). It is therefore crucial to model the H2 OPR taking
into account all of the relevant processes. In particular, the o–p
H2 conversion on grains so far has not been taken into account in
studies related to deuteration in dense molecular cloud cores.
Bron et al. (2016) have shown that this conversion process is
efficient in photodissociation regions if temperature fluctuations
of dust grains are taken into account.
Recent theoretical and experimental works have found

different timescales for this process on different substrate
materials. Morphology, porosity effects, binding energy, and
sticking coefficient experiments have been conducted both on
bare silicates (e.g., Vidali & Li 2010) and porous and non-
porous materials, including amorphous solid water (ASW)
mixed with methanol or O2 impurities (e.g., Chehrouri
et al. 2011). The formation of molecules on the surface has
been shown to have a two-values distribution of binding
energies and then different timescales (e.g., Hornekaer
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et al. 2005; Watanabe et al. 2010). If species are adsorbed in
deep sites instead of surface peaks, the diffusion as well as the
desorption is slower, producing larger binding energies.

The subject of this Letter is the o–p H2 conversion on dust
and the impact it might have on the evolution of deuteration in
dense cores. This process is affected by several uncertainties
that we will discuss here.

In the following sections we will introduce the main
processes needed to study the o–p H2 conversion on dust,
and present the results obtained from one-zone calculations.
We will then draw our conclusions.

2. Nuclear Spin Conversion Rate

The conversion from ortho-to-para H2 spin states in the gas
phase proceeds via reactions with H+ and H3

+ (Hugo
et al. 2009; Honvault et al. 2011). While the above reactions
are considered to be the main paths for the H2 nuclear
conversion, in the last years the o–p conversion on dust has
attracted a lot of attention (Watanabe et al. 2010; Ueta
et al. 2016). The latter depends on the interplay among different
processes: (i) the adsorption of o-H2 on grains regulated by the
adsorption coefficient kads

oH2, (ii) the o–p conversion time τconv,
and (iii) the desorption or residence time tdes. The o–p H2

conversion probability (in units of s−1) is then defined as

P k , 1ads
oH2h= ( )

with η representing the efficiency of the process (Fukutani &
Sugimoto 2013) given as

t

t
. 2des
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h

t
=

+
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Conversion process—The conversion process strongly depends
on the residence time of o-H2 on the grain surface: if
tdes?τconv, the molecule will reside on the grain surface for
long enough to maximize the conversion probability (i.e.,

1h  ). On the contrary, if tdes=τconv, the residence time is
too short to allow efficient conversion, and 0h  as well as
the probability.
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is the thermal gas speed, moH2 is the

mass of o-H2, Tgas is the gas temperature, kb is the Boltzmann
constant, σgr is the distribution-averaged grain geometrical
cross-section, and S is the sticking coefficient.
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where Ed is the molecule binding energy on the grain surface,
Tdust is the dust temperature here assumed to be equal to Tgas,
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is the harmonic frequency (Hasegawa et al. 1992; Bron
et al. 2016), which, taking a typical width of the surface potential
well of d0=0.1nm (Bron et al. 2016), is ν0=1013 s−1.

We here assume that the desorption occurs mainly through
evaporation, neglecting photo-desorption and grain collisions.
Photo-desorption induced by cosmic rays could be relevant at
low temperatures even in dense environments (e.g., Reboussin
et al. 2014), but in the current study this turns out to be much
longer than the conversion time τconv.
We also neglect the inverse process that converts p-H2 to

o-H2, as this is in general much slower, with timescales larger
than 104 s (see e.g., Table1 in Bron et al. 2016).
Different values for the o–p H2 conversion time (τconv) have

been reported, and these strongly depend on the surface
morphology. In particular, the presence of paramagnetic defects
could induce fast spin-flip phenomena (Chehrouri et al. 2011).
Sugimoto & Fukutani (2011) proposed a model of electric-

field-induced nuclear spin-flip, where the electronic states of
the two isomers are mixed by the Stark effect. Recently, Ueta
et al. (2016) measured temperature-dependent conversion times
and found that the latter cannot be explained by the difference
in the potential sites but is induced by a two-phonon energy
dissipation process that directly correlates with the temperature.
Overall, the range of conversion times reported in the

literature lies in between 220 and 104 s, where the higher-end
value comes from an extrapolation of data obtained by
Watanabe et al. (2010), and should be carefully employed.
These values are collected in Table 1 for temperatures of 10
and 15K.
Binding energy—The conversion probability depends upon

the desorption time (Equation (4)), i.e., on the binding energy
(Ed). Experimental and theoretical works have been intensively
dedicated to the measurements/calculations of the H2 binding
energy on different solid surfaces, and on the function of the
coverage factor θ, i.e.,the number of adsorbate particles
divided by the number of adsorption sites on the surface.5

Previous studies have focused on porous ASW(p-ASW) with
high levels of coverage, while recent experiments have been
conducted on non-porous ASW (np-ASW) and as a function of
the coverage (e.g., He et al. 2016). Interstellar ices are indeed
thought to have low levels of porosity, as they are continuously
exposed to external radiation (Palumbo 2006). In the next
Section we will investigate the effect of the o–p H2 conversion
on dust, assuming different binding energies6 in the range
230–1090 K.

3. Chemical Model

To follow the time evolution of Dfrac and the H2 OPR, we
perform one-zone calculations at a constant density and
temperature typical of the observed dense cores. To reduce the
uncertainties and to have a better comparison with previous
works, we employ the reduced, fully-depleted network of
Walmsley et al. (2004), updated by Hugo et al. (2009).7 Dust
grains are included using a size-distribution j(a), where chemical
rates have been recalculated consistently. We employ a standard
grain-size distribution j(a)∝a−3.5 (Mathis et al. 1977) in the
range amin=5×10−7 cm and amax=2.5×10−5 cm, and a
dust-to-gas ratio 0.013 = (Walmsley et al. 2004). The grain

5 A complete monolayer has θ=1.
6 We indicate the binding energy value with the corresponding temperature
Ed/kb.
7 As reported by Sipilä et al. (2010), the new rates affect the evolution of H3

+,
decreasing the steady-state value by a factor of three. The Dfrac is then
increased by the same factor as the steady-state value of H2D

+ is not affected
(see Figure 2 in their paper).
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bulk mass density is 3gcm−3, which is typical of silicates.8

Given the employed density we assume Tdust=Tgas.
The chemical rate equations are integrated with the

chemistry package KROME9 (Grassi et al. 2014).

4. Results

In the following, before discussing our results, we present a
timescale analysis in order to understand the most relevant
physical parameters that influence the o–p H2 conversion.

In Figure 1 (left) we plot the o–p conversion efficiency η as a
function of the binding energy for different Tgas and conversion
times, while Figure 1 (right) reports the desorption times
calculated from Equation (4) for different binding energies and
Tgas. We first note that, by changing the binding energy, a sharp
transition of the conversion efficiency η appears. Second, a
change in temperature has a strong impact on the binding
energy where the transition η=0 to η=1 occurs,
astdes∝exp(1/Tgas); i.e., increasing the temperature exponen-
tially reduces the desorption time and, vice-versa, reducing the
temperature increases the desorption timescale, the o-H2

residence time, and the conversion probability. Overall, the
conversion time, which represents one of the main uncertainties
together with the binding energies, does not show a strong
impact on the o–p conversion efficiency, while binding
energy does.
For a temperature of 15K, when Ed>600 K there is no

dependence on the conversion time. On the other hand, for
Ed<600 K, changing τconv from 104 to 220s strongly affects
the conversion efficiency. Figure 1 (right) also indicates that the
desorption time and the binding energy play a relevant role
here. We have a clear indication about the temperature range
where the o–p H2 conversion becomes relevant once the
binding energy is set. We report five different binding energies
for different types of surface morphologies in order to explore
the typical range of binding energies and material employed in
laboratory experiments. Considering the uncertainties, we
found that when Tgas�17 K and Ed;580 K, the o–p H2

conversion on grains is already efficient because the conversion
time is comparable to or even shorter than the desorption time.
These values of binding energies are typical of np-ASW, which
are supposed to resemble more closely the ISM ices, but also
match bare grains (see Table 1). In Figure 1 (right) the gray
area shows the minimum and the maximum conversion time
and includes the measurements found in the literature
(symbols). This simple analysis gives an insight into the role
played by the different physical ingredients, and suggests that
the o–p H2 conversion on grains might be relevant for cores
with Tgas�15 K. This slightly depends on the uncertainties of
the binding energies and the conversion time.

4.1. One-zone Model Evolution

To confirm what we found in our analytical considerations
and give a more quantitative analysis, we present results from
the time evolution of a one-zone model with nH=105 cm−3

and Tgas=15 K, which resembles conditions similar to the
ones observed in molecular cloud cores (Walmsley et al. 2004;
Pagani et al. 2013; Kong et al. 2015). Our initial conditions are
x 3.75 10oH

1
2 = ´ - , x 1.25 10pH

1
2
= ´ - , and xHe=9×

10−2, where xi=ni/nH, and we have assumed that the initial
H2 OPR is 3. Grains are initially charge-neutral with number
density ndust=6.38×10−10 nH. The assumed cosmic-ray
ionization flux is ζcr=2.5×10−17 s−1.
Figure 2 shows the evolution of H2 OPR and Dfrac=

[H2D
+]/[H3

+] for different binding energies by assuming the
longest measured conversion time (τconv= 104 s). Overall, the
results reflect what we argued from analytic considerations on
the timescales discussed in the previous Section. When the
binding energy is above a critical value (Ed� 520 K), the o–p
H2 conversion on dust starts to compete with the gas-phase
conversion and has a strong impact already when Ed=580 K.
In the latter case, the Dfrac equilibrium at 15K is reached after
∼4×104 years instead of t∼4×106 years, a difference of
two orders of magnitude. This indicates that the timescale to
reach high deuteration is shifted from 14tff to less than one tff,
where tff is the free-fall time. It is important to add that the o–p
H2 conversion on dust also has an impact on the H2 OPR,
which reaches lower equilibrium values in shorter times. As a
consequence, the H2D

+ OPR, which correlates very well with
the H2 OPR (see e.g., Brünken et al. 2014) will also follow a
similar trend.
In Figure 3 we present a more extended analysis on the effect

of the binding energy and conversion time on the time needed

Table 1
A: Binding Energies for Different Surface Types; for the Two-values Cases the
Low- and High-end Values Represent Binding Energies for the Shallow and
Deep Sites, Respectively; B: Conversion Times for Different Experiments

A: Binding Energies

Reference Ed/kb (K) Surface Type

(1) 440 np-ASW
(2) 783 p-ASW
(3) 230 and 580 ASW
(4) 650 ASW
(5) 520 np-ASW
(6) 893 and 1090 p-ASW
(7) 522 and 789 ASW heat-treated
(7) 453 and 778 ASW low-density
(7) 615 and 801 ASW high-density
(8) 731 ASW high-density
(9) 500 ASW
(10) 406 and 615 bare silicates
(11) 662 bare silicates
(12) 480 bare silicates

B: Conversion Times

Reference τconv (s) Tdust (K)

(13) (3.1±0.7)×103 10
(14) 220 10
(15) 370 140

340
-
+ 10

(13) 580±0.3 15
(3) 5×103 15
(3) 104 15

References. (1) Cuppen & Herbst (2007), (2) Amiaud et al. (2015), (3)
Watanabe et al. (2010), (4) Al-Halabi & van Dishoeck (2007), (5) Dulieu et al.
(2005), (6) Hornekaer et al. (2005), (7) Roser et al. (2002), (8) Manicó et al.
(2001), (9) Buch et al. (1993), (10) Perets et al. (2006), (11) Vidali & Li (2010),
(12) Acharyya (2014), (13) Ueta et al. (2016), (14) Chehrouri et al. (2011), (15)
Sugimoto & Fukutani (2011).

8 We tested different grain size distributions, but the effects are not relevant
and we therefore omit the discussion.
9 http://www.kromepackage.org, commit: e2a1a54.
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to reach equilibrium Dfrac. We plot the ratio between tff and the
time needed to reach 95% of the equilibrium Dfrac, namely
teq,95, at 10 and 15 K, respectively. The results can be explained
in terms of three different regimes: (i) an Ed value below which
no relevant o–p conversion takes place, (ii) a transition binding
energy range where an effect of a factor 2-5 is visible, and (iii)
the saturation regime, i.e., Ed above which the o–p conversion
on dust is always dominant with a change in teq,95/tff,5 of more
than one order of magnitude. We note that the effect could be
less strong when either the initial density or the cosmic-ray flux
are increased.

These regimes are different depending on the temperature we
consider: for a gas at 15 K the saturation regime starts at
Ed∼550 K, while at 10 K this threshold is much lower,
Ed∼370 K. The latter is lowered to Ed∼520 K at 15 K and
Ed∼330 K at 10 K when we assume the shortest measured
conversion times (dashed line in the plots). We can conclude

that in a range of temperatures between 10–15 K, and for
binding energies above the discussed thresholds, o–p conver-
sion on dust becomes relevant, with a weak dependence on the
uncertainties affecting the dust physics. We note that the
threshold E t td eq,95 ffº( ) scales as T nlngas Hµ - ( ). A shift
toward larger (smaller) values is expected when we decrease
(increase) the density or the temperature.
Finally, in Figure 4, we show a set of runs where we employ

a temperature-dependent sticking coefficient, obtained from
laboratory measurements on np-ASW (He et al. 2016). The
results are only slightly affected and are independent of the
conversion time.
Overall, our tests show that binding energy and temperature,

i.e., the two quantities that affect the desorption time, are the
most relevant, while the sticking coefficient and the o–p
conversion time only slightly affects Dfrac.

5. Discussion and Conclusions

In this Letter we have explored the o–p H2 conversion on
grains, focusing on the imprint this process leaves on Dfrac,
when it is more effective than the analogous process in the gas
phase. The H2 o–p conversion on dust is regulated by different
parameters, the most important being the binding energy and
the conversion time. Great efforts have been made to provide
measurements of these quantities with state-of-the-art labora-
tory experiments, but no conclusive answers have been
provided yet. Uncertainties due to the binding energy, cover-
age, and grain material, together with temperature, strongly
affect the outcome of chemistry on the surface. For the first
time we have studied the impact of the o–p H2 conversion on
dust on the deuteration, exploring the different uncertainties.
From our analytic considerations and one-zone models we
found that, when above a given binding energy threshold, the
uncertainties on the binding energies and conversion times, as
well as the sticking coefficient, are marginally relevant. The
binding energy determines the residence time of o-H2 on
grains, providing a timeframe for the o–p conversion to occur.
Our findings suggest a threshold value of binding energy in
between 330 and 550 K, when temperatures of 10�Tgas�15
K and most recently measured conversion times are considered.

Figure 1. Left: conversion efficiency η as a function of the binding energy Ed/kb in K, for different temperatures and conversion times τconv, labeled as (Tgas, τconv).
The solid red line represents our reference run, with Tgas=15 K and τconv=104 s. Right: desorption time tdes for different binding energies (see the labels) and as a
function of temperature. We assume Tdust=Tgas. The same panel reports the o–p H2 conversion times from different experiments (symbols). The gray band represents
the interval of measured τconv.

Figure 2. Effect of the binding energy on the evolution of OPR and Dfrac. The
red solid line represents our reference run, i.e.,T=15 K, S=1, and no o–p
H2 conversion on grains. This is compared to models with o–p H2 conversion
on grains, assuming τconv=104 s, but with different binding energies,
i.e.,different surface morphologies. The free-fall time (tff,5) is evaluated at
nH=105 cm−3.
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These values are in agreement with typical experiments on np-
ASW, but also with binding energies on bare silicates.10

The effect of the temperature is in general more important.
As the process is regulated by the desorption time (or the
residence time) proportional to E k Texp d b gasµ ( ), an increase in
temperature shortens the time available for the o–p conversion
to occur. An increase in the binding energy or a decrease in the
temperature shifts the timescale toward faster deuteration by
two orders of magnitude in time, making the process more
efficient. This provides an alternative route to explain the
observed Dfrac values and can affect the calculations of the
cores chemical age.

Despite the many uncertainties affecting laboratory experi-
ments and their outcomes (i.e., binding energies, conversion
times, sticking coefficient, and surface coverage), our results
suggest that including the o–p H2 conversion on grains in the
modeling of deuteration in dense molecular cloud cores might
play a crucial role when deuteration is employed as a chemical

clock. We also stress that further laboratory measurements and
theoretical calculations are needed to shed light on this
important process, and that the implications should be explored
in a fully dynamical simulation.
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conversion times. We compare runs at constant sticking coefficient S=1 and
runs following He et al. (2016).

10 No experiments on CO-rich ices (expected in cold dense cores) have been
performed.
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