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On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes
Rasmus Bgdker Madsen*, Andrea Zunino and Thomas Mejer Hansen

Niels Bohr Institute, University of Copenhagen
SUMMARY

A realistic noise model is essential for trustworthy inversion of
geophysical data. Sometimes, as in case of seismic data, quan-
tification of the noise model is non-trivial. To remedy this, a
hierarchical Bayes approach can be adopted in which proper-
ties of the noise model, such as the amplitude of an assumed
uncorrelated Gaussian noise model, can be inferred as part of
the inversion. Here we demonstrate how such an approach can
lead to substantial overfitting of noise when inverting a 1D re-
flection seismic NMO data set. We then argue that usually the
noise model is correlated, and suggest to infer the amplitude of
a correlated Gaussian noise model. This provides better results
than assuming an uncorrelated model. In general though, the
results suggest that care should be taken using the hierarchical
Bayes approach to infer the noise model.

INTRODUCTION

Data (d € RN) are the unique forward response from a physical
model (g) given some model parameters (m & RM).

d=g(m) M

In nature, observed data (dyps) are not noise-free, i.e. dgps =
g(m)+ €. The inverse problem of inferring values of the model
parameters from the observed data are therefore non-unique
(Sen and Stoffa, 1996; Tarantola, 2005).

The chosen likelihood function, which measures how well the
model parameters match the observed data, is dependent on
the distribution of noise (Box and Tiao, 1992). The likelihood,
and hence the final posterior distribution of model parameters,
can be very sensitive to noise-level and noise models (Thore,
2015). The noise model should ideally include information
about measurement and experimental errors as well as account
for imperfections in the forward model and/or simplifications
due to the parametrization (Dosso and Holland, 2006). How-
ever, it is often argued that since no theory is exact, all features
that are not captured by the theory are just observational errors,
and no distinction should be made between different types of
noise (Sen and Stoffa, 1996).

In the classical Bayesian stochastic inference paradigm infor-
mation on the uncertainty distribution of the data should be
established a priori as part of the likelihood function. If for in-
stance a Gaussian noise model is assumed, the corresponding
Gaussian likelihood takes the following form (Box and Tiao,
1992)

pldsnm) = exp (3 (@, o))" (do —etm)
2)

where Cp is the data covariance model. The data covari-
ance can be split into contributions from measurement error
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C4 and theory error Ct, assuming independence of the two.
(Mosegaard and Tarantola, 2002)

Cp=Cyq+Cr. 3)

An extension to the classical paradigm is offered through the
use of the hierarchical Bayesian approach, where parameters
of the noise (and of the prior) can be inferred from the observed
data (Gelman et al., 2014). A hierarchical scheme has been
used in various geophysical inverse problems in order to infer
information about noise level from data (Buland and Omre,
2003b; Malinverno and Briggs, 2004; Malinverno and Parker,
2006; Bodin et al., 2012; Dettmer and Dosso, 2012; Ray et al.,
2013).

Buland and Omre (2003b) explicitly used a hierarchical Bayes
formulation of the inverse problem, enabling noise-level es-
timation as well as wavelet estimation in a joint AVO (Am-
plitude Versus Offset) inversion scheme. They concluded that
estimating the seismic noise model as part of the probabilis-
tic inversion is viable. However, in their real data case only
negligible improvements were gained on posterior variance of
model parameters, compared to estimating the noise covari-
ance and wavelet prior to AVO inversion. As opposed to Bu-
land and Omre (2003b), we will analyze the posterior reso-
Iution (not the posterior variance) obtained using hierarchi-
cal Bayes with different assumptions about the noise model.
Specifically we will investigate whether the noise is underesti-
mated, which will result in an apparent smaller posterior vari-
ability. However, such reduced posterior variability might re-
flect non-existent features appearing as a result of fitting noise
as data. We propose a set of synthetic tests similar to that of
Buland and Omre (2003a). The synthetic tests are based on
a reference model from which possible posterior biases in the
model parameters can be assessed alongside the posterior vari-
ance.

THEORY AND METHOD

Forward model and prior information

The synthetic data (AVO gather) are created following the
methodology of Buland and Omre (2003a). The problem here
is to infer information about the three elastic parameters: P-
wave (vp), S-wave (vy), and density (p) from a seismic AVO
gather. The observed data can be expressed as a linear convo-
lution forward problem with some added noise:

dops = Gm+e = WADmM +e 4)

where W is the wavelet matrix which is convolved with the re-
flectivity series ADm. The prior distribution of model parame-
ters p(m) is Gaussian and the three elastic parameters have an
internal correlation of 0.7. This prior corresponds to the "Well
B” scenario of (Buland and Omre, 2003a). In order to allow
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a least-squares solution, the prior distribution of the model pa-
rameters is assumed to be log-Gaussian, so:

m = [In(v,,/v9) " In(vs/v) T, In(p /p®)] ~ Gauss (i, Cu)

5)
where U is the prior expectation of the model parameters, vg,
vg, p? are reference values, and Cyy describes the prior covari-
ance. The noise on the observed data is € = eypcor + €cor, Where
the noise model is Gaussian and split into two components as
in equation 3. Here we let Cy4 be the uncorrelated white noise
component and Cr be the correlated colored noise component,
so that:

€uncor ~ Gauss(0,Cq), ecor ~ Gauss(0,Cr). 6)

A tricky aspect of noise in seismic AVO data is the fact that
the error is often systematic (Riedel et al., 2003). In order to
test the hierarchical Bayesian approach of inferring noise, the
colored noise is set to:

o2 WADCy(WAD)T
T max[WADCy; (WAD)T]’

CT = O-’%CT,s,hape = (7)
This covariance matrix gives the covariance of the prior data
distribution”. Noise realizations from this distribution would
tend to imitate data. By normalizing with the maximum value,
the variance of the noise can be set according to G%. Colored
noise with signal-to-noise ratio (SNR) = 1.25 is added to the
synthetic data, which is in the poor end of what can be ex-
pected from seismic data. In practice this is achieved by hav-
ing the standard deviation o as the standard deviation of the
reference model’s forward response (signal) divided by 1.25.
The covariance of the uncorrelated noise is simply the identity
matrix I times the variance:

Cd = Oﬁcd,shape = G‘%I- ®)

A SNR = 30 is chosen for the uncorrelated noise. This number
is perhaps slightly generous towards the filtering processes. On
the other hand, white uncorrelated noise is different in wave-
length from the seismic signal and can often easily be filtered
out during processing of the raw data (Vecken and Da Silva,
2004). Most of the remaining noise would therefore tend to
resemble the observed data in the frequency domain.

Bayesian linearized AVO inversion
Since the inverse problem is linear Gaussian, the Gaussian
likelihood in equation 2 can be used with the linear operator
G. The posterior distribution p(dops|m) ~ Gauss(ft, Cyp) is
then also a multivariate Gaussian distribution (Tarantola and
Valette, 1982), where the expectation and covariance are given
by:
f2 = p+ (WADCw)" Cp' (dobs — WADR) ©)
Cu = Cyv — (WADCyp) "C ' WADCy (10)
This analytical solution of the Bayesian linear inverse prob-
lem, which is also referred to as the least-squares solution, de-

scribes the full posterior distribution of model parameters with
uncertainty under a Gaussian assumption.

Hierarchical Bayes
In a hierarchical model, the conditional parameters (e.g. model
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parameters or noise model) for the observed data are them-
selves given a probabilistic specification. Consequently, the
conditional parameters are then also dependent on another set
of parameters (Gelman et al., 2014). These additional param-
eters are typically known as hyperparameters h = [}, hs,...].
Uncertainty now includes both model parameters and hyper-
parameters. Therefore a prior distribution p(h) should be set
for the hyperparameters (hyperprior) that reflects the initial un-
certainty on these. The posterior distribution of hyperparam-
eters (hyperposterior) is then determined by inversion of the
observed data. For linear inverse Gaussian problems, as the
one outlined above, Malinverno and Briggs (2004) propose a
computationally efficient approach of hieracrchical Bayes, that
we adopt here. The marginal likelihood of the observed data
conditional on the hyperparameters, in case a linear Gaussian
solution to the problem exists, is given by

det CM
det Cyp

P(dobs|h) = [ ] exp {—%(ﬁ—u)TCKE (l?t—u)]

1

1 N _ N
—exp {—— (dobs — GR)TCp (dopy — Gu)} .
[(27)N det Cp)?

2
an

Using the sampling strategy suggested by Malinverno and
Briggs (2004), the posterior probability distribution of the
hyperparameters are essentially sampled using a Metropolis-
Hastings algorithm (Mosegaard and Tarantola, 1995). At each
step a random walk goes through an exploration phase where a
candidate value of the hyperparameters is proposed in vicinity
of the current. Thereafter, an exploitation phase either accepts
or rejects the candidate based on the marginal likelihood in
equation 11. The posterior for the model parameters is sam-
pled with a Gibbs sampler (Sen and Stoffa, 1996). The model
parameters are at each step conditioned on the current accepted
set of hyperparameters. For our proposed sampling strategy
we let the step-length of the random walk in the hyperparam-
eters be dynamic for the first 1000 iterations, with a target ac-
ceptance rate of 30%. This is a commonly used practice in
Metropolis-Hastings algorithms in order to secure a more effi-
cient burn-in period and subsequent sampling algorithm (Gel-
man et al., 1996).

SYNTHETIC TESTS

In the following, we present three case studies: the first as-
suming uncorrelated data noise, the second assuming a known
shape of the noise, and the third assuming only an approximate
knowledge of the shape of the noise. Regarding the simulated
data, the standard deviations of the realization of the error are
ogq = 0.0039 and o1 = 0.0949, respectively, so the noise is
mainly correlated. The standard deviation on the final com-
bined noise realization is o4, = 0.0947.

Hierarchical Bayes inversion - Case 1

In the first inversion example we assume that all noise on the
data is uncorrelated. The only hyperparameter that is needed in
the hierarchical model is then #; = 04 in equation 8. We want
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Figure 1: Posterior distribution of p(m|d,p) and p(h|dyps),
log-likelihood and cross-correlation for case 1 of hierarchical
Bayes inversion using Cp = h%Cd

to replicate a setting where little prior knowledge of the noise
level exists, but the noise is assumed to be uncorrelated (e.g.
Buland and Omre (2003b); Malinverno and Briggs (2004);
Bodin et al. (2012)). In these circumstances it seems appro-
priate to have a relative non-informative hyperprior distribu-
tion. We therefore set a rather wide uniform hyperprior dis-
tribution for the standard deviation of the uncorrelated noise:
p(h1) ~ Unif(0.0001, 1). Realizations and statistics of the re-
sulting posterior distribution of model parameters p(m|d,yp,)
and hyperparameters p(h|dgys) are shown in Figure 1, as well
as analytically calculated values for acoustic impedance (Al)
and the ratio between P-wave and S-wave velocity (v, /vs). Ar-
eas where the reference model (red line) are not found within
the 90% confidence interval is marked with yellow. Ideally,
90% of the profile should be non-yellow for the posterior res-
olution to be trustworthy for this interval. However, this is not
the case as the reference model is found inside the confidence
interval considerably less than 90%. This is especially true for
vp/vs where the reference model is only found within the 90%
confidence interval 46% of the time. This indicates a severe
case of overfitting the data. The hyperparameter 4, instead,
is actually well determined when comparing the true standard
deviation (black dot) to the histogram in Figure 1. However,
the red dot only indicates the level of uncorrelated noise on the
data 04. The total standard deviation of the error realization
o4+T (blue dot) is heavily underestimated as seen in Figure 2.
Since the noise on the data is apparently too similar in its struc-
ture to the actual signal, the colored noise is then considered
as part of the signal by the algorithm. This explains both the
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Figure 2: Histograms of the hyperposterior distributions for all
MCMC runs p(h|dyps). Notice the logarithmic scale used for
Case 1 (top plot).

overfitting of the posterior for the model parameters and the
algorithms ability to correctly determine the variance of un-
correlated noise on the data while underestimating the actual
total noise level.

The correlation between adjacent samples is not high, as the
correlation decreases to the average level quickly form the last
sample. The pattern of log-likelihood and cross-correlation is
similar for all the following MCMC runs in general and are
therefore not shown.

The overfitting of the hierarchical Bayes inversion with the un-
correlated noise model becomes even more apparent in Fig-
ure 3. Here the percentage of the reference model being inside
the confidence interval is plotted as a function of the size of
the confidence interval. It is clearly visible that the posterior
distribution of the elastic variables is not capturing the refer-
ence model for all confidence intervals. The apparently small
posterior variability is actually reflecting non-existent features,
i.e. noise being fitted as data. The result of the hierarchical in-
version is similar to just applying a linear AVO inversion with
oq = 0.0039. To evaluate the consistency of the results from
case 1, the algorithm is run an additional time. The histogram
of the hyperposterior of /4 in Figure 2 for the secondary run
shows the same pattern as for the first run. This indicates a
certain level of consistency in the MCMC results.

Hierarchical Bayes inversion - Case 2

In the second test case we assume a known shape of colored
noise Crgpape, .. we test whether it is possible at all to in-
fer the variance of the noise knowing the reference color. The
standard deviation of the colored noise is set as an additional
hyperparameter ot = hy. The noise model then takes the fol-
lowing form: Cp = h%Cd,shape + h%CT,Shape. Again, we set a
rather broad uniform hyperprior distribution for the standard
deviation of the correlated noise: p(hy) ~ Unif(0.0001,1).
The result for two runs are summarized in Figure 2 and 3. Both
MCMC runs show approximately the same hyperposterior dis-
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Figure 3: Percentage of reference model being inside the confi-
dence interval, i.e. non-yellow areas in Figure 1), as a function
of confidence interval. The uppermost figures are calculated
using Bayesian linearized AVO inversion for reference.

tributions p(h|dyps). The variance of the correlated noise i,
(red dot) is slightly overestimated, whereas the variance of the
uncorrelated noise /; is well-determined. The nearly-correct
estimation of variance level, results in the reference model be-
ing within the confidence interval following the ideal line in
Figure 3. The model therefore appears to neither over- nor un-
derfit the data. The results are similar to doing a linear AVO
inversion with the reference noise model.

Hierarchical Bayes inversion - Case 3

Since the correct shape of the noise is never readily available in
a real-world scenario, we propose to estimate or assume some
correlation of the noise prior to inversion. We assume that
the noise is showing smoothness comparable with the wavelet.
Furthermore, the noise is correlated between the individual
angle-stacks. The correlation between angle stacks is believed
to vary slightly as a function of angle. This is set up in the
following manner

ﬁBl; 131424321 legnl

hathiy I . btbey

Weorr = 2. ﬁz . 2. . (12)
ﬁn‘gﬁl I ,BH;.BZI B.I

where I is the identity matrix with the size of one individual
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angle stack. A simple model can easily be derived by set-
ting B = B1,B2,---,B, = 1. Using the variance of each an-
gle stack on the observed data offers an estimate for B. These
beta values could possibly also be obtained using optimiza-
tion of the marginal likelihood in equation 11. In our case we
use B =1,0.99,0.98,0.95,0.92,0.90,0.88]. The final approx-
imate shape of the colored noise is then:

WW,or WT

A L — 13
max[WW o WT] (13

CW,shape =
Using the same approach as for case 2, the approximate
noise model takes the following form: Cp = h%Cd,shape —+
h%CW,shape. The variance of the uncorrelated noise is as for
case 1 and 2 correctly estimated as both histograms are cen-
tered around the correct value (black dot) in Figure 2. How-
ever, the variance of the uncorrelated noise is underestimated
when comparing the hyperposterior distribution of p(/;|dgps)
with the correct value (blue dot). As for both case 1 and case 2,
there is consistency between the results from the two MCMC
runs. Figure 3 shows improvements of case 3 compared to case
1 for all elastic parameters but the v, /v ratio, which is still not
captured by the posterior distribution. This indicates that over-
fitting of the data is still present using the approximate shape,
but is nevertheless reduced compared to simply assuming an
uncorrelated shape of the noise.

CONCLUSION

Our results in general indicate that caution should be taken
when inferring the noise as an additional parameter in inver-
sion. It seems that the assumption of uncorrelated noise in
case 1 is not good for inferring the correct noise level on data
with correlated noise. The hierarchical Bayes approach was in
all cases able to accurately estimate the variance of the uncor-
related noise on the data. However, using the approach of case
1 the total variance of the noise is not recovered and significant
overfitting of the data was demonstrated. Choosing the correct
shape of the noise, as in case 2, eliminates the overfitting, and
a correct variance is estimated even for a wide hyperprior. The
results from case 2 indicate that it is possible to estimate a cor-
rect variance of the noise model using the data. Finally, for
case 3 with an approximate shape of the noise, the variance es-
timate of the noise is improved compared to case 1. The model
is however still overfitting the data. Especially v, /vy shows
an apparent smaller posterior variability that is not capturing
the true model. In a real world case it is probably reasonable
to assume that substantial knowledge about the general noise-
level is available to constrain the wide hyperprior distribution
(Gelman et al., 2014). This could potentially improve the re-
sult for an approximate noise model. For our synthetic tests,
using an approximate shape of the correlated noise offers an
improvement on the noise-level estimate compared with using
an uncorrelated noise model. Further work could nonetheless
be done to obtain more reliable estimates for an approximate
shape of the noise, which could further improve the posterior
resolution of the hierarchical Bayes approach in general.
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