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Highlights 

 Lake Constance has continued to develop a more oligotrophic species composition 

 Charophyte species richness and abundance have continued to greatly increase 

 Changes appear most strongly related to dramatically reduced total phosphorus levels 

 Recovery has occurred in a rapid and extensive fashion  

 

Abstract 

Lake Constance is the second largest lake in Europe. While naturally oligotrophic, the lake 

experienced a period of heavy eutrophication due to the input of domestic and industrial sewage and 

agricultural runoff in the 1960s and 1970s. This prompted concerted efforts from authorities to purify 

wastewaters and reduce agricultural nutrient input, initiating a phase of re-oligotrophication since the 

1990s. Using environmental and submerged vegetation data from 1967 to 2016, our objective was to 

analyse the temporal vegetation developments in the lake through the early periods of eutrophication 

and later periods of re-oligotrophication. Shifts in general vegetation functional groups and nutrient-

dependent macrophyte indices were compared with changes in water temperature, Secchi transparency 

and concentrations of total phosphorus and nitrogen. During the period of eutrophication, the lake was 

dominated by filamentous algae and tall, thin leaved macrophyte species. Upon reduction of lake 

phosphorus concentrations, from the 1990s onwards there was a rapid and marked increase in species 

richness, and charophytes emerged as the dominant species group. Charophytes showed a remarkable 

recovery from just two species in 1978 to ten species by 2016. These changes were primarily dictated by 

changing phosphorus concentrations that played a crucial role in interspecific competition. The close 
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link between macrophyte community composition and total phosphorus supports the conclusion that 

in the case of large naturally oligotrophic lake ecosystems such as Lake Constance, nutrient levels 

may be a much more informative metric for quantifying vegetation development than centralised 

Secchi transparency readings.  

 

Keywords: aquatic macrophytes; phosphorus; eutrophication; re-oligotrophication; species 

recovery; long-term development; Lake Constance; charophytes 

 

1. Introduction 

In the early 1900s, accelerated wastewater production from increasing populations, industrial 

activity and fertiliser usage began to greatly alter the biological character of freshwater bodies in 

much of the Northern Hemisphere (Lachavanne et al., 1992;  Sand‐Jensen et al., 2000;  Moss, 

2009). Such wastewaters are rich in phosphorus (P) and nitrogen (N), nutrients which profoundly 

affect freshwater ecosystems (Elser et al., 2007), leading to dense phytoplankton blooms, turbid 

water and oxygen depletion in bottom waters (Correll, 1998). Different nutrient and light 

requirements between macrophyte species can greatly alter community composition in affected 

lakes (Schmieder, 1997;  Vestergaard and Sand-Jensen, 2000;  Hilt et al., 2006) and ultimately lead 

to loss of all submerged vegetation in hypertrophic lakes (Brodersen et al., 2001). In response to the 

observed loss of water quality and biodiversity, widespread efforts have been made in recent 

decades to improve and restore lake ecosystems previously damaged by nutrient pollution (Jeppesen 

et al., 2005;  Baastrup-Spohr et al., 2016; Baastrup-Spohr et al., 2017;  Sand-Jensen et al., 2017). 

This effort was primarily undertaken by the installation of advanced sewage treatment facilities 

alongside better handling of fertilisers and liquid manure in agriculture (Forsberg et al., 1975;  

Jeppesen et al., 2005) 

 

Similar developments in nutrient input, water quality and submerged vegetation have occurred over 

the past century in Lake Constance. A large, naturally oligotrophic lake (maximum depth of 250 m) 

situated on the northern fringe of the Alps, Lake Constance is the second largest lake in Europe by 

volume (Internationale Bodensee Konferenz [IBK], 2017) and acts as a vital water reservoir for 

over 5 million people (Petri, 2006). The lake forms part of the course of the river Rhine, which is 

responsible for 60% of Lake Constance’s overall annual water input (Güde and Straile, 2016). 

During a eutrophication process which peaked during the 1970s and 1980s, the region experienced 
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large negative economic effects resulting from damage to tourism and fisheries industries (Lang, 

1981;  Schmieder and Kümmerlin, 1998). Prolific growth of phytoplankton and filamentous algae 

led to unfavourable conditions for bathing, while oxygen depletion arising from mineralization of 

algae caused the collapse of fish stocks (Global Nature Fund [GNF], 2017). Macrophyte species 

suited to low nutrient conditions, such as the once widespread charophytes, subsided massively, 

with only 2 of the 17 once-present species remaining by 1978 (Dienst et al., 2012). Certain 

waterfowl, dependent on these species as a food source, including ducks such as the Red-crested 

Pochard (Netta rufina) declined markedly (Schmieder et al., 2006). A combination of investment in 

improved regional wastewater treatment plants and the 1981 "Regulations on Maximum 

Concentration of Phosphorus in Detergents and Washing Agents" bill in Germany (GNF, 2017) led 

to a gradual improvement of conditions by the 1990s (Schmieder and Kümmerlin, 1998). However, 

no detailed full lake vegetation survey has been conducted since 1993, leaving an incomplete 

picture of how these early improvements have developed over recent decades.  

While several studies have been carried out on lakes undergoing eutrophication and re-

oligotrophication processes, the majority have pertained to lake nutrients, water transparency, fish 

populations and shifts in phytoplankton (Jeppesen et al., 2005). In the few cases where studies did 

address long-term vegetation changes (e.g. Baastrup-Spohr et al., 2016; Sand-Jensen et al., 2017), 

large deep lakes have seldom been the focus of examination. This global lack of data on 

macrophyte recovery of deep lakes serves to reinforce the importance of continuing studies of Lake 

Constance. 

 

It is assumed by European Union programmes such as the Water Framework Directive that 

community recovery can be directly achieved through the improvement of environmental 

conditions.  However, existing studies on smaller lakes show that recovery from eutrophic 

conditions can take many decades, and that it may not be possible to fully restore the original 

species composition (Hilt et al., 2006;  Sand-Jensen et al., 2017). Hindrances may be caused by the 

formation of unsuitable muddy sediment for root anchorage and proper function of macrophytes, 

high internal release of nutrients and phytotoxic substances from enriched sediments under reduced 

conditions (Schmieder, 1995), and loss of species from regional species pools (Sand-Jensen et al., 

2008;  Sand-Jensen et al., 2017). Previous studies of vegetation development in Lake Constance, 

which covered the period 1967-1993, suggested that macrophyte communities had recovered 

quickly and substantially since the eutrophication peak of the 1970s (Schmieder, 1997;  Schmieder 
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and Kümmerlin, 1998;  Schmieder and Lehmann, 2004). These studies demonstrated a re-

emergence of many nutrient sensitive species that had been marginalised in the preceding decades. 

The large catchment area (greater area for species to recolonise from) and extensive depth 

(dampening the potential for internal nutrient loading) of Lake Constance suggest that it may have a 

greater recovery potential than many of the smaller and shallower lakes upon which existing 

literature is based. This possibility is further explored by the present examination of more recent 

submerged macrophyte community development in the lake. 

 

By collecting and compiling recent vegetation data for Lake Constance together with existing 

historical records (1967-2016), this study aimed to evaluate temporal changes in macrophyte 

species richness and abundance in relation to shifting environmental conditions. Specifically, we 

hypothesized that: 1) the relative abundance and richness of charophytes have increased with the 

ongoing oligotrophication since 1993; 2) macrophyte species as indicator groups for nutrient 

exposure (Melzer, 1988) have changed in accordance with shifts in lake nutrient levels, and 3) 

observed vegetation changes should be either strongly related to nutrient availability, water 

transparency, temperature fluctuations, or multiple of these conditions. 

2. Materials and Methods 

2.1 Study Area 

Lake Constance forms part of the course of the River Rhine and is situated on the northern fringe of 

the Alps at an altitude of 395 meters. The lake’s shores are divided between Germany, Switzerland 

and Austria. The lake comprises two basins, the large deep upper lake (Obersee) and the 

comparatively small and shallow lower lake (Untersee), both of which are connected by a narrow 

stretch of water. Lake Constance is very deep (254 m) and has a surface area of 536 km² with a 

catchment area of 11,500 km² (Internationale Gewässerschutzkommission für den Bodensee 

[IGKB], 2013). The lake is fed by 14 different tributaries, with the majority of the water volume 

entering the eastern part of the upper lake (Güde and Straile, 2016). Agriculture still represents the 

primary land use in the catchment with much land being used for pasture and fruit production 

(Hammerl and Gattenhoehner, 2004). Tourism is of major economic importance to the area with 

over 10 million annual overnight guests visiting the region, largely in the summer months 

(Hammerl and Gattenhoehner, 2004). 
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2.2. Environmental conditions  

Data on environmental variables were obtained from Landesanstalt für Umwelt, Messungen und 

Naturschutz Baden-Württemberg (LUBW) and IGKB. All environmental data were measured at the 

Fischbach-Uttwil recording station located centrally in the upper lake basin. Temperature records 

were available from 1965 until 2015. Annual averages were calculated based upon monthly 

temperature recordings at different depths between 0-10 m. Secchi-depth readings were available 

from 1974 to 2015. For most sampling years, one to two recordings were made every month. 

However, due to inconsistencies in recording, some years lacked data for all 12 months. These years 

were disregarded when analysing data. Annual averages for the summer growth months of May to 

September were used for each year where data were available. Total phosphorus recordings were 

available from 1964 onwards, while total nitrogen records existed from 1986 onwards.  

 

2.3 Macrophytes 

Vegetation data were collected in 2016 from Rohrspitz in Austria to Friedrichshafen in Germany, 

roughly 55 km of shoreline. This data were then combined with recent data from 6 smaller surveys, 

creating an account of vegetation patterns for the entirety of Lake Constance’s shores for a period 

from 2009-2016 (hereafter to be referred to as 2016). This data were then compared to data of other 

existing full vegetation surveys from 1967, 1978 (Lang, 1981) and 1993 (Schmieder and 

Kümmerlin, 1998), resulting in a data set spanning almost 50 years. 

 

2.4 Field surveys 

The surveys in 2016 involved mapping of macrophyte communities in the littoral zone along the 

shoreline extending through Austria, Bavaria and Baden Württemberg.  Field work was carried out 

between July and September in order to ensure species groups had fully emerged. Sampling 

procedures were undertaken in accordance with previous studies on the lake, first established in 

1967 (Lang, 1981; Schmieder, 1998). Sampling was carried out from a boat using a weighted 

grapnel. Sampling points were taken approximately every 100 m following a zig zagging pattern to 

ensure inspection of a variety of depths between 1 and 15 m. For each sample point, the location 

was recorded on a handheld Garmin GPS device (GPSMAP 62st). Upon dropping anchor, the 

grapnel was thrown from different sides of the boat 3-4 times, or exceeding that until no additional 

species were observed. Instances of specimens pulled up with the anchor were also recorded. This 
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sampling was performed at a total of 497 sampling points across the study area. Where possible, 

species were identified and recorded on the boat; otherwise specimens were identified on land using 

identification keys (Moore, 1986;  Preston, 1995) and expert consultation. The abundance of species 

at each sample point was recorded in accordance with previous studies. This was done using a 

scheme where estimated abundance of each recorded species was ranked on a scale of 1 to 5 

(Kohler, 1978). These abundance estimations could then be used directly in later macrophyte index 

calculations. 

 

The data collected in 2016 for this study were merged with the aforementioned smaller recent 

studies to create a single dataset for the whole lake using ArcGIS 10.3.1 (ESRI, Redlands , CA, 

USA). This 2016 layer could then be used for comparison with historic digital data from 1967, 1978 

and 1993. One small inconsistency was presented by the fact that locations of recent data were 

recorded in point shape format whereas historic data (1967, 1978 and 1993) was in polygon shape 

format, mapped with the use of aerial photographs. As this study was not concerned with the spatial 

specificity of data, each individual polygon was treated as a single data point, making it comparable 

with the point data of 2016. The full data set includes the following number of data points (in 

parentheses) over the period: 1967 (1481), 1978 (1661), 1993 (2432) and 2016 (3231). 

 

2.5 Species richness  

Since species richness can be heavily dependent on sampling intensity (Gotelli and Colwell, 2011) 

combined with the uneven number of samples in the different surveyed years, we used coupled 

interpolation and extrapolation to obtain comparable estimates of species richness (Chao et al., 

2014;  Hsieh et al., 2016). Following the recommendations of Chao et al. (2014) we compared 

richness estimates at a common base number of samples of 3231. For each surveyed year, we thus 

calculated an estimated richness along with confidence limits as if we had collected the same 

number of samples in previous years as in 2016 following the calculation procedures in Hsieh et al. 

(2016). Further, the species accumulation curves allowed us to verify the validity of the observed 

species numbers from the estimate of sampling completeness. 
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2.6 Functional groups of macrophytes 

Vegetation data were divided into general functional groups with distinctions being made between 

tall elodeids (species growing ≥ 1 m), small elodeids (species growing < 1 m), floating-leaved 

species, mosses, charophytes and other macroalgae (see Supplementary Material 1). Their relative 

abundances were recorded based on species incidence data for each group. The changes in 

frequency of the nutrient sensitive charophytes were analysed based on individual species 

recordings using logistic regression (see data analyses). Furthermore, the species richness within 

each functional group through the surveyed years was calculated.  

 

2.7 Indices of macrophytes 

The macrophyte index (MI), a system developed for use in calcareous pre-Alpine lakes, was used to 

display the effects of nutrient exposure on the lake’s plant communities (Melzer, 1988).  These 

effects were quantified on a scale of 1-5 (5 indicating high, and 1 indicating low nutrient 

conditions). This index was the product of pre-determined indicator values based on species nutrient 

preferences (see Melzer, 1988) and recorded abundance as following: 

 

𝑀𝐼 =
∑ 𝑄𝑎−𝑧 𝑥 𝐼𝑎−𝑧 𝑎−𝑧

∑ 𝑄𝑎−𝑧  𝑎−𝑧
  

where 𝑸𝒂−𝒛= the cubed abundance rating of species a−z 𝑰𝒂−𝒛 = Indicator group of species a−z as 

outlined by Melzer (1988).  Upon calculation of these index values, the averaged results per year 

and the changing distribution of value ranges were examined.  

 

2.8 Data analyses  

The temporal development in environmental variables was analysed using linear regression between 

yearly averages of individual variables as the dependent variable and year as the independent 

variable. 

 

Changes in species richness were evaluated based on the richness estimates and their confidence 

limits based on the methodology of Hsieh et al. (2016).  

Charophyte frequency was analysed using logistic regression of species recordings (charophyte =1, 

other macrophytes =0) as the dependent variable and survey year as the grouping variable. A Tukey 

post hoc test was used to test pairwise differences between surveyed years.  
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The change in macrophyte index values across time was analysed using Kruskal-Wallis test 

followed by Dunn’s post hoc test using sampling points as replicates. 

Logistic regression was performed in R (R Core Team, 2016) while the remaining analyses along 

with all figures were made in GraphPad Prism (GraphPad Prism version 7.02, La Jolla, CA, USA). 

 

3. Results 

3.1 Environmental conditions 

The main change in environmental conditions was dominated by phosphorus concentrations. 

Annual mean total phosphorus concentrations declined more than 10-fold and highly significantly 

(linear regression, P < 0.001) from about 90 µg P L-1 in 1975 to only 7 µg P L-1 in 2010-2015 (Fig. 

1A). Also, annual mean total nitrogen concentrations declined significantly (linear regression, P < 

0.001), though with small differences from about 985 to 932 µg N L-1 (Fig. 1B). 

Although annual mean water temperature was not significantly linearly related to the investigated 

years (linear regression, P=0.26) a small increase (1.0ºC) was observed at macrophyte relevant 

depths of 10 meters to surface level over the 50 year period, with distinct minimum values in 1985-

1995 (Fig. 1C). Mean summer Secchi depth declined significantly (linear regression, P < 0.05) 

during the entire period from about 5.4 to 4.1 m (Fig. 1D).  

 

3.2 Species richness and abundance of macrophyte types 

The recorded relative abundance of functional macrophyte groups and species richness changed 

markedly during the period of 50 years (Figs. 2A and 2B). To accommodate the potential effects of 

differences in sampling intensity, we estimated sample coverage along with species richness at a 

common base sample for all surveyed years (see Materials and Methods 2.5). Despite the 

differences in sampling intensity, the sample coverage was very high (>99%) indicating that almost 

no species have been missed in the very intensive sampling. As a consequence of the high sample 

coverage, the richness estimates are very close to the observed values and showed a significant 

increase from 1978 to 1993 (Table 1), but no changes between the two early sample years (1967 

and 1978) or the late sample years (1993 and 2016) based on the calculated 95% confidence limits. 
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Three charophyte species were present in 1967, and by 1978 only two species were left at a very 

low abundance (Figs. 2A and 2B). Subsequently, charophyte richness and their relative abundance 

increased to eight in 1993 and ten in 2016.  Logistic regression of charophyte incidence showed that 

the survey year had a highly significant effect on charophyte frequency (P< 0.0001). Post hoc 

analyses showed that all surveys differed significantly (P<0.0001) confirming the initial decrease in 

abundance between 1967 and 1978, along with the substantial increases afterwards (Fig. 2A).  

Eleven tall vascular macrophyte species accounted for 62% of the relative abundance in 1967. By 

1978, 12 tall species were present with a relative abundance of 61%. In 1993, tall species richness 

reached 14, although relative abundance declined to 33%. Subsequently, tall vascular macrophytes 

declined to 12 species and a relative abundance of 28% in 2016.  

Six species of small vascular macrophytes accounted for 11% of relative abundance in 1967. This 

decreased to 5% by 1978 with six species present. Subsequently, small vascular macrophytes 

increased to eight species in 1993 and 2016 and relative abundance first increased to 16% and then 

declined to 7%.  

Other macroalgae than charophytes included between two and five species which changed markedly 

during the period. Relative abundance peaked in 1978 (28%) and then declined gradually in 1993 

(15%) and 2016 (4%). Floating-leaved macrophytes had low species richness (two or three) and 

relative abundance (0.2-0.5%) throughout the period. Likewise, species richness (one or two) and 

relative abundance (0.03-0.4%) of aquatic mosses remained very low.  See Supplementary Material 

2 for individual species data.  

3.3 Index groups of macrophytes 

In 1967, the highest recorded relative abundance of species in index group 3 was (31%) and in 4 

(33%) (Fig. 3). Group 2.5 was the next most prominent group (19%). In 1978, relative abundance 

had increased in group 4 (46%) and group 5 species (24%), whereas abundance declined in group 

2.5 (7.6%) and 3 (14%). During decreasing P concentrations after 1978, in 1993 and 2016, group 4 

and 5 species declined substantially, whereas group 2.5 and 1.5 species gained dominance with 

relative abundances of 43% and 19%, respectively in 2016. 

 

The average index values displayed the same temporal development with a significant increase 

between 1967 and 1978 (Kruskal Wallis, H=3424, P<0.0001; Dunn’s test, P<0.001), followed by 

continuous significant decreases from 1978 over 1993 to 2016 (Dunn’s, P<0.001).  
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4. Discussion 

Lake Constance is an outstanding example of a very large, deep lake successfully restored by 

reduction of phosphorus input through cross-border cooperation. Species richness and relative 

abundance of submerged macrophytes possessing different competitive and adaptive capabilities 

responded rapidly and markedly to changes in phosphorus concentrations over the 50 years of 

eutrophication and later re-oligotrophication. Our results are in contrast to the common assumption 

and findings that water transparency is the primary driver of macrophyte community composition. 

We first discuss changes in environmental conditions over the decades. Then we explore changes in 

functional groups of macrophytes. Finally, we evaluate interactions between environmental 

conditions and species groups and individual species with a focus on charophytes, which 

historically formed the very species-rich and dominant vegetation cover in the lake before nutrient 

enrichment took off.  

Among all environmental variables, total phosphorus (TP) levels underwent by far the greatest 

changes in Lake Constance from when regular sampling began in 1964. Concentrations peaked in 

the late 1970s owing to the widespread input of untreated domestic sewage, P-rich detergents and 

fertilisers (Petri, 2006). Following efficient wastewater treatment and reduction of agricultural 

input, TP levels decreased 10-fold from the early 1980s to lower stable levels (ca. 7 µg P L-1) in the 

early 2000s. Historically, Lake Constance would have held TP concentrations of 3-4 µg L-1 prior to 

anthropogenic influences (Kümmerlin, 2014) and, although contemporary phosphorus levels are 

low, they have not yet reached the very low levels of 100-150 years ago.  

It is characteristic, given the large volume of Lake Constance and the decades of nutrient pollution, 

that reduced input rapidly resulted in 10-fold reductions of TP concentrations in Lake Constance 

compared to observations in other historical lake studies (Jeppesen et al., 2005;  Schindler, 2012;  

Sand-Jensen et al., 2017). A major driving factor for this rapid decline of TP concentrations in Lake 

Constance is probably its great depth. While shallower lakes are more affected by internal P- 

loading from enriched sediments (Søndergaard et al., 2003), a portion of nutrients present will 

become effectively lost by sediment burial at great depths in deeper lakes such as Lake Constance. 

The wave action associated with such a large lake also has the potential to wash organic matter out 

of the littoral zone, thus decreasing their potential effects on species growth. Furthermore, due to 

the lake’s low retention time of 4.3 years (Stich and Brinker, 2010), in-lake TP would be expected 

to be washed out within approximately 13 years (three retention times) upon the reduction of inputs 
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(Jeppesen et al., 2005). Those conditions may account for the fast and pronounced recovery of Lake 

Constance compared with other lakes with longer retention times and shallower depths. 

 

Total nitrogen concentrations changed only weakly, unlike that of TP. Unfortunately, data were not 

available prior to the 1980s making it unclear as to what extent agricultural intensification of the 

1960s and 1970s in the drainage area affected in-lake concentrations. However, since nitrogen 

inputs are largely deposited from the atmosphere (Elser et al., 2009), this parameter is harder to 

control than TP. Similarly, water temperature did not change markedly over the timeframe of this 

study. Although some slight winter warming effects have been recorded (Straile et al., 2003;  Fink 

et al., 2014), mean temperatures in the upper 10 m of the water column have not increased 

significantly over the 50 years.  

  

Surprisingly, Secchi depth readings show no significant increase in water clarity throughout the re-

oligotrophication period in the lake after 1978. In fact, a decrease in water transparency is seen, 

starting from the late 1990s continuing through to 2016. However, a large variation is seen in 

recordings on a year to year basis. In many lake studies, water transparency is closely related to TP 

levels (Lambou et al., 1982). Hence, it is important to emphasize that Secchi depth in Lake 

Constance has not followed TP levels in their drastic decline since the late 1970s.  

The lack of improved water clarity can be partially explained when accounting for some major 

recent flood events such as in 1999 and 2005 (Jöhnk et al., 2004;  O'Leary and Wantzen, 2012), all 

likely being responsible for notable declines in recorded water transparency in those years. Frequent 

flooding can have sizable effects on lake water transparency (Squires et al., 2002). Levels of 

phytoplankton chlorophyll a have decreased in conjunction with declining TP levels, resulting in 

more inter-seasonally uniform concentrations rather than high summer maxima (Stich and Brinker, 

2010). However even at peak nutrient levels, chlorophyll a concentrations remained quite low 

(Stich and Brinker, 2010), suggesting that other factors such as suspended material from tributaries 

may have outweighed nutrient effects on phytoplankton biomass and transparency (Jochimsen et al., 

2014). This may explain why transparency has not followed changes in TP concentrations. Despite 

these decreases in water transparency, with many recent summer averages being lower than 4 m, 

macrophytes have been recorded growing at depths reaching up to 10 m. This suggests that 

transparency is higher in the littoral zones of Lake Constance than at its central measuring stations, 
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possibly owing to the localised water clarification properties of submerged macrophytes (Scheffer, 

1999). 

 

The most notable changes in Lake Constance’ species composition over the past 50 years has been 

the decline and later dramatic recovery of charophytes, a development that showed a strong 

negative relationship with TP concentrations. The first sample year (1967), when TP levels were 

elevated to 10 times the natural levels, was dominated by tall vascular elodeid species. These tall 

species are known to have a physiological and ecological advantage in elevated nutrient conditions 

by extending long shoots to the surface, often developing extensive canopies, to overcome high 

turbidity and outcompete smaller rooted species (Van der Bijl et al. 1989). The members of this 

plant group in Lake Constance came from a broad spectrum of nutrient tolerances, with Stuckenia 

pectinata (MI group 4) and Potamogeton perfoliatus (MI group 3) being the most prevalent. The 

success of the tall species likely caused shading on small charophyte and moss species (Sand-Jensen 

et al., 2017). This effect was particularly evident among the charophytes, which only included three 

species of very low abundance in 1967, in stark contrast to the 17 species recorded back in 1911 

(Dienst et al., 2012).  

 

Macrophyte index values suggested that plant communities in the 1978 sample year were by far the 

most nutrient affected. This year had peak levels of TP. The relative abundance of tall elodeid 

species remained constant from 1967 to 1978. While some species within this group declined in 

abundance in 1978, highly nutrient-tolerant species such as S. pectinata and the large form of 

Zannichellia palustris (Melzer, 1988) showed large increases. Species within this group with lesser 

nutrient tolerances, particularly P. perfoliatus declined substantially within this period, offsetting 

expansions by other group members. This observed decline came at a time when “other 

macroalgae” (predominantly pollution-tolerant Cladophora sp.) expanded strongly. These 

macroalgae species are known to inhibit the growth of P. perfoliatus (Asaeda et al., 2004) and could 

have been a major factor in this decline. The observed proliferation of “other macroalgae” likely 

also contributed to the marked decline in relative abundance of charophytes. Another contributing 

factor was probably the huge increase in S. pectinata and Z. palustris abundance in this period. 

These species have been shown to shade macrophytes growing below, and may have contributed to 

the decline in charophyte abundance and the disappearance of Chara aspera (Van den Berg et al., 

1998). The year 1978 marked the only time in the recorded history of Lake Constance when Z. 
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palustris was widespread (Schmieder, 1997). Finally, the observed decrease in small elodeids likely 

resulted from the shading effects of the increased presence in taller and more nutrient tolerant 

species (Melzer, 1988).  

 

The 1993 sample year displayed an increase in species richness, a decline in observed nutrient 

impacts on the submerged vegetation, as indicated by the macrophyte index, and an increase in 

species with lower nutrient tolerances, such as charophytes. This may have been facilitated by the 

high level of local and regional variation within the lake, providing different niches for 

recolonization upon the return to lower nutrient conditions (Schmieder and Lehmann, 2004).  

Furthermore, this re-emergence may be attributed to sprouting of oospores, which can remain viable 

in the sediment for numerous decades, an advantage charophytes have over other species groups 

(Krause, 1986;  Hilt et al., 2006). Falling TP levels in this period corresponded with a marked shift 

in macrophyte index values towards nutrient poorer conditions. Large declines in previously 

dominant eutraphentic species such as Cladophora sp., S. pectinata, and Z. palustris led to 

decreases in the relative abundance of the two groups “other macroalgae” and tall elodeids. Perhaps 

most notable was the 46% decline in absolute numbers of recorded sample points of Cladophora sp. 

from 1978 to 1993. The reduced occurrence and shading from Cladophora sp. and the greatly 

reduced TP concentrations may have facilitated the large expansion of charophytes. More nutrient 

tolerant charophyte species such as Chara contraria, Nitellopsis obtusa and Chara globularis re-

emerged most strongly, similar to that seen in other restored deep lakes such as Lake Starnberg 

(Melzer, 1999). Chara aspera was again recorded for the first time since the 1960s in addition to 

five other charophyte species.  

 

By 2016, although species richness did not notably increase, more characteristically oligotraphentic 

species greatly increased in abundance. Furthermore, two more charophyte species were recorded, 

and charophytes became the dominant functional group in Lake Constance, occupying 62% of 

overall relative abundance. Chara aspera, which is one of the most nutrient sensitive members of 

the group (MI group 1.5), displayed huge increases in abundance, becoming one of the most 

prominent species in the lake, second in abundance to C. contraria. This continued charophyte 

expansion again came at a time of greatly declining TP levels. Previously dominant eutraphentic 

species such as S. pectinata and the tall elodeids declined considerably at this time of reduced TP 

levels, a development that would have decreased shading effects on lower canopy species.  
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Under suitable nutrient and light conditions, certain charophyte species are known to hinder the 

performance of tall macrophytes (Richter and Gross, 2013). Furthermore, the ability of charophytes 

to quickly utilise bicarbonate by acting as a nutrient sink, has been shown to inhibit S. pectinata 

growth and cause population declines (Hidding et al., 2010). Indicator values of the submerged 

vegetation for this recent period reflect the lower TP concentrations that had decreased considerably 

since 1978, and now depicted low nutrient effects.   

 

Changes in vegetation dynamics appear to be most closely related to TP concentrations. The trends 

in average TN, temperature and Secchi depth have not developed in a manner that can account for 

macrophyte development in Lake Constance over the last 50 years.  Differentiating periods of 

dominance between characteristically eutraphentic and oligotraphentic species coincide with 

temporally peaking and declining TP levels. This link is compounded by macrophyte index values, 

which show a similar trend. Our results are in contrast to the common assumption and findings that 

water transparency is the primary driver of macrophyte community composition (Middelboe and 

Markager, 1997). Our findings also support the notion that these developments in species 

composition are strongly influenced by interspecific competition relating to phosphorus availability.  

Nonetheless, water transparency cannot be disregarded as a contributing factor to the 

observed macrophyte development. The huge and varied physical nature of Lake Constance means 

there is a potential for spatial variation in water transparency along the shoreline, something not 

accounted for by our mid-lake Secchi measurements. Readings taken from such mid-lake stations 

cannot fully account for the effects that macrophytes may have on water clarity in the littoral zone 

several kilometres away, for example, by enhancing particle sedimentation (Scheffer, 1999). Given 

the mean lake depth and good water exchange conditions between mid-lake and littoral stations, our 

data from mid-lake stations should still be a reliable proxy for the historical development of light 

conditions in the water column surrounding the submerged macrophytes in the littoral zone. The 

close link between macrophyte community composition and in-lake TP levels supports the 

conclusion that in the case of large naturally oligotrophic lake ecosystems, nutrient levels may be a 

much more informative metric for quantifying vegetation development than Secchi depth. Thus, 

macrophyte communities in lakes with similarly low baseline TP concentrations would likely be 

comparably sensitive to fluctuations in phosphorus levels.  
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Figure 2 
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Figure 3 
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Tables. 

 

 

Table 1: Species Richness Lake Constance. Observed and estimated species richness and confidence intervals using Chao et al. 

(2014) 

Sample Year Observed Species Estimated Species (±C.I) 

1967 26 26.5±2.6 

1978 27 28.2±3.3 

1993 39 39.9±4.1 

2016 38 38.0±1.9 

 

 

 

 

 


