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ARTICLE

Algorithm for post-clustering curation of DNA
amplicon data yields reliable biodiversity estimates
Tobias Guldberg Frøslev 1,2, Rasmus Kjøller1, Hans Henrik Bruun 1, Rasmus Ejrnæs3, Ane Kirstine Brunbjerg3,

Carlotta Pietroni2 & Anders Johannes Hansen2

DNA metabarcoding is promising for cost-effective biodiversity monitoring, but reliable

diversity estimates are difficult to achieve and validate. Here we present and validate a

method, called LULU, for removing erroneous molecular operational taxonomic units (OTUs)

from community data derived by high-throughput sequencing of amplified marker genes.

LULU identifies errors by combining sequence similarity and co-occurrence patterns. To

validate the LULU method, we use a unique data set of high quality survey data of vascular

plants paired with plant ITS2metabarcoding data of DNA extracted from soil from 130 sites in

Denmark spanning major environmental gradients. OTU tables are produced with several

different OTU definition algorithms and subsequently curated with LULU, and validated

against field survey data. LULU curation consistently improves α-diversity estimates and

other biodiversity metrics, and does not require a sequence reference database; thus, it

represents a promising method for reliable biodiversity estimation.
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Quantifying biodiversity is a key aim of ecological science,
but for the majority of organisms, species detection and
identification are so demanding and costly that assess-

ment of multi-taxon biodiversity is generally intractable1,2. High-
throughput sequencing (HTS) of genetic markers, which have
already become standard in microbiology, is a promising tool for
rapid, reproducible and thorough censuses of eukaryotic biodi-
versity in complex ecosystems3–5. However, it is poorly studied
whether reliable eukaryotic α-diversity metrics can be achieved
from such methods, possibly due to a shortage of comprehensive
inventories with paired sets of thorough inventory data and DNA
data.

Not only are there sampling issues with regard to environ-
mental DNA, but PCR and sequencing processes also generate
errors6,7, which, together with intraspecific variation, result in
sequence richness far beyond the ‘true’ richness of the sampled
biotic community. Given the incomplete reference databases for
most organism groups, such errors are not easily separated from
true OTU’s.

Molecular, ecological and biodiversity studies based on HTS
have mainly been developed and applied to microorganisms
(bacteria and fungi), for which true diversity generally is poorly
known. Such studies have often estimated very high levels of
α-diversity4,8,9. These high diversity estimates from HTS data
have by some been taken as a first glance into a hitherto un-
sampled ‘rare biosphere’9, by others as an argument for deleting
the rarest OTUs at some arbitrary level. While many rare OTUs
are beyond doubt real biological entities10, an appreciable fraction
of rare OTUs are likely errors from PCR and sequencing11. The
proportion of erroneous singletons has been estimated to 38% on
average12, and studies of bacterial mock communities have
revealed that standard bioinformatic approaches result in many
spurious OTUs13. Bioinformatic error-reduction has mainly been
focussed on selective removal of low-quality reads7,11 and so-
called chimeric sequences14,15, recently implemented in model-
based pipelines13. Other approaches have focused on laboratory
measures to reduce the number of PCR and sequencing errors
and the potential impact of these16–18. Although these advances
have greatly improved data based on amplicon sequencing,
erroneous OTUs remain a critical issue.

Most data processing algorithms cluster sequences into
OTUs based on similarity (often set to around 97% depending
on organism group and marker region) approximately
corresponding to recognized average genetic species boundaries.
To minimize the number of errors, the tail of the OTU rank-
abundance distribution is then often discarded at some
arbitrary level (usually only discarding singletons, but often
more), assuming that a large proportion of infrequent
OTUs represent errors4,11,12,19. However, in real ecosystems,
genuinely infrequent species should be expected to make up
the lion’s share of total richness. Thus, current approaches are
likely to retain only dominant species, which may be adequate
for assessing composition and turnover, but much less so for
α-diversity.

Aiming for improved diversity estimates and a taxonomic
composition better aligned with ‘reality’, we developed a co-
occurrence based post-clustering curation method, LULU. The
LULU algorithm excludes artefactual OTUs without discarding
rare, but real OTUs. The core mechanism is the identification and
merging of ‘daughter’ OTUs with consistently co-occurring,
sequence similar, but more abundant ‘parent’ OTUs across a
multi-sample data set, under the assumption that the ‘daughter’
OTUs are artefacts. The algorithm is independent of a reference
database, and can thus be applied to any OTU table produced for
any set of samples produced by any initial OTU definition
algorithm. A related approach—distribution based clustering—

was developed to cluster 16S bacterial sequence data into ecolo-
gically significant OTUs20, and recently implemented in the
dbotu3 tool21. However, whereas LULU is a post-clustering
curation method aiming at removing erroneous OTUs to achieve
meaningful diversity metrics, dbotu3 is a clustering method
aiming at identifying ecologically significant haplotypes of bac-
terial strains. Despite different objectives and parameters, the
overall processing strategy of the dbotu3 algorithm is similar to
LULU.

To validate the LULU algorithm, we used a plant data set for
ITS2 (nuclear ribosomal internal transcribed spacer region 2)
obtained from an extensive soil sampling across 130 field sites in
Denmark, for which thorough reference data (presence/absence)
of vascular plants were obtained concurrently. A total of 564 plant
species (approximately one third of the naturally occurring flora)
were recorded in the study, with field site species richness per site
ranging from 6 to 93. For the main part of the validation, we used
the botanical survey data as ground truth data for species-level α-
diversity and composition. For additional parts of the validation
procedure, we assigned OTUs to species in public reference
databases (GenBank), which contained ITS2 data for 88% of
species recorded in the field survey, allowing satisfactory taxo-
nomic resolution for most OTUs.

OTU tables were produced from the sequence data using a set
of representative clustering methods: VSEARCH22, SWARM23,
CROP24 and DADA213. All tables were subsequently curated
with the LULU algorithm, and the curation effect was evaluated
against ground truth in the form of plant survey data. We also
tested the dbotu3 algorithm, both for ‘one-step’ clustering as
intended, and as an alternative to LULU for post-clustering
curation. Furthermore, we evaluated the effect of singleton
removal in comparison to curation. Finally, we visualized and
evaluated the exact curation effect on selected genera of plants.
We show that co-occurrence based post-clustering curation
greatly improve diversity measures for all tested OTU tables for a
large set of metrics. We conclude that LULU is a tool with far-
reaching potential for practical application where realistic biodi-
versity metrics are needed.

Results
Curation improves correlation with plant richness. OTU
richness data for the un-curated and curated tables across
the 130 sampling sites were regressed against the corresponding
observed plant richness, for each clustering approach and
similarity level separately (Fig. 1a (97% clustering level), Table 1,
Supplementary Figs 1, 2 (all clustering levels)). Three measur-
es for correspondence with ‘real richness’ were examined:
(i) The coefficient of determination (R2) was used as a measure
of goodness of prediction, (ii) an intercept close to zero
was expected in combination with (iii) a regression slope close to
—but less than—unity to be indicative of a realistic
prediction, reflecting systematic soil sampling to be less effective
than a thorough botanical survey, although DNA from soil
for several reasons may in fact contain DNA from more
species than are apparent at the time of investigation (Methods
section).

The application of the LULU algorithm consistently improved
all selected measures of correspondence with survey data for all
initial clustering approaches. The coefficient of determination
(R2) was improved by 0.03–0.49 (mean improvement 0.27). The
two greedy algorithms, VSEARCH and SWARM, initially resulted
in relatively poor fits with low R2 values, intercepts well above
zero and general overestimation of richness, whereas the two
model-based algorithms, CROP and DADA2 (+VSEARCH),
performed considerably better.
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Fig. 1 Effects of curation with the LULU algorithm for clustering methods at 97% level. OTU table metrics before (red= raw) and after (blue= curated)
curation with LULU. a correspondence of OTU (plant ITS2 sequence data) richness vs. plant richness for each of the 130 sampling sites, b total number
of OTUs compared to total plant species recorded (564 species, dashed line), c percentage of OTUs having taxonomically redundant annotation, d OTU
β-diversity (total richness/mean site richness) compared to plant β-diversity (17.23, dashed line), e distribution of best reference database (GenBank)
match for OTUs retained and discarded by LULU
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Total OTU richness compared to total survey species richness.
We further evaluated OTU definition and LULU curation from
the total number of OTUs identified and retained (Fig. 1b (97%
clustering level), Table 1, Supplementary Figs. 3 and 4 (all clus-
tering levels)). For a realistic OTU definition, we expected a total
OTU number not surpassing the actual number of plant species
recorded across all sites (564 species in total). Again, VSEARCH
and SWARM initially performed relatively poor by identifying
2.3–27 times more OTUs (1320–14,828) than observed plant
species at all clustering levels. The DADA2 (+VSEARCH)
reached much lower OTU numbers, even at low clustering levels,
but still with an overestimation at all levels. The CROP algorithm
was the only method to underestimate the total richness, but
surprisingly the number of OTUs was not correlated with clus-
tering level, showing the lowest OTU count at 97%. The appli-
cation of the LULU algorithm consistently reduced the total
number of OTUs to less than the maximum criterion of 564 for
all approaches.

Taxonomic redundancy. The OTU definition and LULU
curation were further evaluated by estimating the species-level
taxonomic redundancy of each table (Fig. 1c (97% clustering
level), Table 1, Supplementary Fig. 5 (all clustering levels)).
GenBank is relatively well populated (88.8% coverage) with
sequences assigned to species observed in our study, so we
expected an ideal OTU definition to result in a low number of
OTUs receiving a redundant taxonomic annotation (proportion
of OTUs with a taxonomic annotation already represented
by another OTU in the table). Once more, VSEARCH and
SWARM initially performed relatively poor by having the highest
levels of taxonomic redundancy (ranging from 56 to 93%). In
comparison, the DADA2 (+VSEARCH) approach had lower
redundancy at all levels. Surprisingly, the CROP algorithm,
which retained the far lowest number of OTUs, still showed a
high taxonomic redundancy (22–28%). Curation with LULU
resulted in a marked reduction of taxonomic redundancy at all
levels. After curation, taxonomic redundancy ranged from 6 to

13% at the 97% clustering level, as opposed to 22–81% before
curation.

β-diversity. Many errors in amplicon based diversity studies can
be assumed to be unique because they arise independently during
PCR or sequencing and, thus, are sample specific. Therefore, data
sets with such errors are expected to show higher β-diversity
(compositional differentiation across samples), than ideal error-
free data sets. Hence, a realistic OTU definition was assumed to
produce an OTU β-diversity close to the β-diversity of the
botanical survey (17.23). A simple β-diversity measure (average
α-diversity divided by γ-diversity) was applied to all uncurated
and LULU curated tables (Fig. 1d (97% clustering level), Table 1,
Supplementary Fig. 6 (all clustering levels)). All initial clustering
methods produced OTU β-diversity levels (25–90.5) exceeding
field survey β-diversity at all clustering levels, again with
VSEARCH and SWARM exhibiting the highest levels. For all
clustering methods, curation with LULU resulted in β-diversity
levels much closer to the botanical field survey than un-curated
data, ranging from 19.1 to 26.5 in all approaches except the pure
DADA2 approach with a value of 36.3.

Distribution of reference database matches. We expected an
ideal curation algorithm to primarily retain OTUs with a perfect
or near-perfect match to the reference database. We used two
metrics, (i) the distribution of best matches and (ii) the average
best match of all OTUs retained and discarded by LULU. We
found a marked increase in average best match by LULU curation
across clustering methods (Fig. 1e (97% clustering level), Table 1,
Supplementary Fig. 7 (all clustering levels)). Curation by LULU
consistently showed an improved distribution of best matches
and also an increase in average match for all methods.

Taxonomic composition. To assess if LULU curation retained
the ‘correct’ OTUs, and not only improved richness estimates and
method-level metrics, we compared the taxonomic composition
of OTUs with the list of species recorded for each site in the

Table 1 Metrics of the OTU tables produced with multiple OTU generation algorithms before and after curation with LULU

Method Level Correlation (R2) Slope Intercept Taxonomic
redundancy

Total OTUs Avg. best
match

β-diversity

CROP 98% 0.56/0.59 0.32/0.3 3.8/2.9 28%/7% 369/241 95.8%/97.5% 25.9/19.1
CROP 97% 0.54/0.6 0.24/0.23 2/1.4 22%/6% 249/174 94.7%/96.4% 25/19.5
CROP 95% 0.48/0.6 0.24/0.22 1.8/1.1 28%/8% 383/252 92.2%/93.7% 39/29.9
DADA2 100% 0.42/0.56 0.77/0.53 15.6/3.6 77%/45% 2568/761 97.7%/98.8% 62.8/36.3
DADA2( + VS) 98.50% 0.54/0.63 0.55/0.44 6.4/1.8 53%/13% 1141/430 96.7%/98.7% 46.9/26.5
DADA2( + VS) 98% 0.55/0.64 0.52/0.42 6/1.9 50%/10% 1033/402 96.6%/98.7% 45.2/25.5
DADA2( + VS) 97% 0.57/0.65 0.49/0.42 5/1.8 43%/7% 842/365 96.4%/98.6% 40.4/23.7
DADA2( + VS) 96% 0.62/0.67 0.47/0.41 4/1.3 37%/6% 721/341 96.2%/98.6% 37.3/22.9
DADA2( + VS) 95% 0.61/0.68 0.44/0.41 3.7/1.1 32%/5% 622/324 96.2%/98.5% 34.2/22.3
SWARM 99% 0.15/0.64 3.49/0.64 49.6/2.1 93%/18% 14828/520 95.1%/97.9% 90.5/22.5
SWARM 98.50% 0.2/0.67 2.35/0.62 26.4/1.8 88%/13% 8422/467 94.2%/97.8% 81.5/21.2
SWARM 98% 0.25/0.69 1.81/0.58 18.1/2.1 84%/9% 5779/430 93.6%/97.7% 74.8/20.6
SWARM 97% 0.27/0.69 1.55/0.56 14.7/2.8 81%/8% 4585/401 93.3%/97.7% 70/19.1
SWARM 96% 0.27/0.7 1.55/0.56 14.1/2.8 81%/8% 4547/401 93.2%/97.7% 70/19.1
SWARM 95% 0.39/0.71 1.15/0.53 4.5/2.3 70%/9% 2500/362 92.6%/97.3% 59.4/18.5
VSEARCH 98.50% 0.15/0.63 2.15/0.73 62.7/1.6 90%/23% 8008/558 97.4%/98.4% 60.2/21.9
VSEARCH 98% 0.17/0.59 1.58/0.7 41.5/1.7 85%/20% 4815/517 96.8%/98.4% 51.6/20.9
VSEARCH 97% 0.22/0.64 0.92/0.61 22/1.8 72%/13% 2425/458 96.1%/98.4% 46.5/21
VSEARCH 96% 0.27/0.64 0.8/0.57 16.4/1.9 64%/10% 1740/415 95.7%/98.3% 40.9/20.1
VSEARCH 95% 0.34/0.66 0.7/0.55 12.3/1.9 56%/9% 1320/396 95.5%/98.2% 37.5/19.8

Effects of post-clustering curation with the LULU algorithm for clustering methods (VSEARCH, SWARM, DADA2 and CROP) at several levels. Values before the slash represent metrics for the method
prior to curation with LULU. Values after the slash are post-curation metrics. R2 denotes the coefficient of determination of the linear regression of OTU count vs. plant richness, slope and intercept
denotes the constants of the inferred linear regression, taxonomic redundancy is calculated as the proportion of OTUs with a redundant taxonomic assignment, total OTUs is the count of total unique
OTUs for each method, avg. best match is the average of the best GenBank match for all OTUs for each method, and β-diversity is the average α-diversity divided by γ-diversity
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survey (Table 2). For all methods, LULU curation resulted in
smaller proportion of OTUs with imperfect reference database
matches (mean of 0.64 before curation, mean of 0.38 after
curation) corroborating the method-level results (see above), i.e.,
that curation mainly discarded imperfect matches, which are
likely errors. Likewise, the proportion of recaptured species (i.e.
OTUs with a perfect database match and a unique taxonomic
annotation corresponding to a plant species recorded in the
survey) increased by curation for all clustering methods (mean of
0.24 before curation, mean of 0.44 after curation). The proportion
of unregistered species (i.e. OTUs with a perfect match and a
unique taxonomic annotation corresponding to a species not
recorded in the survey) also increased for most methods (mean of
0.10 before curation, mean of 0.17 after curation). CROP showed
a higher level of imperfectly matching OTUs and results were not
improved much by curation—confirming the method-level indi-
cations, that CROP selects suboptimal representative sequences
(with lower reference database matches). For most methods,
LULU curation resulted in a small proportion (mean 0.02) of the
initially recaptured species being lost again, i.e. discarding true
species occurrences.

Community dissimilarity. Metrics of community composition is
mainly driven by the dominant and widespread species, and we
hypothesized (i) that curation would have no major impact on
dissimilarity measures based on uncurated vs curated OTU tables,
and (ii) that a valid curation could not make the correlation
between dissimilarity measures based of survey data and OTU
data larger by curation. To test these hypotheses, we estimated
community dissimilarity of all 40 OTU tables and the plant
survey data with the Bray-Curtis metric. For plant survey data the
dissimilarity metrics were calculated only for binary (presence/
absence) data, but for sequence data we also tested metrics based
on abundance (read count) data, as this in common practice, and
potentially could yield stronger correlations with observational
data.

Mantel tests (Supplementary Table 1) showed that all pairs of
dissimilarity matrices (from un-curated vs. curated OTU tables)
were highly correlated, with mantel r-statistics between 0.761 and
0.993 (all p-values< 0.001) when based on binary data, and

between 0.987 and 1 when based on abundance data. The lowest
r-statistics were observed for dissimilarity matrices based on
binary versions of OTU tables from greedy algorithms at lower
clustering levels. These tables had the highest number of low-
abundance OTUs removed by curation, and thus the effect on
dissimilarity metric based on binary data is larger.

Comparing dissimilarity matrices for OTU tables with the
dissimilarity matrix for plant data (Supplementary Table 2),
revealed that all were highly correlated, with mantel r-statistics of
0.57–0.78 (avg. 0.68, all p-values< 0.001). Correlations were
higher, when dissimilarity was evaluated for binary data (r-values
of 0.63–0.76, avg. 0.70, and r-values of 0.67–0.78, avg. 0.751 after
curation) and lowest when including information on read
abundances (r-values of 0.57–0.66, avg. 0.63, and r-values of
0.57–0.67, avg. 0.64 after curation). For all 20 OTU tables,
curation resulted in dissimilarity matrices with the same or
slightly improved correlation with plant data, with largest
improvement of binary data and OTU tables from the greedy
algorithms using lower clustering.

Singleton removal compared to post-clustering curation. To
compare the traditional noise-removal approach of singleton
removal to post-clustering curation, we removed singletons
(observations with a read count of one) from the initial OTU
tables and compared the resulting metrics with those of the
corresponding LULU curated tables (including singletons) (Sup-
plementary Figs 8–15, Supplementary Tables 3 and 4). Singleton
removal had some positive impact on several measures, especially
for the approaches using greedy algorithms and low clustering
levels. But no metrics were improved to a degree similar to LULU
curation, e.g. the coefficients of determination (R2) for the cor-
relation between OTU richness and plant richness showed a
mean improvement of 0.03 by singleton removal, compared to
the mean improvement of 0.27 with LULU curation. DADA2
retains very few singletons during the processing (eight in this
study), but the metrics of the DADA2 approaches were still
superior to the other algorithms after removal of their singletons.

Post-clustering curation with dbotu3 compared to LULU.
Although intended as a one-step clustering algorithm, we tested

Table 2 Taxonomic composition of OTUs for single sites compared with plant survey data

Method Level Imperfect_matches Recaptured species Unregistered species Redundant species Lost species

CROP 98% 0.56 ± 0.16/0.50 ± 0.17 0.31 ± 0.13/0.34± 0.13 0.12± 0.11/0.13± 0.12 0.02± 0.05/0.02± 0.06 0.00± 0.01
CROP 97% 0.80± 0.13/0.79 ± 0.13 0.13 ± 0.11/0.14± 0.11 0.06± 0.10/0.07 ± 0.10 0.00± 0.00/0.00± 0.00 0.00± 0.00
CROP 95% 0.87± 0.09/0.86 ± 0.09 0.09 ± 0.09/0.10 ± 0.09 0.04± 0.09/0.04± 0.09 0.00± 0.00/0.00± 0.00 0.00± 0.00
DADA2 100% 0.66± 0.12/0.40 ± 0.14 0.22 ± 0.10/0.43 ± 0.16 0.08± 0.07/0.14 ± 0.11 0.03± 0.03/0.03 ± 0.05 0.02± 0.04
DADA2( + VS) 98.50% 0.51± 0.15/0.29 ± 0.14 0.36± 0.14/0.54 ± 0.17 0.11± 0.08/0.16 ± 0.12 0.01± 0.03/0.02 ± 0.05 0.02± 0.09
DADA2( + VS) 98% 0.48 ± 0.16/0.29 ± 0.14 0.38± 0.15/0.54 ± 0.15 0.12± 0.09/0.16 ± 0.12 0.01± 0.03/0.01 ± 0.03 0.02± 0.09
DADA2( + VS) 97% 0.46 ± 0.16/0.29 ± 0.14 0.40± 0.14/0.53 ± 0.15 0.13± 0.09/0.16 ± 0.12 0.01± 0.03/0.02 ± 0.04 0.01 ± 0.03
DADA2( + VS) 96% 0.42 ± 0.16/0.27 ± 0.14 0.43 ± 0.15/0.55 ± 0.16 0.13± 0.1/0.16 ± 0.12 0.01± 0.02/0.01 ± 0.03 0.01± 0.03
DADA2( + VS) 95% 0.39± 0.16/0.25 ± 0.14 0.45± 0.17/0.56 ± 0.17 0.15± 0.1/0.19 ± 0.12 0.00± 0.02/0.00± 0.02 0.01 ± 0.03
SWARM 99% 0.80± 0.15/0.32 ± 0.12 0.11 ± 0.10/0.46 ± 0.14 0.05± 0.05/0.19 ± 0.10 0.03± 0.03/0.03 ± 0.05 0.02± 0.05
SWARM 98.50% 0.74 ± 0.16/0.29 ± 0.11 0.15± 0.11/0.48 ± 0.13 0.08± 0.07/0.22± 0.10 0.03± 0.04/0.01 ± 0.02 0.02± 0.05
SWARM 98% 0.69± 0.17/0.26 ± 0.12 0.18± 0.11/0.49 ± 0.14 0.10± 0.08/0.24 ± 0.11 0.03± 0.03/0.01 ± 0.03 0.03 ± 0.05
SWARM 97% 0.66± 0.17/0.25 ± 0.12 0.20 ± 0.11/0.48 ± 0.14 0.12± 0.09/0.27 ± 0.11 0.02± 0.03/0.00 ± 0.01 0.03 ± 0.05
SWARM 96% 0.65± 0.17/0.25 ± 0.12 0.20 ± 0.11/0.49 ± 0.14 0.13± 0.09/0.27 ± 0.11 0.02± 0.03/0.00 ± 0.01 0.03 ± 0.05
SWARM 95% 0.55 ± 0.17/0.24 ± 0.11 0.27 ± 0.13/0.48 ± 0.16 0.16± 0.10/0.28± 0.13 0.02± 0.04/0.00± 0.01 0.05± 0.08
VSEARCH 98.50% 0.85± 0.09/0.43± 0.14 0.10± 0.07/0.42± 0.15 0.04± 0.03/0.14± 0.09 0.01± 0.02/0.01 ± 0.04 0.02± 0.05
VSEARCH 98% 0.80± 0.12/0.41 ± 0.16 0.13 ± 0.09/0.44± 0.16 0.05± 0.05/0.15 ± 0.09 0.02± 0.02/0.01± 0.03 0.02± 0.05
VSEARCH 97% 0.70 ± 0.14/0.39 ± 0.15 0.21± 0.11/0.45± 0.14 0.08± 0.06/0.15 ± 0.10 0.02± 0.03/0.01 ± 0.03 0.02± 0.04
VSEARCH 96% 0.64± 0.14/0.36 ± 0.14 0.25 ± 0.11/0.47 ± 0.14 0.09± 0.07/0.16 ± 0.10 0.02± 0.03/0.01 ± 0.03 0.01 ± 0.03
VSEARCH 95% 0.60± 0.14/0.36 ± 0.14 0.28 ± 0.11/0.47 ± 0.15 0.10 ± 0.07/0.16± 0.10 0.02± 0.03/0.00 ± 0.01 0.01± 0.03

Effect of curation on the taxonomic composition of single sites for OTU tables produced with different clustering methods at several levels. Values before the slash are values prior to curation with LULU.
Values after the slash are post-curation values. Values are average proportions for single sites (given with standard deviations). Imperfect matches are calculated as the proportion of OTUs for each site
that have a less than 100% reference database match. Recaptured species are calculated as the proportion of OTUs with a perfect reference database match and a unique taxonomic annotation
corresponding to a plant species recorded for the site. Unregistered species are calculated as the proportion of OTUs with a perfect reference database match and a unique taxonomic annotation
corresponding to a plant species not recorded for the site. Redundant species are calculated as the proportion of OTUs with a perfect reference database match and a redundant taxonomic annotation
(i.e., already represented by a recaptured or unregistered species). Lost species is the proportion of the recaptured species lost during curation
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whether the dbotu3 algorithm could be used for post-clustering
curation as an alternative tool to LULU. We applied the method
with two different settings (i) an abundance criterion of 0 to
account for only sequencing errors, and (ii) an abundance cri-
terion of 10 to merge ecological populations. We compared the
results of this alternative curation with the results of LULU for
most of the same basic metrics used in the validation of LULU
(Supplementary Figs 8–15, Supplementary Tables 3 and 4). As
expected due to the related structure of the algorithm, dbotu3
could be applied as a post-clustering curation. The application of
dbotu3 to the clustered OTU tables resulted in highly curated
tables with improved metrics for all investigated measures for
both settings. The most pronounced curation effect was achieved
with the approach aimed at merging ecological population
(abundance criterion 0), and the effect came close to that of
LULU for most measures. Nevertheless LULU performed better
in all comparisons except a few metrics (avg. best match for the
CROP tables), especially when applied to the OTU tables pro-
duced with the greedy algorithms, SWARM and VSEARCH.

Distribution based OTU clustering. We also applied the dis-
tribution based clustering algorithm (dbotu3), as a one-step
clustering approach—as intended for this method. We applied it
to our data in the form of an OTU table of unclustered reads, and
compared the results with our plant survey data and with the
other clustering approaches. We applied the method with the
same two settings as above, and compared the resulting tables to
our plant survey data (Supplementary Fig. 16, Supplementary
Tables 2–5). For both settings, the reference database match was
the highest observed in this study, and beta diversity was the
lowest, lower than for the plant survey data, while the community
dissimilarity metrics (comparison to plant based community
dissimilarity) were comparable to that of the other initial clus-
tering algorithms. In all other regards, there was little correlation
with plant data. The second approach (a= 0, merging of ecolo-
gical population) had slightly better metrics but the general
performance of dbotu3 was comparable to that of the two greedy
algorithms (VSEARCH and SWARM) without post-clustering
curation. The processing time with dbotu3 was by far the longest
of the processes applied in this study, being 17 days and 10.5 days,
respectively, for the two settings.

Curation effect on selected plant genera. We evaluated the more
detailed effects of curation for selected genera of plants. We
plotted the abundance (read count) and best match of all OTUs
assigned to a genus and compared the curation effect
against occurrence data from the plant survey (Supplementary
Figs. 17–32). For individual genera, the effect of curation con-
firmed the overall results as presented above: more realistic
richness estimates, lowered taxonomic redundancy and better
match with reference data. The number of taxonomically
redundant OTUs varied considerably with clustering algorithm
and clustering level but, for all genera, curation had a marked
homogenizing effect across methods. The plant genera Fagus and
Calluna are examples of genera with only one species represented
in the study area, and that single species being abundant in field
survey and sequencing data. For such genera, it was evident that
the number erroneous (or at least taxonomically redundant)
OTUs was high for most methods, and that LULU curation
resulted in realistic levels of diversity. For Fagus, it was interesting
to note that a single OTU with a 100% match and impervious to
curation, was in fact a fungal sequence wrongly annotated as
Fagus in GenBank. As the reads of this fungal OTU had dis-
tribution and abundance patterns contrasting that of Fagus, it was

not discarded by the LULU algorithm. Many errors were highly
abundant and would not be excluded by a universal abundance
cutoff without simultaneously removing a large number of real,
but low-abundant species. With clustering levels from 98%
and downwards (97%, 96%, and 95%), the rate of undesired
clustering of real species seemed to increase rapidly. However, the
most inclusive clustering level (95%) still retained redundant/
erroneous OTUs. In many instances, the CROP algorithm initi-
ally identified a few OTUs correlating with results from the other
approaches, including LULU curation. However, CROP entirely
missed the OTUs identified by other algorithms or selected
suboptimal representative sequences with lower reference data-
base matches.

Discussion
We developed and validated a post-clustering algorithm, LULU,
with the aim to retain true α-diversity and taxonomic composi-
tion, while discarding the artefactual OTUs from community data
derived by HTS of marker genes (metabarcoding). We showed
that LULU significantly improved the a-diversity signatures when
applied to a range of different OTU assignment tools. Although
LULU was validated for vascular plants the method is particularly
attractive for organism groups with poorly populated reference
databases and for which traditional ways to estimate α-diversity
are tedious (e.g., many groups of invertebrates) or impossible
(e.g., protozoa, fungi, and bacteria).

In contrast to ecological studies, where increased sampling
effort leads to more reliable diversity estimates, the proportion of
erroneous singletons in HTS studies is expected to approach
100% asymptotically with increased sequencing depth, even with
low (1%) error rates25. Apart from the direct diversity inflation,
this further complicates the application of extrapolating richness
estimators, which generally depend on the number of singletons
to estimate the number of un-recorded taxa4, and it has been
recommended that richness estimation should be avoided all
together for HTS data4. To obtain more realistic data, it has been
advocated e.g. to remove singletons4, OTUs occurring in abun-
dances of 5–10 or below12, or to resample to even sequencing
depth26, whereas others find it inadmissible to delete valid data27.
None of these approaches aim to identify the actual artificial taxa.
In this study, we show that the post-clustering curation with
LULU successfully identifies and removes a large proportion of
the remaining erroneous OTUs without the need of applying
arbitrary cutoff levels. Furthermore, our additional measures of
validity (i.e., total OTUs richness, taxonomic redundancy,
β-diversity, reference database matches, taxonomic composition,
and community composition) indicate an improved OTU
definition for a wide range of purposes (e.g., comparison
with other studies, correspondence with reference databases,
taxonomic composition, and general community ecological stu-
dies). Traditional removal of singletons had a positive effect on
several measures, but remained much less effective than LULU
curation. Although curation with LULU improved community
dissimilarity metrics, our results confirmed that existing
approaches to OTU tables are adequate for studies of community
dissimilarity. The ‘cost of curation’ is a small loss of ‘real species’.
The lost species will most likely be rare, low-abundance and
low-occurrence OTUs co-occurring with closely related more
abundant species (i.e., species having a distribution like that of
errors), and LULU curation may thus not be suitable for identi-
fying single rare species in community data sets. We have
developed and tested the algorithm on sequence data obtained
from environmental samples aimed for actual biodiversity studies.
Although, mock communities never will have the complexity of
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real life soil samples, future validation of LULU and related
approaches on mock communities with known genetic content
will be valuable.

The improvement by LULU curation was most pronounced for
the two greedy methods, VSEARCH and SWARM, which initially
had the highest number of OTUs. At a clustering level usually
considered biologically realistic (97%), these methods over-
estimated true richness at least four-fold (2425 and 4585), but
were successfully curated for realistic measures with LULU. The
initial metrics for the model-based approaches, CROP and
DADA2, were more realistic, but were still appreciably improved
by curation. CROP was the method least receptive to curation—
mainly because the initial number of OTUs was much lower.
Despite a relatively good initial prediction of α-diversity, the OTU
picking of CROP seemed to be suboptimal compared to the other
methods investigated, as the similarity between OTU and best
GenBank match (Fig. 1e) were far lower, and the taxonomic
redundancy (Fig. 1c) and β-diversity (Fig. 1d) measures per-
formed poorly considering the markedly lower number of OTUs
(Fig. 1b). Although DADA2 probably had the highest proportion
of true sequences, the biological co-occurrence patterns of these
obstructed further curation with LULU towards reliable species-
level richness (Supplementary Figs 1–7, Table 1). However,
clustering of the initial OTUs enabled using the efficient DADA2
algorithm for OTU definition and subsequent curation with
LULU. Future incorporation of LULU or LULU-like algorithms
in pipelines like DADA2 may be promising.

LULU outperformed dbotu3 as a post-clustering curation tool.
This was most pronounced for the OTU tables produced with
the greedy algorithms VSEARCH and SWARM—i.e., the tables
with a high proportion of erroneous OTUs. The reason for this
difference may be that dbotu3 uses the Levenshtein edit distance
for pairwise sequence comparison, whereas LULU as applied here
uses the BLASTn algorithm, which may better identify erroneous
sequences with larger gaps and insertions, not initially absorbed
by the greedy clustering algorithms. As a stand-alone clustering
algorithm (as originally intended), dbotu3 performed worse than
any of the other algorithms in combination with post-clustering
curation by LULU.

LULU seemed to have a homogenizing effect on the widely
different initial clustering results, in the sense that all the methods
resulted in relatively good predictions of α-diversity and much
more similar and improved results for the other diversity metrics
after curation with LULU (Table 1, Supplementary Figs 1–7). On
the basis of our study we recommend an approach applying initial
OTU definition with DADA2, subsequent clustering (with, e.g.,
VSEARCH) addressing the average intraspecific variation of the
target group, and curation with LULU as a safe pathway to obtain
reliable and accurate data, without discarding much true
information.

In conclusion, the post-clustering algorithm LULU can greatly
improve the accuracy of richness estimates derived from ampli-
con sequencing. This is achieved by excluding erroneous OTUs
and thereby reducing taxonomic redundancy and improving
similarity with true community composition. Here, we applied
LULU to 20 different initial OTU definition approaches, and
found that all metrics of correspondence, taxonomic redundancy
and composition and community composition were improved.
Given the normal levels of plant community species richness and
of intraspecific genetic variability in plants, we believe our
method validation is relevant to other organism groups and
markers less easy to evaluate due to the lack of reference survey
data. LULU is independent of a reference database and applicable
to all types of amplicon data from studies with a series of samples.
Considering the rapidly growing interest in metabarcoding for
biodiversity assessment, LULU is a tool with far-reaching

potential for practical application, as it is an efficient tool to
exactly assess OTU-based diversity as long as error-free sequen-
cing and all-inclusive databases still are to be developed.

Methods
Assumptions and objectives of the LULU algorithm. The algorithm is intended
as a post-clustering OTU table curation method aimed at removing erroneous
OTUs from tables produced by any clustering algorithm e.g., methods used in this
study13,22–24, and those implemented in Qiime28 and Mothur29, as long as the
product is an OTU table and a corresponding file with representative sequences.

The implementation of the algorithm is based on a set of assumptions based on
four observations we have previously made when working with HTS of amplified
marker genes (a.k.a. metabarcoding) of well-studied organism groups with well-
populated reference databases present (i.e., plants, as used for validation here). The
first observation is that OTU tables often have more OTUs than expected from
biological knowledge of the system under investigation11. The second observation
is that OTU tables often contain low-abundance OTUs, which are taxonomically
redundant in the sense that their taxonomic assignment is identical to more
abundant OTUs. This pattern may be caused by incomplete reference data and/or
insufficient clustering, but can also indicate that the OTU is effectively a
methodological artefact. The third observation is that the highest sequence
similarity (match rate) of such taxonomically redundant, low-abundance OTUs
with any reference sequence is most often low compared to the sequence similarity
of more abundant OTUs with the same taxonomic assignment. The fourth
observation is that such seemingly redundant and less abundant OTUs almost
consistently co-occur (i.e., are present in the same samples) with more abundant
OTUs with a better taxonomic assignment. Based on these observations, it can be
assumed that the majority of these low-abundant OTUs are in fact methodological
and/or analytical errors, or rare (intragenomic) variants, which will cause inflated
diversity metrics. Following from this assumption, the LULU algorithm is
constructed to iteratively work though the OTU table to flag potential erroneous
OTUs by employing the observed patterns of co-occurrence guided by pairwise
similarity of centroid sequences of the OTUs. Thus, the algorithm takes advantage
of the observed reproducible nature of extra/spurious OTUs and their sequence
similarity to more abundant OTUs in the same samples and uses these features to
infer their nature as errors (or true—but taxonomically redundant) variants of
biological entities already represented in the table. After identification of these extra
OTUs, they can be merged with their parent OTUs in order to preserve the total
read count and reduce the OTU number of the table to a biologically reasonable
level. The resulting table may be subjected to direct species richness metrics and
other biodiversity analyses dependent on species-level OTU delimitation.

The algorithm. The LULU algorithm is a function written for R, accessible along
with documentation on GitHub (https://github.com/tobiasgf/lulu). The workflow
(Fig. 2) requires (1) an OTU table—a table in the form of a simple tab separated file
with unique OTU-identifiers and their abundance across the investigated samples
(samples as columns and OTU id’s as rows)—and (2) a so-called match list—a list
with the most similar OTUs (of the data set) for each OTU in the data set matches
of OTUs. The match list is produced prior to the LULU curation by an external
algrothm (e.g., BLASTn or VSEARCH). The match list should be the result of an
internal matching of OTU sequences against each other, listing the best matches for
each OTU. The match list should contain three columns: (i) the OTU-identifier of
the focal OTU—the one being investigated as a potential error, (ii) the OTU-
identifier of the potential parent, and (iii) a percentage measure of the similarity
between the centroid sequences of the two OTUs. This measure of similarity may
in principle be the result of any sequence comparison tool, in this study we have
used BLASTn. The list may, and will most often, contain several rows for each
OTU in the data set.

When passing the OTU table and the match list to the function, there are few
user-selected parameters to consider. A minimum threshold (minimum_match) of
sequence similarity for considering any OTU as an error of another can be set
(default 84%). This setting should of course be adjusted so higher threshold is
employed for genetic markers with little variation and/or few expected PCR and
sequencing errors. Furthermore the user can specify the minimum co-occurrence
rate (minimum_relative_occurrence)—i.e., the minimum acceptable fraction of
presence of the potential error that can be explained by co-occurrence with the
potential parent (default 95%). Lastly, it is possible to select (minimum_ratio_type
and minimum_ratio) whether a potential error must have lower abundance than
the parent in all samples (default), or if an error just needs to have lower
abundance on average, and the ratio between the two. Choosing lower abundance
on average over globally lower abundance will greatly increase the number of
designated errors. This option was introduced to make it possible to account for
non-sufficiently clustered intraspecific variation. However, it is generally not
recommended to use this approach, as it will also increase the potential of
clustering well-separated, but co-occurring, sequence similar species.

When passing the OTU table and the corresponding match list to the LULU
function, OTUs of the OTU table are sorted first by decreasing occurrence (i.e. the
number of samples containing that OTU) and subsequently by decreasing total
read count. Thus, the OTU table can be curated from top down, so parents will be
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encountered before their respective derived errors. To evaluate the potential error
state of an OTU, it is compared to all sequence similar OTUs—those appearing as
hits in the match list—occurring in an equal or higher number of samples as the
focal OTU. All potential parent OTUs satisfying these two conditions are selected
for an evaluation of co-occurrence patterns. If the occurrence of the focal OTU can
be explained by the simultaneous co-occurrence of a more abundant potential
parent, the focal OTU is flagged as an error of that parent, and the algorithm moves
to the next OTU on the table. If, however, the occurrence of the focal OTU cannot
be explained by co-occurrence with a more abundant potential parent, the focal
OTU is retained as a valid OTU.

After parsing the full OTU table, a new OTU table is constructed by merging
read counts of errors with their designated parent OTU from bottom to top.

The function returns a list containing the curated OTU table along with the
number and IDs of curated (retained) OTUs, the number of merged (daughter)
OTUs and their IDs, information on which daughters were mapped to which
parents, and information on user settings and runtime.

A very similar strategy is used for clustering of ‘raw’ sequences in the
distribution based clustering algorithm (dbotu3) aiming at identifying ecologically
distinct populations of bacteria and at the same time discarding ecologically
redundant OTUs and errors. Dbotu3 differs from LULU by using un-clustered data
—i.e. the distribution of reads among samples (≈ 0% clustering OTU table),
another sequence dissimilarity metric (Levenshtein edit distance) in the form of a
distance matrix based pairwise alignments of all sequences, another approach (the
asymptotic likelihood ratio test) for evaluating whether two OTUs have similar
distributions, and it is implemented as a python script.

Plant survey data. In order to validate the LULU algorithm, we collected data on
vascular plants in two different ways: a reference data set using classical botanical
identification and a metabarcoding data set based of soil samples. Both were
collected in a set of 130 quadrats (site henceforth) dispersed across Denmark.
The observational unit was a 40 × 40 m site. Sites were selected in an attempt to
regularly cover the most important environmental gradients at the landscape scale,
including naturalness of the habitat. 30 sites were allocated to cultivated habitats
and 100 sites to natural and semi-natural habitats. The cultivated subset was
stratified after major land-use types, while the natural subset was stratified
according to gradients in soil fertility, soil moisture and ecosystem maturity. Saline
and aquatic habitats were excluded, but mires and temporary wetlands were
included.

The final set of 24 environmental strata consisted of the following six cultivated
habitat types: three types of fields (rotational, grass leys, set aside) and three types
of plantations (beech, oak, spruce). The remaining 18 strata were natural habitats,
constituting all factorial combinations of: fertile and infertile; dry, moist and wet;
open, tall herb/scrub and forest. These 24 strata were replicated in each of five
geographical regions. We included a subset of 10 perceived biodiversity hotspots,
selected by a poll among active natural history amateurs and professionals, but
restricted so that each of the five regions were allocated two hotspots. The resulting
number of sites was 130, evenly distributed across the five regions.

Each site was divided into four 20 × 20 m quadrants and the center of each of
these—a 5 m radius circle (called a plot)—was in 2014 investigated thoroughly for
vascular plants, and the results were compiled to a site species list for each site. In

2015–2016 a supplemental survey was conducted to produce more complete plant
species list for the 130 sites. As the 2014 data is based on a standardized sampling
strategy, these were used for richness correlations, whereas the 2014–2016 data
were used for evaluation of site-wise taxonomic correspondence between OTUs
and plant species.

Sequence data. The sequence data was generated by sequencing amplicons from
DNA amplification of the nuclear ribosomal internal transcribed spacer region 2
(ITS2) with the primers S2F30, and ITS431. The ITS2 region was selected as it has
been shown to be a good marker to separate and identify species30,32,33. DNA was
extracted prior amplification from a subsample of soil collected from the set of sites
(130 in total) described above. For each site, 81 equally spaced soil cores were
collected, pooled and homogenized with a drilling machine (HILTI Cordless
Combihammer), mounted with a clean mixing paddle. One bulk sample from the
starting material of the 81 cores was taken and stored cold for further processing
within 24 h.

From each homogenized sample, a subsample of 4 g was subjected to DNA
extraction using PowerMax Soil DNA Isolation kit (MOBIO, Carlsbad, CA, USA),
following the suggested protocol, after addition of 4 ml of 1M suspension of
CaCO3. An additional clean up step was performed on an aliquot, 100 µl of DNA
extract, with the PowerClean DNA Clean Up Kit (MOBIO, Carlsbad, CA, USA).
DNA concentrations were measured with Qubit dsDNA HS (High Sensitivity)
Assay Kit (Invitrogen) and samples were normalized to a concentration of 1 ng/µl
prior PCR amplification. PCR reactions contained 1 U/μl AmpliTaq Gold (Life
Technologies), 0.625 μM of each primer, 0.83 mg/ml bovine serum albumin (BSA),
1X Gold Buffer, 2.5 mM of MgCl2, 0.08 mM each of dNTPs and 1 μl DNA extract
in a 25 μl total reaction volume. Thermocycling conditions used were an initial
denaturation step of 5 minutes at 95 °C, followed by 32 cycles of denaturation of
30 s at 95 °C, 30 s at 55 °C, 60 s at 72 °C, and a final elongation at 72 °C for 7 min.
Both forward and reverse primers were designed with 80 unique tags (MID/
barcodes) of 6–8 bp at the 5′-end using a restrictive dual-indexing approach. To
obviate the error source of tag jumping resulting in mis-assignment of reads during
demultiplexing, no primer tag (forward or reverse) was used more than once in any
sequencing library and no combination of forward and reverse primer was reused
in the study. Each sample was amplified three times using a different primer tag
combination. PCR products were pooled for a total of 6 pools, each pool containing
half of the samples from one PCR replicate and including one extraction blank and
one PCR negative. PCR pools were purified with MinElute PCR purification kit
(QIAGEN GmbH) and the length of PCR amplicons was verified on Bioanalyzer
High-Sensitivity Chip (Agilent Technologies, Inc., Santa Clara, California, USA).
Each of the 6 pools was built into separate sequencing libraries. Libraries were built
using the TruSeq DNA PCR-Free Library Preparation Kit (Illumina), replacing all
the manufacturer suggested clean up step (sample purification beads) with
MinElute purification (MinElute PCR purification kit, QIAGEN GmbH). A final
library purification was carried out to remove adapter dimers with Agencourt
AMPure XP beads (Beckman Coulter, Inc., CA, USA). Sequencing was carried out
on MiSeq (Illumina Inc., San Diego, CA, USA), at the Danish National High-
throughput DNA Sequencing Centre, using one full 250 bp paired-end run. The
data set contained 11,957,772 paired reads.

Sequence data
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Fig. 2 LULU curation workflow. (1) The user constructs an OTU table. (2) The user constructs a match list. (3) OTU table and match list is fed to the LULU
algorithm
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Initial bioinformatic processing of sequence data. For clustering with
VSEARCH, SWARM, CROP and dbotu3, sequence data were processed in the
same way. Paired reads were assembled with VSEARCH22 (fastq_mergepairs) with
default settings allowing staggered reads. Reads were demultiplexed and processed
using a custom script intended for dual-indexed primers based on a procedure
described here (https://github.com/frederic-mahe/swarm/wiki/Fred’s-
metabarcoding-pipeline#merge-paired-reads (accessed on 1 May 2017).). Tag and
primer sequences were trimmed with CUTADAPT34. Reads with an expected error
rate above 0.002, containing 1 or more N’s, or with a length below 10 were
discarded. Reads were dereplicated using VSEARCH. Reads from all three repli-
cates were pooled for each sample, leaving 130 fasta files with dereplicated reads
corresponding to each site. After merging and assigning reads to samples, the data
set contained 6,629,544 reads. All bioinformatics steps can be found in the Sup-
plementary Material and on GitHub.

General validation approach. To validate the LULU algorithm we used our plant
survey data as ground truth for our amplicon data. OTU tables were produced with
well established algorithms representing different approaches for OTU clustering
and definition: (i) VSEARCH22, representing greedy clustering algorithms similar
to the commercial USEARCH35, (ii) DADA213, based on a quality-aware model of
Illumina amplicon errors, (iii) SWARM23, an unsupervised single-linkage-
clustering method, and (iv) CROP24, an unsupervised Bayesian clustering method,
and (v) DADA2 with subsequent VSEARCH clustering. The initial bioinformatics
processing ensured that only high quality reads were kept (i.e., reads with an
expected error rate above 0.002 or containing 1 or more N’s were discarded). To
ensure that we had removed as many errors as possible with the given tools prior to
validating our algorithm, the implemented chimera removal tools of VSEARCH
and DADA2 were employed in these analyses. All non-plant OTUs were discarded
from all data sets to make the OTU richness comparable to field-observed plant
richness (see below). We recorded the number of reads after clustering, taxonomic
focussing and removal of singletons for each approach (Supplementary Table 5).
The validation was focussed on the 97% clustering level, which is generally applied
for ITS data, but we tested several other clustering levels in the range 95–100%
(Supplementary Table 6). All the resulting OTU tables were curated with the LULU
algorithm, and all un-curated and curated tables were then evaluated against the
plant survey data with seven measures of correspondence: (i) site-wise OTU
richness as a predictor of survey species richness, (ii) total OTUs richness vs. total
survey species richness, (iii) taxonomic redundancy (proportion of OTUs with a
taxonomic annotation already represented in the table), (iv) β-diversity (average
α-diversity divided by γ-diversity), (v) distribution of reference database matches
(best GenBank match of each OTU), (vi) taxonomic composition, and (vii) com-
munity dissimilarity indices before/after curation and compared to dissimilarity
indices based on plant data. Furthermore we tested the distribution based clus-
tering algorithm as implemented in dbotu3 as a one-step clustering method, as well
as an alternative post-clustering algorithm.

VSEARCH clustering. Reads from all samples were pooled and dereplicated
globally, chimeras were removed using uchime_denovo, clustering was done at
98.5, 98, 97, 96, and 95% dissimilarity levels, and for each clustering level an OTU
table was produced and a file with representative OTU sequences.

SWARM clustering. Reads from all samples were pooled and dereplicated glob-
ally, and chimeras were removed with VSEARCH, clustering was done with
SWARM23 using d-values of 3,5,7,10,13, and 15, corresponding more or less to 99,
98.5, 98, 97, 96, and 95% clustering (Supplementary Table 1), and for each clus-
tering level an OTU table was produced and a file with representative OTU
sequences.

CROP clustering. Reads from all samples were pooled and dereplicated globally,
and subsequently re-replicated with VSEARCH. Settings of CROP24 were opti-
mized for the actual read length and number of reads. Clustering was carried
out with the parameters l= 0.5 and u= 1.0 corresponding more or less to 98%, and
l= 1 and u= 1.5 corresponding more or less to 97%, and and l= 1.5 and u= 2.5
corresponding more or less to 95% dissimilarity levels (Supplementary Table 1).
Reads were mapped against the defined OTU representative sequences using
VSEARCH at levels 98, 97 and 95% respectively and OTU tables were produced.

DADA2 processing. DADA213 requires sample-wise libraries—i.e., one pair of
fastq files per sample where reads do not include primers or tags. As our laboratory
methods rely on multiplexing of several samples in each library, we constructed a
script for demultiplexing without merging. Also, DADA2 relies on separate pro-
cessing of forward and reverse reads. Our multiplexing method relies on annealing
of adapters to amplicon pools, which means that half of the reads will be inserted in
reverse direction. DADA2 is based on the distribution of errors, and as the dis-
tribution of errors cannot be assumed to be identical between R1 and R2 reads, we
chose to process the sense and anti-sense reads separately, and merge the results in
the end.

Paired reads were demultiplexed and processed using a custom script based on
CUTADAPT34. Forward and reverse reads were demultiplexed separately. Before

processing with DADA2, matching of forward and reverse reads was ensured with
DADA2. Processing of the reads then followed the procedure outlined here (http://
benjjneb.github.io/dada2/tutorial.html, accessed 1 May 2017). The chimera
removal tool of DADA2 (removeBimeraDenovo) was employed. Lastly the tables
produced for sense reads and anti-sense reads were merged. OTU sequences were
extracted with R. After DADA2 processing the data set contained 5,725,783 reads.

DADA2 with subsequent VSEARCH clustering. DADA2 has been shown to
accurately identify highly resolved microbial communities and produce few spur-
ious sequences13. As we assumed that the pure DADA2 approach will identify sub-
specific and intragenomic types of ITS2 sequences13, and thus result in an inflation
of the richness, we devised an approach with subsequent clustering with
VSEARCH. Reads were extracted with abundance information sample wise for 130
fasta files with dereplicated reads corresponding to each site. The extracted reads
were then subjected to the VSEARCH approach outlined above, clustering at 98.5,
98, 97, and 95%.

Taxonomic assignment and filtering. To make sequence data maximally com-
parable to reference data, we assigned taxonomy and filtered out non-plant OTUs
from each table. To optimize the process, we processed all OTUs together. Cen-
troids from all 20 tables (6 SWARM, 5 VSEARCH, 3 CROP, 1 DADA2, 5 DADA2
+ VSEARCH) were pooled and dereplicated. The best GenBank matches for each
OTU were acquired using BLASTn36 (with settings -qcov_hsp_perc 90 -perc_i-
dentity 80), keeping up to 20 matches pr. OTU. For each OTU, all hits, from the
best match and down to matches half a percent (0.5%) lower than the best, were
retained, and the most commonly assigned taxonomic id was identified, and the
taxonomic path (kingdom, phylum, class, order, family, genus, species) was
acquired from the NCBI taxonomy. The ingroup OTUs were identified as
belonging to Streptophyta, but excluding Chlorophyta, Sphagnopsida, Jungerman-
niopsida, Bryopsida, and Polytrichopsida. With the ingroup OTUs defined, the 20
OTU tables and centroid files were filtered to contain only ingroup OTUs.

LULU curation. The OTU tables were then curated with LULU. For each of the
centroid files corresponding to one of the OTU tables, match lists were produced
by making a blast database of the OTU sequences (makeblastdb -in centroids.fasta
-parse_seqids -dbtype nucl) and subsequently making a blast search against the
database with the same reads (blastn -db centroids.fasta -num_threads 50 -outfmt
‘6 qseqid sseqid pident’ -out matchlist.txt -qcov_hsp_perc 80 -perc_identity 84
-query centroids.fasta). Each set of OTU table and match list were then used as in
input for the LULU algorithm, and the curated tables and OTUs were used for
comparison with the un-curated/raw tables.

Site-wise OTU richness as a predictor of plant richness. As the most important
measure of validity, we used a comparison of the OTU richness with the ‘real’
richness (the observed vascular plant richness). DNA extracted from soil may
contain DNA from more plant species than can be observed in a classical survey.
Soil may harbor DNA from plants that are not apparent or biologically active at the
time of investigation as these may be represented by e.g. pollen, seeds, etc., and soil
particles can bind and preserve DNA from species no longer present. Furthermore,
morphologically defined species may harbor cryptic but genetically separate spe-
cies, and also the investigated ITS2 region is known to have varying levels of
intraspecific and intragenomic variation that is difficult to accommodate within an
universal clustering level. However, the sampling of this study was carried out in a
temperate environment with productive soils, and we assume that these DNA
remains will be present in too low abundance and too fragmented to amplified with
the selected primers (targeting a region of 300+ bp on average) to pose a proble-
matic contribution to the sequence pool. Considering this and taking into account,
that the soil sampling only covers approximately 0.01% of the soil surface of the
40 × 40 m sites, we expect the sequencing approach to underestimate the true
diversity, because many species occurring with few or small individuals only are
likely to be missed. For each method at each clustering level, the OTU richness of
each of the 130 sites was compared with the observed vascular plant richness for
pre- and post-curation tables. As Initial inspection of quantile-quantile plots of
residuals indicated that normality was a fair judgment, Pearson correlations were
assessed (Fig. 1a, Table 1, Supplementary Figs. 1 and 2).

Total OTU richness vs. total survey species richness. We expected that the
sequencing approach would identify fewer plant OTUs than the total number of
plant species recorded in the reference data, as the soil sampling covered only a
proportion of the soil surface. In the survey we observed a total of 564 plant species
(approximately one third of the naturally occurring plant species in Denmark).
Thus, we compared the total number of OTUs identified by each method to this
number (Fig. 1b, Supplementary Figs. 3 and 4).

Taxonomic redundancy. We evaluated taxonomic redundancy of the raw tables
produced with each method and the effect of curation on this measure. This was
done by calculating the proportion of OTUs with a redundant taxonomic assign-
ment—i.e. the number of OTUs assigned a species name already present in the
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table divided by the total number of OTUs (Fig. 1c, Supplementary Fig. 5). We
tested the availability of ITS2 sequence data for plant species registered in Gen-
Bank. This was done by searching for the combination of taxon name (at species
level, i.e., removing sub-specific taxonomic levels) using the search term “tax-
on_name[Organism] AND internal_transcribed_spacer_2[misc_feature]”. 501 of
the 564 species names registered in the survey had at least one hit, corresponding to
a coverage of 88.8%, Thus, several OTUs assigned to the same taxonomic identity is
likely to be an indication of erroneous OTUs or in other ways taxonomically
redundant OTUs for species level investigations. We did not expect a redundancy
of 0% for several reasons. Many plant species are still not represented by sequences
in GenBank and, if present as OTUs at a site, they will be assigned a name of a close
relative, which may be already present in the data. Furthermore, several sequences
are incorrectly annotated in GenBank, so a perfect match may still carry a wrong
(and possibly redundant) annotation. Also, if intragenomic variation is not
absorbed by the chosen clustering level, and the dominant ITS2 type varies between
populations, the error pattern used by LULU will not be satisfied resulting in
redundancy.

β-diversity. From a realistic OTU definition, we expected a β-diversity of OTUs
approaching that of the observed β-diversity of vascular plant species. To evaluate
this, we used the simple β-diversity measure of total richness divided by the average
richness pr. site (average α-diversity divided by γ-diversity). This was done for all
curated and un-curated tables and compared to the same measure for plant species,
which was 17.23 (Fig. 1d, Supplementary Fig. 6).

Distribution of reference database matches. To further substantiate that LULU
identifies true errors, we estimated the likely error state of each OTU by looking at
the best match (%) against GenBank. Although the LULU algorithm is indepen-
dent of a reference database, we can take advantage of the fact that GenBank is
relatively well populated with sequence data assigned to plant species observed in
our survey (see above), to evaluate the curation algorithm. Thus, we assume that
OTUs representing true biological species are more likely to have a perfect or near-
perfect match on GenBank, whereas PCR or sequencing errors (and very rare
biological variants lying outside the clustering limits) are more likely to have a non-
perfect match. We compared the distribution of best reference database matches
for retained vs. discarded OTUs for each method and level (Fig. 1e, Supplementary
Fig. 7). We did not expect all 100% matches to be retained, as some may be
taxonomically redundant (intraspecific/intragenomic variants already represented
by another OTU), and likewise we did not expect all non-perfect matches to be
discarded, as they may well represent species or intraspecific variants not present in
GenBank. But, for an effective curation, we expected the majority of the matches
for the retained OTUs to be around 100%, and the density of the discarded to be
lower.

Taxonomic composition. To further evaluate whether LULU retained the ‘correct’
OTUs, we compared the taxonomic composition of OTUs to the plant survey data
for each site (Table 2). For each site we calculated: (i) imperfect matches: the
proportion of OTUs with an imperfect (less than 100%) reference database match,
(ii) recaptured species: the proportion of OTUs with a 100% reference database
match and a unique taxonomic annotation that corresponded to a plant species
recorded for that site in the survey, (iii) unregistered species: the proportion of
OTUs with a 100% reference database match and a unique taxonomic annotation
that corresponded to a plant species not recorded for that site in the survey,
(iv) redundant species: the proportion of OTUs with a 100% reference database
match but a redundant taxonomic annotation (Table 2). Furthermore we calculated
the proportion of recaptured OTUs from the initial OTU algorithm that were lost
during curation. We postulate that a valid curation should primarily result in a
smaller proportion of imperfectly matching OTUs and an increased proportion of
recaptured species, without losing a large proportion of recaptured OTUs. The
reference database (GenBank) contained ITS2 data on 88% of the species recorded
in the survey. Thus, if the OTUs of a site constitute a perfect subsample of those
recorded in the survey, we would expect the proportion of OTUs classified as
‘imperfect matches’ to be around 12%, and the proportion of ‘re-captured’ to
approach 88% with a perfect OTU delimitation and curation. However, ITS2 shows
intraspecific variation, and not all the species in the 88% GenBank coverage will be
a perfect match, so the proportion of imperfect matches must be assumed to be
somewhat higher. We expect some plants to be missed by the survey, although they
were actually present (at least as DNA), but detected by the molecular methods,
resulting in the proportion of OTUs classified as ‘recaptured’ to be lower.

Community dissimilarity. To further test the validity of the lulu curation, we
investigated the effect on community dissimilarity estimates. Assessment of com-
position and turnover is driven by dominant and abundant species, and is relatively
insensitive to errors, rare species, and low-abundance species, and thus, we
expected both curated and un-curated OTU-tables to be adequate for estimating
plant community dissimilarity. Thus, we hypothesized that (1) a valid curation
would have no major impact on dissimilarity measures based on un-curated vs
curated OTU tables, and (2) that a valid curation could not make the correlation
between dissimilarity measures based of survey data and OTU data larger by

curation. To test these hypotheses this we estimated community dissimilarity of all
40 OTU tables and the plant survey data with the Bray-Curtis metric using the
vegdist function as implemented in the r package vegan37. Dissimilarity matrices
were calculated for binary (presence/absence) data for all tables and for the OTU
tables also with hellinger transformed abundance (read count) data to see whether
read abundance would yield better metrics. To test hypothesis 1, community dis-
similarity matrices based on the 20 uncurated OTU tables were compared to
dissimilarity matrices based on their curated counterparts using the mantel test
with Pearson correlation using 999 permutations. This was done for both for
binary and abundance data versions (Supplementary Table 1). To test hypothesis 2,
dissimilarity matrices for all 40 OTU tables (20 uncurated, and 20 curated) were
compared individually to the dissimilarity matrix for plant survey data using the
mantel with Pearson correlation and 999 permutation, postulating the a valid
curation cannot result in a lowered Mantel r-statistic (Supplementary Table 2).

Singleton removal compared to post-clustering curation. A traditional
approach for reducing the number of PCR and sequencing errors are to remove
singletons, despite singletons may represent real species. As a lot of singletons can
be assumed to be errors, we wanted to compare effect of singleton removal of our
data and compare to post-clustering curation with LULU. We removed singletons
(observations with read counts of one) from all initial tables produced with
VSEARCH, SWARM, DADA2 and CROP, and subjected the resulting tables to the
same metrics as the un-curated and LULU curated tables and compared the results,
to test whether this simple error-removal strategy could perform similar
improvements of biodiversity metrics. (Supplementary Figs. 8–15, Supplementary
Tables 3 and 4).

Dbotu3 as alternative to LULU for post-clustering curation. We tested the
performance of dbotu3 as an alternative post-clustering algorithm to LULU.
Although intended to work as a ‘one-step’ clustering algorithm with the aim of
identifying ecologically distinct populations and at the same time discarding
ecologically redundant OTUs and errors, the data processing strategy of dbotu3 is
related to the post-clustering curation of LULU. Thus, we wanted to test this
algorithms performance as an alternative to LULU for post-clustering curation.
To do this we applied dbotu3 to the same set of 20 initial OTU tables and
corresponding centroids as used in the validation of LULU (see above). Dbotu3 was
applied with a genetic dissimilarity maximum of 16%, larger than the suggested
10% in the online manual (http://dbotu3.readthedocs.io/en/latest/, accessed June
17, 2017), but corresponding more or less to the 84% dissimilarity cutoff (mini-
mum_match) employed in the LULU curation of the other data sets. We used two
different approached as suggested in the online manual First, we analyzed the data
using an abundance criterion of 0 (python dbotu3.py-dist 0.16-abund 10)—an
approach aiming at accounting for only sequencing error. Second, we used an
abundance criterion of 10 (python dbotu3.py-dist 0.16-abund 0), aiming at mer-
ging ecological populations. Results were benchmarked against the results of LULU
for several metrics (Supplementary Figs 8–15, Supplementary Tables 3 and 4).

Distribution based OTU clustering. We also tested the performance of the
distribution based clustering algorithm implemented in dbotu3 as a ‘one-step’
clustering method and compared the results with our plant survey data to see
whether it could serve as an ‘all-in-one’ tool for clustering and curation compared
to initial clustering and post-clustering curation. Reads from all samples were
pooled and dereplicated globally, and reads from each sample was mapped against
these representative reads (centroids) to produce an 0% clustering OTU table,
which is the input for dbotu3 along with the centroid sequences. The 0% clustering
table contained 722,493 OTUs. Dbotu3 was applied to the table and corresponding
centroids using the same settings (genetic cutoff 16%, and a= 0 and a= 10) as
above. OTUs were subsequently restricted to plant OTUs, and the results were
compared to those from of the approaches employing initial clustering and sub-
sequent curation. (Supplementary Fig. 16, Supplementary Tables 2–4).

Curation effect on selected plant genera. To evaluate the more detailed effects of
curation, we selected a number of plant genera for a closer look at the effect of
curation. We selected genera with (1) high levels of occurrence and abundance in
the data, (2) relatively stable taxonomy and name use, and 3) for which reference
data were good (occurrence in the sites and the region in general). For each genus,
we plotted the abundance (read count) and best match of all OTUs assigned to the
genus for all combinations of clustering method and clustering level. We then
evaluated the curation effect against ground truth data, i.e. occurrence data from
the plant survey (Supplementary Figs 17–32). We selected the following genera for
evaluation: Acer, Alnus, Avenella, Calamagrostis, Calluna, Centaurea, Cerastium,
Erica, Fagus, Filipendula, Holcus, Littorella, Lysimachia, Menyanthes, Plantago,
Poa, and Potentilla.

Data availability. The LULU R package is open source and available on GitHub
(https://github.com/tobiasgf/lulu), where instructions for installation and use also
can be found, along with scripts and R Markdown files used for the data analyses.
The sequence data is available from the Dryad Digital Repository: http://dx.doi.org/
10.5061/dryad.n9077.
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