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S U M M A R Y
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sam-
pling methods. In principle, both advanced prior information, based on for example, complex
geostatistical models and non-linear forward models can be considered using such methods.
However, Monte Carlo methods may be associated with huge computational costs that, in
practice, limit their application. This is not least due to the computational requirements related
to solving the forward problem, where the physical forward response of some earth model
has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the
forward problem, with a trained neural network that can be evaluated very fast. This will
introduce a modeling error that is quantified probabilistically such that it can be accounted for
during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution
to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion
of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-
waveform modeling followed by automatic traveltime picking, is replaced by a fast neural
network. This provides a sampling algorithm three orders of magnitude faster than using
the accurate and computationally expensive forward model, and also considerably faster and
more accurate (i.e. with better resolution), than commonly used approximate forward models.
The methodology has the potential to dramatically change the complexity of non-linear and
non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

Key words: Ground penetrating radar; Inverse theory; Neural networks; Tomography.

1 I N T RO D U C T I O N

For geophysical inverse problems, the forward problem refers to the
problem of computing some data d, given a set of model parameters
m (typically describing an Earth model) using a function g (typically
based on knowledge about a physical relation) :

d = g(m) (1)

The corresponding inverse problem consists of finding information
about the model parameters m given some observed data dobs:

m = g−1(dobs) (2)

For most inverse problems, the inverse operator g−1 either does
not exist, or may be non-trivial to obtain. Further, as most inverse
problems are underdetermined, the observed data are associated
with uncertainty/noise, and g is based on some approximation to
the correct physical relation (leading to modeling errors ), more than
one model will be able to explain the data within its uncertainty.

A probabilistic approach to inverse problems allows incorporat-
ing prior information (through the probability distribution ρ(m))

and information about measurement uncertainty and modeling er-
rors (through the likelihood function L(m)). The solution to the
inverse problem is then the a posteriori probability distribution
(Tarantola & Valette 1982b):

σ (m) = k ρM (m) L(m), (3)

where the likelihood function is given by

L(m) =
∫

dd
ρD(g(m)) θ (d|m)

μD(d)
. (4)

ρD(g(m)) describes how well the forward response of a spe-
cific model m should match some observed data given mea-
surement uncertainties. θ (d|m) represents the modeling error
that describes any imperfections in solving the forward problem
using eq. (1).

The solution to probabilistically formulated inverse problems is
in practice either an analytic description of σ (m), such as in the case
of linear Gaussian inverse problems (Tarantola & Valette 1982a).
Or, in the general case, it can be in form of a sample from σ (m)
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Neural networks as forward model 1525

obtained using sampling methods, such as the extended Metropolis
algorithm (Mosegaard & Tarantola 1995).

Using the extended Metropolis algorithm to sample the posterior
distribution is attractive as it can be applied to, in principle, any
inverse problem, with either a linear or non-linear forward operator
g, as long as (1) the likelihood function can be evaluated and (2) the
prior distribution can be sampled. That is, only the forward relation
in eq. (1) needs to be evaluated, and the inverse operator in eq. (2)
need not be known.

However, Monte Carlo-based sampling methods are computa-
tionally very costly, and for many geophysical inverse problems,
sampling-based methods may not be useful in practice.

Evaluation of the forward model, eq. (1), is often the single
most important contribution to the computational cost of running a
sampling algorithm to sample the posterior distribution. Examples
exist where a complex and realistic forward model is considered,
but then the number of model parameters is either small and/or the
number of considered data few. Most applications of using sampling
methods to sample the posterior distribution of an inverse problem
are based on quite simple forward models that are fast to evaluate
(Mosegaard et al. 1997; Khan et al. 2000; Malinverno 2002; Mins-
ley 2011; Hansen et al. 2012; Laloy et al. 2012; Cordua et al. 2012;
Zunino et al. 2014). The choice of a simple (and fast) forward
model is typically chosen as this is needed to practically make use
of sampling methods, even though more accurate forward models
most always exist.

The use of such approximate forward models introduce a model-
ing error that is quantified by θ (d|m) in eq. (4). Often the modeling
error is ignored in which case the likelihood function, eq. (4), simply
becomes L(m) = ρD(g(m)) (Tarantola 2005). However, if the mod-
eling error is ignored, the part of the data that should be treated as
(modeling) errors will be treated as data. This can lead to mapping
of modeling errors into the posterior distribution, which may lead to
artefacts that appear as well-resolved features. Hansen et al. (2014)
describe a methodology that allow sampling, that is, generating re-
alizations of, the (usually unknown) probability density describing
the modeling error, θ (d|m), related to a specific choice of a pri-
ori model ρ(m). Further they demonstrate how to infer a Gaussian
model of the modeling error, θ (d|m) ∼ N (dt , Ct ). This is conve-
nient as, if the noise on the data is Gaussian ρD(g(m)) ∼ N (d0, Cd )
and the modeling error is Gaussian, then these Gaussian probability
densities combine though addition of their mean and the covariances
(Tarantola 2005). The full likelihood in eq. (4) is then also Gaussian
distributed over d as L(m) = ρD(g(m)) ∼ N (d0 + dt , Cd + Ct ).
This is important as the uncertainty of data is very often described
by a Gaussian probability density, and because this allows taking
into account modeling errors without having to evaluate the integral
in eq. (4), which will in most cases be computationally intractable
or expensive.

In the following, the main idea is to use this methodology of
quantifying the modeling error to allow using a neural network as
a computationally efficient approximation to the forward problem,
while at the same time accounting for the errors due to the use of
this approximation.

1.1 Solving the forward problem using regression
networks

Both the forward and inverse problems in eqs (1) and (2) describe
a (possibly non-linear) mapping between, which is usually, one
set of continuous parameters to another set of continuous parame-
ters (Krasnopolsky & Schiller 2003). Supervised machine learning

provides a number of methods that allow inferring this non-linear
mapping operator from a set of available training data that consists
of a set of data and model parameters [D, M]. We will refer to
these methods in general as regression networks. Examples of these
methods are support vector regression (Smola & Schölkopf 2004),
Gaussian processes (Williams & Rasmussen 1995), regression trees
(Breiman et al. 1984) and neural networks (Bishop 1995) to name
a few.

Regression networks can be used to estimate the inverse operator
g−1, eq. (2), such that a model (a solution to the inverse prob-
lem) can be directly estimated from data, as demonstrated by Hoole
(1993), Amari & Cichocki (1998), Gagunashvili (2010), Maiti et al.
(2012), Singh et al. (2013) and Li et al. (2015). It is, though, not
trivial to properly account for the uncertainty related to data and
the model, and not trivial to fully describe the posterior distribu-
tion (hence nor the uncertainty related to the estimated solution
model).

Regression networks can also be used to estimate the forward
operator g, eq. (1) (Poulton 2001; Krasnopolsky & Schiller 2003).
g is typically parametrized using some model, and the parameters
describing this model is inferred from an available training data set
[D, M] representing d and m in eq. (1).

In the following, it is proposed to replace a computationally
expensive forward problem, g in eq. (1), with a regression network.
Subsequently, the associated modeling error θ (d|m) related to the
use of this regression network is quantified using the approach of
Hansen et al. (2014). The main idea is that this will allow a very
fast evaluation of the forward problem and, hence, the likelihood
L(g(m)), which again may allow for a more efficient approach for
sampling the posterior distribution σ (m).

The developed methodology will be applicable for sampling of
the posterior distribution related to inverse problems in general. As
an example, the (forward and) inverse problem related to first arrival
traveltime inversion of crosshole ground penetrating radar (GPR)
data will be considered. An ‘ideal’ forward model will be based
on 2-D full-waveform modeling followed by automatic first arrival
picking. As an example, a multilayer perceptron neural network
will be considered as an approximation of the forward problem, but
note that in practice any regression-type network can be used. The
modeling error related to the neural network-based forward will
be quantified through a Gaussian probability distribution. Finally,
the neural network-based forward model will be compared to using
other widely used approximate forward models (based on physi-
cal approximations) in formulating and sampling of the posterior
distribution of the inverse problem.

2 F I R S T A R R I VA L C RO S S H O L E
T R AV E LT I M E I N V E R S I O N

Inversion of first traveltime data is a widely studied inverse prob-
lem, both with respect to elastic seismic and electromagnetic wave
propagation (Bording et al. 1987; Scales 1987; Zelt & Smith 1992;
Schuster & Quintus-Bosz 1993). The inverse problem consists of
inferring information about the velocity field that has caused the
observed decay in traveltime for specific phases in a wavefield. A
traveltime-based inverse problem called ‘crosshole first arrival time
inversion’, will be considered here, which is related to inversion of
the first arrival time delay of a wavefield propagating from a (set
of) source location(s) in one borehole, to a set of receiver locations
in another borehole. The inverse problem consists of inferring in-
formation about the velocity distribution (described by m) between
the boreholes.
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1526 T.M. Hansen and K.S. Cordua

Figure 1. Reference velocity model (m ns−1) and recording geometry.
ND = 702 pairs of sources (red crosses) and receivers (black dots) are
represented by a connecting black line.

While initially being developed in relation to seismic traveltime
data (McMechan 1983; Hole 1992), this type of traveltime inversion
has also been widely studied using near-surface GPR methods,
where the traveltime delay of a propagating electromagnetic wave
is recorded between boreholes (Maurer & Green 1997).

Inversion of crosshole GPR data is a widely considered inverse
problem using both deterministic [e.g. Holliger et al. (2001); Linde
et al. (2006); Ernst et al. (2007a); Looms et al. (2008b); Cordua
et al. (2009); Meles et al. (2010); Dafflon et al. (2011); Klotzsche
et al. (2013)] and probabilistic approaches [e.g. Gloaguen et al.
(2007); Giroux et al. (2007); Nielsen et al. (2010); Hansen et al.
(2013); Linde & Vrugt (2013)].

A synthetic case is considered, in which the reference model,
mref, of size 7 × 13 m (36 × 66 pixels of size 0.2 m × 0.2 m)
is generated from a multivariate Gaussian probability distribution,
with a mean velocity of 0.14 m ns−1, a variance of 0.000215 m2

ns−2 and a spherical-type covariance model with an isotropic range
of 6 m. This is chosen similar to the parameters inferred in Looms
et al. (2010) using the same geometrical setup as in Hansen et al.
(2013). A set of 702 noise-free traveltime data is computed using
2-D finite-difference modeling of electromagnetic wave propaga-
tion followed by automatic first arrival picking, using the method
described by Hansen et al. (2014), based on Ernst et al. (2007a),
Ernst et al. (2007b), Molyneux & Schmitt (1999) and Cordua et al.
(2012). This forward model is referred to as gfd and will, from
heron, be considered the reference for solving the forward problem.
The calculated noise-free data are then contaminated with uncorre-
lated zero-mean Gaussian noise with a standard deviation of 0.1 m
ns−1, N (0, 0.12), mimicking measurement uncertainty, to obtain a
reference data set dref.

Fig. 1 shows the reference velocity model, mref, and the locations
of ND = 702 sets of source and receiver locations, as identified

by connecting ray paths. Fig. 2 shows the corresponding simulated
waveform data, as well as the automatically picked first arrival
traveltime data.

2.1 Using a neural network as an approximation to the
forward problem

As discussed, many types of supervised machine-learning regres-
sion algorithms exist that can be used to obtain an approximation to
the reference forward mapping gfd. As an example, a simple two-
layer feedforward neural network, that is, with one hidden layer, is
considered to replace the accurate forward model gfd. This neural
network-based approximation to the forward model will be referred
to as gnn. Such a neural network that can estimate each of the
ND = 702 data, dk, corresponding to a specific model m = [m1, m2,
. . . , mNM] can be formulated as

dk = h1

⎛
⎝ NH∑

j

w2
jk h2

(
NM∑

i

w1
i j mi

)⎞
⎠ , (5)

where NM = 2376 is the number of model parameters and NH the
number of hidden units (Bishop 1995). In this case, NH = 80 hidden
units is considered. h1 and h2 refer to two activation functions, in
this case both chosen to be of sigmoidal type. w1

i j and w2
jk refer to

the weights of the units in the first and second layers. Given enough
units in the hidden layer, any continuous mapping can be arbitrar-
ily accurately represented (i.e. including gfd), given a large enough
training set (Bishop 1995). The main reason a two-layer feedfor-
ward network is considered, is that once trained, the evaluation of
the network on a new model (i.e. solving the forward problem) is
potentially very fast, and faster than, for example, using support
vector regression.

The weights w1
i j and w2

jk must be chosen such that the neural
network will be able to estimate the data d given a specific model m
in an optimal way. This is obtained by ‘training’ the neural network
based on a training data set consisting of NT sets of data and model
parameters [D, M], such that D will be of size [ND, NT] and M
of size [NM, NT]. Training a network in itself can be considered
an inverse problem (Prato & Zanni 2008). Most often it is treated
as an optimization problem, that is traditionally solved using the
backpropagation algorithm.

The quality of the inferred forward operator is closely related
to the size of the available training data set, NT. In some applica-
tions of neural networks obtaining a large training data set can be a
challenge. However, in the context of probabilistically formulated
inverse problems, the prior distribution ρ(m) is, by construction,
chosen prior to inversion. Further, it can be assumed that realizations
from this prior distribution can be generated, as this is needed by
the extended Metropolis algorithm (Mosegaard & Tarantola 1995).
Therefore, in a probabilistic setting, it is trivial to generate an arbi-
trarily large sample of the prior as M consisting of NT realizations.
Then, a corresponding set of data D can be simulated by evaluating
the forward model (which may be computationally expensive) NT
times.

Five training data sets based on NT = [1000, 5000, 10 000,
20 000, 40 000] sets of model and data parameters, [D, M], are
considered. All the considered models are generated as uncondi-
tional realizations from the prior distribution ρ(m), and the cor-
responding data computed using the exact, but expensive, for-
ward model based on finite-difference modeling, gfd, described
previously.
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Figure 2. Simulated wavefield, observed for 702 sets of sources and receivers (as illustrated in Fig. 1), as well as automatic picks of first arrival traveltimes
(black dots).

Figure 3. 702 sets of sources and receivers split into eight subsets. The ‘rays’ indicate used pairs of source and receiver. Background colour indicates the used
model parameters (white colour refers to model parameters not used).

The network can be trained directly on the full [D, M] training
set. However, acknowledging that the traveltime between a source
and a receiver is mostly sensitive to an area between, and in the
vicinity of the ray path between the source and receiver, the 702
data are split into eight subsets of data and corresponding model
parameters. A unique neural network of the form in eq. (5) is then
assigned to each subset of the data. Fig. 3 illustrates which model
parameters and sets of sources and receivers that are considered for
each subset.

The weights for each of the eight neural networks are found by
minimizing the mean-squared error between known data D and data
predicted by the neural network, using the Levenberg–Marquardt al-
gorithm for backpropagation. The Matlab Neural Network Toolbox
(Beale et al. 2016) is used for this.

This results in five forward models referred to as g1000, g5000,
g10000, g20000 and g40000, where the index defines the sample size
used to train the neural network.

Note that the specific type of, and layout of, the neural net-
work chosen here is just an example. Any method that can
be used to estimate the forward model mapping between data
and model parameters can in principle be used in the following
framework.

2.2 Quantifying the modeling error

As the number of units in the neural network, and the size of the
training data set, is finite, gnn will provide an approximation of gfd.
In other words, using gnn as opposed to gfd will lead to a (forward)
modeling error. A sample of the forward modeling error can be
obtained by comparing the difference in the forward response of
gnn and gfd from a set of Nr realizations of the prior model (Hansen
et al. 2014). Here, Nr = 6000 realizations from the prior has been
generated as M∗ = [m1, m2, . . . ., mNr]. For each model in M∗,
a reference data set has been computed using gfd to obtain Dfd,
and using gnn to obtain Dnn. Then, a sample of the modeling error
θ (d|m) can be obtained as

Dθ = Dfd − Dnn (6)

Finally, a Gaussian model of the modeling error, N (dt , Ct ), can
be estimated from Dθ using the methodology described in Hansen
et al. (2014). This allows treating the Gaussian modeling error as
Gaussian noise on the data (e.g. Mosegaard & Tarantola 2002).

For comparison, two widely used approximations for comput-
ing the first arrival are also considered. gray refers to the linear
straight ray approximation, and geik to the non-linear bended ray
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1528 T.M. Hansen and K.S. Cordua

Figure 4. 1-D marginal distribution of the modeling error based on 6000 realizations of the modeling error (D∗).

Figure 5. Estimated covariance matrix, Ct , for the Gaussian modeling error related to seven different forward models.

Table 1. Row (1): mean modeling error, dt . Row (2): standard deviation of a 1-D uncorrelated Gaussian model for the modeling error, from Ct . Row (3):
computation time for solving the forward problem. Row (4): computational speed up of evaluating the forward model relative to using gfd. Row (5): Average
correlation coefficient between a set of realizations from the posterior distribution and the reference model. Row (6): mean difference (error) between a set of
realizations from the posterior distribution and the reference model.

Forward model g1000 g5000 g10000 g20000 g40000 geik gray gfd

Mean dt (ns) −0.00 0.00 0.00 0.00 0.00 0.18 −0.34
Mean σ t (ns) 1.1 0.23 0.17 0.13 0.13 0.35 0.47
Time (ms) 1.9 1.9 1.7 2.0 2.1 32.1 5.7 2878.2
Time (speedup) 1538 1490 1657 1459 1386 90 506 1

Correlation coefficient 0.53 0.67 0.62 0.72 0.71 0.64 0.61
Mean error (m ns−1) 0.0098 0.0081 0.0088 0.0078 0.0078 0.0088 0.0089

approximation based on the eikonal solution to the wave equation
(Vidale 1990; Linde et al. 2006; Looms et al. 2008a, see more de-
tails on these types of forward models in Hansen et al. 2014). Fig. 4
shows the 1-D marginal probability distribution of the modeling
error, obtained as the histogram of the sample of the modeling er-
ror, Dθ . Fig. 5 shows the covariance model of the Gaussian model
describing the modeling error, Ct, for each of the seven approxima-
tions (five neural network based and two ray based) to the forward
models. The mean dt and standard deviation of the inferred Gaus-
sian modeling error is given in Table 1.

Figs 4 and 5 and Table 1 (first four rows) reveal the following:

(1) The use of any of the neural network-based forward model,
gnn, results in a modeling error bias, dt, very close to zero. This

is not surprising as the neural network is optimized to minimize
mean-squared error.

(2) The magnitude of modeling error related to using gnn de-
creases as the size of the training set used for learning the neural
network increases. Using a training set larger than Nt = 5000 results
in a smaller standard deviation of the prediction error than using
both gray and geik. When the training set is larger than Nt = 20 000 no
significant change in the magnitude of the modeling error is noted
(in the present case the modeling error due to using g40000 is slightly
higher than using g20000).

(3) The use of gnn leads to a less correlated covariance model as
opposed to using geik and gray, as seen in the (lack of) off-diagonal
elements of the estimated covariance model (Fig. 5).

(4) Evaluating any of the neural network-based forward models
is more than three orders of magnitude faster than evaluating the
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Figure 6. First-order Fréchet derivative with respect to the reference model for one specific source–receiver location. Black: positive, red: negative and white:
zero sensitivity.

‘exact’ gfd. This is the case even as the full-waveform modeling step
of evaluating gfd is performed in parallel on four separate threads
(using the implementation by Cordua et al. 2012). Further, it is
about 15 times faster than using geik (which is the most widely used
methods for computing first arrival traveltimes) and about three
times faster than using the simple linear gray (see Table 1).

(5) The standard deviation of the modeling error becomes close
to the standard deviation of the noise added to the reference data
using g20000 and g40000 (0.13 ns versus 0.1ns).

Fig. 6 shows the sensitivity kernel, that is, the first-order Fréchet
derivative, for the reference velocity model for one specific source–
receiver location for all the considered approximate forward models
as well as the reference forward model (Fig. 6h). Visible ‘noise’ is
present for all neural network-based forward models (Figs 6a–e)
decreasing as the size of the training data set increases. Therefore,
it may be surprising that using, for example, g20000 and g40000 per-
forms better than using geik. The ‘noise’ in the Fréchet derivatives
when using the neural network-based forwards seems to be spatially
uncorrelated and, therefore, the effect in the computed traveltime
from the noise may tend to cancel out. Thus, while the forward
model based on a neural network seems to predict traveltimes with
relatively high accuracy, one should not use the forward model to,
for example, estimate the first-order Frechet derivative and assign
any physical meaning to these. One should use the network for the
purpose it was trained, that is, in this case traveltime calculation.

These results are encouraging as they suggest a neural network-
based forward model can be constructed that is both faster to evalu-
ate, and results in less modeling error, than using any of the widely
used approximations geik and gray. However, the main point of in-
terest is how much, and how efficient, information can be obtained
from the posterior probability density using Monte Carlo sampling
methods, based on the different forward models, and corresponding
Gaussian models for describing the modeling error.

3 E F F I C I E N T M O N T E S A M P L I N G O F
T H E P O S T E R I O R P RO B A B I L I T Y
D I S T R I B U T I O N

The extended Metropolis algorithm is used to sample the posterior
distribution, σ (m), for the crosshole GPR inverse problem using
the seven considered types of approximate forward models and the
corresponding estimated Gaussian model for the modeling errors
using the SIPPI Matlab toolbox (for details see e.g. Hansen et al.
2016). Each Metropolis sampler is run for 106 iterations. The first
105 iterations are discarded and considered as part of the burn-in
phase of the extended Metropolis algorithm.

Fig. 7 shows eight independent realization of the posterior
distribution σ (m) using each of the seven considered forward
model approximations. Fig. 8 shows the corresponding pointwise

mean and standard deviation of all realizations from the posterior
distribution.

Even when using the worst neural network-based forward approx-
imation, namely the neural network based on a training set of size
1000 g1000, provides results consistent with the reference model, in
that no noise is apparently mapped into the posterior distribution
as resolved features. In other words, the features that appear well
resolved (that stand out in the mean model) are consistent with
features in the reference model. This may be somewhat surprising
considering the high degree of modeling error (Fig. 5a), and the
very noisy Fréchet derivative (Fig. 6a).

As the accuracy of the used approximation increases, so does
the resolution, which can be seen by the increase in details in the
mean model (Figs 8a–h), along with a decrease in posterior vari-
ability (Fig. 7). This is also reflected in the pointwise standard
deviation of the posterior distribution (Figs 8i–o), which decrease
as the accuracy of the neural networks increase. Only the neural
network based on training set of sample size 1000 provides a 1-
D marginal posterior standard deviation lower than using geik or
gray. This suggests that more information about the ‘exact’ for-
ward model gFD is provided by the neural network-based forward
models (except g1000) than by the ray-based approximations. This
is of course only interesting if the apparent increase in resolu-
tion is due to actual data and not simply an effect of mapping,
for example, modeling errors from the data space into the model
space. As a synthetic case is studied, this can be analysed by com-
paring realizations from the posterior distribution to the reference
model.

Table 1 (row 5) lists the average correlation coefficient between
realizations of the posterior distribution and the reference model,
revealing that g20000 and g40000 provide more information, than using
either geik or gray. A higher number indicate better performance. A
similar property is reflected by the mean absolute error between the
reference model and 100 realizations from the posterior distribution
listed in Table 1 (row 6).

These results demonstrate that using a neural network-based for-
ward as an approximation to the ‘exact’ forward, ffd, allows inferring
more information from a GPR crosshole traveltime inversion than
using the more widely used forward models geik and gray. In ad-
dition, it is important that this increase in resolution, compared to
using geik and gray, is consistent with features in the reference model.
At the same time, the computational requirement to use any of the
neural network-based forward models is about 15 times faster than
using geik.

4 D I S C U S S I O N

The results presented above demonstrate the potential of us-
ing regression-type networks, here a neural network, as a
replacement for computational demanding forward models in
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Figure 7. (a)–(g) Eight independent realizations from the posterior probability density σ (m) for the seven considered forward models.

physics/geophysics. The proposed methodology is general, and can
potentially be applied to a wide range of forwards for inverse
problems, in which the posterior distribution can be sampled as
follows

(i) Estimate an approximation gapp to the full forward gref using
a regression network.

(1) Generate NT realizations of the prior model ρ(m) as M =
[m1, m2, . . . , mNT].

(2) Compute the forward response of the NT realizations of the
prior model, as D = [d1, d2, . . . , dNT] using a reference forward
model, gref.

(3) Estimate an approximation to gref as gapp from the training
data set [D, M] using a regression network (for example, a neural
network).
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Figure 8. (a) Reference model, (b)–(h) mean of posterior realizations, (i)–(o) standard deviation of posterior realizations.

(ii) Estimate a Gaussian model of the modeling error θ (d|m).

(1) Generate a large sample of the prior M∗ (independent of M
above).

(2) Compute the forward response for all models in M∗, using
both the correct, gref, and approximate, gapp, forward models, as
Dgref and Dgapp . A sample of the modeling error is then given by
Dθ = Dgref − Dgapp .

(3) From Dθ estimate a mean and covariance model describ-
ing the modeling error as a Gaussian probability density through
θ (d|m) ∼ N (dt , Ct )

(iii) Accounting for the modeling error as a Gaussian uncertainty
on data.

(iv) Use the extended Metropolis algorithm to sample from the
posterior distribution.

This approach will potentially allow using sampling-based ap-
proaches to some inverse problems that has until now not been
feasible due to computational demands.

The main benefits of using the neural network-based forward
model is that it provides an alternative forward that is both faster and
more accurate than traditional ray-based forward models. Another
key advantage of using the neural network-based forward models is
that they are specifically designed for whatever strategy is used to
pick the first arrival. The strategy for picking the first arrival time
need not to be chosen to match a specific choice of forward model,
but can be chosen from what method for picking arrival time is
most suited for the data that provides the most robust estimate. It
does not matter if the traveltime is chosen to be the first break, the
arrival of the maximum amplitude, or any other attribute, which
will directly affect the validity of any of the ray-based approaches
(Jacobsen et al. 2010). If only the same strategy is used to pick the
arrival time, then the neural network will learn a forward model
specifically for that picking strategy.

The main challenges using the methodology are: (1) To generate a
large training data set. The full forward model needs to be evaluated
for as many times as the size of the training data set. This may be
time-consuming, but need only to be done once, and typically the
Monte Carlo sampling algorithm will need many more iterations
than the size of the training data set. (2) Choosing a network design.
In the present case, a very simple neural networks design is chosen,
and applied successfully. However, other regression network types
and designs could be chosen for better performance, better suited

for other types of forward models, and other types of prior models.
(3) Training the neural network. It takes time to train the neural
network. However, recently highly efficient methods for training
neural networks on graphical processing units have been developed,
which allow handling larger networks more efficiently.

In addition, the neural network obtained using the procedure
above is applicable only to the specific recording geometry given
in Fig. 1. If the recording geometry changes a new training data
set needs to be computed, and a new neural network needs to be
trained.

In the example considered here, the training data set was gener-
ated from a specific prior distribution. Thus, if the prior distribution
changes, a training data set needs to be created and a new neural
network needs to be trained. It would, however, be possible to gen-
erate a training data set, where models are generated from a much
broader prior model, that is, a prior model that consist of models
with more spatial variability than considered here. Such a training
data set could be used as the base to learning a neural that can
be used for many different types of prior models (i.e. Earth model
variabilities) without the need for a specific training data set. This
may be a subject for future research.

5 C O N C LU S I O N S

A general framework has been demonstrated that allow replacing
a computationally complex forward model with a computationally
efficient (fast to evaluate) forward model using a neural network. At
the same time, the forward modeling error associated with the ap-
proximate neural network-based forward has been quantified. This
has the potential to allow using more realistic forward models, on
more realistic sized models, using otherwise computationally ex-
pensive Monte Carlo-based sampling methods to solve non-linear
inverse problems.

The approach has been demonstrated on a GPR crosshole trav-
eltime inverse problem. A realistic, but computationally heavy, for-
ward model based on full-waveform modeling has been replaced by
a neural network, which turns out to be more than three orders of
magnitude faster to evaluate than the full ‘exact’ solution to com-
pute the first arrival traveltime. It has been demonstrated that if the
sample size of the training data set is large enough (NT > 5000), the
forward model based on a neural network can be evaluated faster,
with less error (in terms of the magnitude of the modeling error),
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compared to using other widely used approximations to compute
first arrival times (i.e. the eikonal solution and the linear straight
ray assumption). Moreover, using the neural network based forward
model leads to inversion results faster and with better resolution. As
the modeling errors are accounted for in a probabilistic model, the
use of approximate forward models does not lead to any (observed)
bias in the final inversion results.

In the present case, the proposed methodology has allowed an
otherwise hard sampling-based inverse problem to be replaced by a
much simpler and easier sampling problem. The presented method-
ology is general, and has potential to change the scale and complex-
ity of non-linear inverse problems that have to be solved through
Monte Carlo sampling, using, for example, the extended Metropolis
algorithm.

The results demonstrate that a neural network can be used to de-
scribe a (relatively) complex forward model (gfd), and that it can be
both relatively accurate, and fast to evaluate. For inverse modeling, it
provides a better resolution of the posterior probability density than
two other commonly used approximate forward models, obtained
with significantly less computational usage.
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