
u n i ve r s i t y o f co pe n h ag e n

A Distributed Virtual Machine for Microsoft. NET

Larsen, Morten N; Vinter, Brian

Published in:
Journal of Software Engineering and Applications

DOI:
10.4236/jsea.2012.512119

Publication date:
2012

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Larsen, M. N., & Vinter, B. (2012). A Distributed Virtual Machine for Microsoft. NET. Journal of Software
Engineering and Applications, 5(12), [26281]. https://doi.org/10.4236/jsea.2012.512119

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269295115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4236/jsea.2012.512119
https://curis.ku.dk/portal/da/persons/brian-vinter(e5515832-e109-4958-8c81-9cac89ecfa2c).html
https://curis.ku.dk/portal/da/publications/a-distributed-virtual-machine-for-microsoft-net(424d3a19-1a21-4af0-9e6d-8aa25d1647ee).html
https://doi.org/10.4236/jsea.2012.512119

Journal of Software Engineering and Applications, 2012, 5, 1023-1030
http://dx.doi.org/10.4236/jsea.2012.512119 Published Online December 2012 (http://www.SciRP.org/journal/jsea)

1023

A Distributed Virtual Machine for Microsoft .NET*

Morten N. Larsen, Brian Vinter

The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Email: momi@nbi.ku.dk, vinter@nbi.ku.dk

Received October 2nd, 2012; revised November 4th, 2012; accepted November 15th, 2012

ABSTRACT

Today, an ever increasing number of natural scientists use computers for data analysis, modeling, simulation and visu-
alization of complex problems. However, in the last decade the computer architecture has changed significantly, making
it increasingly difficult to fully utilize the power of the processor, unless the scientist is a trained programmer. The rea-
sons for this shift include the change from single-core to multi-core processors, as well as the decreasing price of hard-
ware, which allows researchers to build cluster computers made from commodity hardware. Therefore, scientists must
not only be able to handle multi-core processors, but also the problems associated with writing distributed memory pro-
grams and handle communication between hundreds of multi-core machines. Fortunately, there are a number of systems
to help the scientist e.g. Message Parsing Interface (MPI) [1] for handling communication, DistNumPy [2] for handling
data distribution and Communicating Sequential Processes (CSP) [3] for handling concurrency related problems. Hav-
ing said that, it must be emphasized that all of these methods require that the scientists learn a new method and then
rewrite their programs, which mean more work for the scientist. A solution that does not require much work for the
scientists is automatic parallelization. However, research dating back three decades has yet to find fully automated par-
allelization as a feasible solution for programs in general, but some classes of programs can be automatically parallel-
ized to an extent. This paper describes an external library which provides a Parallel. For loop construct, allowing the
body of a loop to be run in Parallel across multiple networked machines, i.e. on distributed memory architectures. The
individual machines themselves may be shared memory nodes of course. The idea is inspired by Microsoft’s Parallel
Library that supplies multiple Parallel constructs. However, unlike Microsoft’s Library our library supports distributed
memory architectures. Preliminary tests have shown that simple problems may be distributed easily and achieve good
scalability. Unfortunately, the tests show that the scalability is limited by the number of accesses made to shared vari-
ables. Thus the applicability of the library is not general but limited to a subset of applications with only limited com-
munication needs.

Keywords: Microsoft .NET; Parallelization; Distribution; Data Parallelism

1. Introduction

During the last decade the usage of high performance
computing has increased beyond classic areas for scien-
tific computing, the type of problems that are solved by
high performance computing has widen, but most impor-
tantly the user group has changed from programming
specialist to a more mixed group of scientists from fields
like chemistry, physics, environmental sciences, engi-
neering etc. These two factors have meant that the tools
for aiding the users in handling hardware are more im-
portant today than ever before. As a natural consequence,
there is an increase in the solutions that can help the us-
ers. Solutions ranging from automatic parallelization to
tools like Message Parsing Interface (MPI) and Commu-
nicating Sequential Processes (CSP). Nevertheless, many

of the tools available have very little usage in practice
and/or do not provide enough scalability compared to the
manually written code. However, the greatest problem is
that many of the tools have a very steep learning curve,
and thus, presents problems for many non-computer spe-
cialists, who may be able to write a sequential program,
but do not have knowledge of locks, raise conditions,
deadlocks and memory layout.

In an attempt circumvent this problem Microsoft has
in recent years improved .NET with tools to help users
write Parallel code. The functionality resides mainly in
the Microsoft Parallel Library [4] and consists of a set of
tools; however, this paper focus exclusively on one,
namely the Parallel.For construct. The construct as the
name reveals, is the Parallel version of the normal For-
loop. The usage is very simple and the users should in
theory just replace the For-loops with the Parallel.For loop
and the code will then be executed across all available

*The Innovation Consortium supported this research with grant 09-
052139.

Copyright © 2012 SciRes. JSEA

A Distributed Virtual Machine for Microsoft .NET 1024

cores in the machine. Importantly though; in the current
version of the tool the parallelization does not go beyond
a single shared memory machine.

To improve Microsoft’s idea by enabling distribution
beyond a single machine, we have examined Micro-
soft .NET and the Microsoft Parallel system and will in
this paper describe a solution for adding an external
module to the system. The focus has been on making mi-
nimal changes to the code compared to the original code
with a Parallel.For loop. Furthermore, the use of Micro-
soft.Parallel has been replaced by our implementation
named DistVES (Distributed Virtual Execution System)
as described in this work. From the beginning it was
clear that the proposed solution would not work for every
type of .NET program especially not programs with many
interrupts, GUI programs, programs that have a lot of
disk usage, etc. Therefore, the target programs have been
limited to scientific application e.g. data analysis, mod-
eling, simulation and visualization. Furthermore, simple
algorithms which should yield good speed-up have been
chosen for testing the initial version.

The rest of the paper is structured as follows: Section 2
gives a short introduction to Microsoft’s Common Inter-
mediate Language, which is the level at which DistVES
transforms the original code. Section 3 gives a descrip-
tion of the design including consistency, client/server and
code generation. In Section 4 the results of running a
number of benchmarks are discussed. Future work is
described in Section 5 and finally Section 6 gives a sum-
mary of our findings.

Related Work

DistVES is as mentioned above, closely related to Mi-
crosoft Parallel Library with the main difference that
DistVES supports multiple machines. This clearly changes
the intrinsic properties of the two systems, but for the
users the two systems seem similar. Another closely re-
lated system is OpenMP [5] which needs to be incorpo-
rated in the compiler of a given programming language
and many C/C++ and Fortran based programing lan-
guages are supported including .NETs Visual C++. Origi-
nally, OpenMP only supported shared-memory multi-
processor platforms, but IBM has orked on a version that
supports a cluster [6]. Yet another way to help the pro-
grammer is to have support for distributed shared mem-
ory on the .NET objects. However, due to problems with
scalability and usability, these types of systems have
never proved a good solution [7]. Common for the three
methods is that they only result in good scalability when
the implemented algorithms are very simple and straight-
forward to parallelize.

A lot of research over the last decades has been dedi-
cated to auto-parallelization. The general position is that
it only works for very simplified algorithms and there-

fore alternative solutions must be found. Instead of auto-
parallelization systems, some systems focus on making
the communication between machines easier. Systems
like the MPI provide functionality to distribute and run
tasks on a large set of computers and gather the results of
the computations. Likewise systems of the CSP type
provide mechanisms of communication between different
machines. The goal of CSP is to help the programmer
writing correct code e.g. free of live-locks, dead-locks,
and race conditions.

Ultimately, before most scientists can fully utilize large
Parallel machines, it might be that a whole new approach
for making hardware and new Parallel programming
languages must be defined [8].

2. The Common Intermediate Language
(CIL)

Before describing the design of DistVES, we will give a
short introduction to the Common Intermediate Lan-
guage (CIL) as the language is not commonly known.
CIL is the backbone of the .NET framework and is a
stack-based; platform neutral and type safe object ori-
ented assembly language designed for .NET. The pur-
pose of CIL is to allow multiple source-languages e.g. C#,
VB.NET, and F# to be compiled into the same non-
platform specific assembly language. The .NET runtime
can then at runtime compile the CIL assembly to a ma-
chine specific machine code. This firstly allows for cross
platform usage and secondly that programs written in e.g.
C# can call methods from libraries written in languages
like F# or VB.NET. Figure 1 gives an overview of the
pipeline from source language to machine code.

3. Design

The design of DistVES consists of three components; a
distribution model, a client/server model, and a code
generator. These all play a role in turning a .NET pro-
gram with a Parallel. For construct into a distributed pro-
gram that can be executed on a cluster computer. The
shared fields play a key role in the system, as they should
be identified in the original .NET program and made into
distributed variables. Thereby making them available to
all the clients in the system. Furthermore, the coherence
model should ensure that the clients always see the cur-
rent version of a shared variable.

3.1. Distribution including Server/Client

We start by giving an overview of the model and then go
through the details about data coherence and code gen-
eration.

For simplicity of implementation a central server
model without client-to-client communication has been

Copyright © 2012 SciRes. JSEA

A Distributed Virtual Machine for Microsoft .NET 1025

Figure 1. Overview of the CIL pipeline.

chosen for the initial version. This naturally sets an upper
limit of scalability, but it will be able to show if our idea
has potential. Each node in the system runs a thread
which is dedicated for server communication. Again for
simplicity, a single machine running multiple workers
still runs one communication thread per worker, even
though the workers could share a single communication
thread.

Sending messages over a network requires that the ob-
jects are serialized before being sent and then deserial-
ized at the receiving end. .NET supports automatic seri-
alization of a class when marked with the Serializable
attribute. Many of the built-in types in .NET are marked
with this attribute, but when a programmer makes a new
type it is not by default serializable. Therefore, DistVES
only allow the use of the primitive types e.g. int, double,

float, char and single/multi-dimension arrays of primitive
types which all are serializable.

When distributing a .NET program with a Parallel
construct the compiler generates an action delegate (sub-
class to the caller class) which contains the code from
inside the Parallel construct. This is unfortunately not
clear from the source code and means that some local va-
riables can be promoted to a field in the delegate (see
Table 1). Furthermore, the delegate will hold a reference
to the caller class. During a normal run this reference is
somewhere in the local memory and may be accessed
from multiple threads, but when the program is being
distributed, this reference can point to a memory location
on another machine. As we cannot make a deep copy,
because the class may possible not be Serializable, every
client must create a local copy that mirrors the original.
At the same time a given field must have the same uni-
que identifier in all local copies of a given class. Through
this process, DistVES can ensure that updates made to
one field will be distributed to all clients. In practice, this
is done by having all clients register all fields using the
class ID and the field name with the server when execut-
ing the constructor of a given class. The server will then
return the fields unique ID, which will be used for the
rest of the execution.

3.2. Data Consistency

Maintaining multiple copies of the same object on dif-
ferent machines requires a system to ensure data consis-
tency, so that all machines see the same version of the
data like on a conventional shared memory machine.
However, having systems with latency and transfer time
means that we cannot guarantee at any given point that
all machines have the exact same version of an object.
Nevertheless, we can guarantee that all machines at some
point will get the most recent version of the object. This
is called sequentially consistency [9]. More relaxed con-
sistency models exist [10], but in order to utilize them
information about access patterns is required. As the CIL
assembly does not contain information about access pat-
terns, the programmers need to annotate the source code
to use a more released system. However, making the
programmers annotate the code is in conflict with the
goal of making it easier for the programmer to utilize
distributed computers. An implementation of sequential
consistency could be the MESI protocol [11,12], which is
known from hardware cache implementations. The MESI
protocol relies on an object in cache at a given time hav-
ing one of four states Modified, Exclusive, Shared or
Invalid. The state of an object can change over time de-
pending on either local or remote (other caches) making
changes to the object. As seen in Figure 2 the state of an
object changes whenever an action is made to the object.

Copyright © 2012 SciRes. JSEA

A Distributed Virtual Machine for Microsoft .NET

Copyright © 2012 SciRes. JSEA

1026

Table 1. Source code example, followed by the assembly view of the compiled code (the CIL instructions are omitted).

 class Test
 {
 // The following variable is a private field in the Test class
 int globalValue = 0;

 public void Run()
 {
 // The following local variable in the class Test is “promoted”
 // to a field in the delegate because it is accessed within the delegate
 int value = 0;

 /*
 * Code inside the Paralle.For loop is compiled to a subclass of
 * Test (a delegate). If the body of the Parallel.For did not touch
 * local variables in the Run method, the body of Paralle.For would
 * be compiled to a method in the Test class
 */
 Parallel.For(0, 10, i =>
 {
 int count = i;
 value = count;
 globalValue = count;
 }
);
 // Next line gives compiler error, because the variable count is out of scope
 // value = count;

 // This should print “Value is 9 and 9”
 Console.WriteLine(“Value is {0} and {1}”, value, globalValue);
 }
 }

___[MOD] …CodeExample.exe
 | M A N I F E S T
 |___[NAMESPACE] CodeExample
 | |___[CLASS] CodeExample.Test
 | | | .class private auto ansi beforefieldinit
 | | |___[CLASS] <>c__DisplayClass1
 | | | | .class nested private auto ansi sealed beforefieldinit
 | | | | .custom instance void [mscorlib] System.Runtime…
 | | | |___[FIELD] <>4__this : public class CodeExample.Test
 | | | |___[FIELD] value : public int32
 | | | |___[METHOD] .ctor : void()
 | | | | <Run>b__0 : void(int32)
 | | |
 | | |___[FIELD] globalValue : private int32
 | | |___[METHOD] .ctor : void()
 | | |___[METHOD] Run : void()

Non-active cache actions are operations made by a

remote cache, whereas active cache actions are opera-
tions done by the local cache. Snoop and Update actions
are in the MESI model broadcasted to all other nodes in
the system. Snoop broadcasts always include a type
which is either “Write” or “Read” depending on how the
shared object is accessed by the cache.

The next question is how to integrate the MESI proto-
col to an object in .NET. The most obvious way is to
encapsulate all objects (those from shared fields) into a
custom DistVES object which contains both the original
object and the control code to acquire the functionality of
the MESI protocol.

The first task in designing the custom object is to de-
fine the methods that are required to have a correctly
working MESI protocol. Firstly, it should be possible to
access (write/read) the original object inside the custom
object. These methods are called from the user code but
are blocking if the custom object’s MESI state requires
that the server must be contacted e.g. for an updated ver-
sion of the data. Secondly, the MESI protocol requires
that it is possible to “remotely” snoop the object along
with the possibility to “remotely” update the object.
These two methods are called from the communication
thread and if the update method is called it releases the
blocking user code. This is typically done in a situation

A Distributed Virtual Machine for Microsoft .NET 1027

Figure 2. State transactions in the MESI protocol.

where the user code accesses an object with MESI state
“invalid”. Then the server is asked for an updated version
of the data and the user code is blocking while waiting
for a response.

The response is handled by the communication thread
and will update the data before requesting the blocking
user code to continue work. Furthermore, the communi-
cation thread should handle snoop request, which mainly
involves changing the MESI state of objects and/or send-
ing an updated version of data to the server.

Now that the custom object can handle the MESI pro-
tocol, the next step is to define how the object should
integrate the different types that a field can have. The
shared fields in the user code can be divided into two
types; value-type and reference-type. Value-type fields
have the value encapsulated into the field, whereas ref-
erence-type contains a reference to an object. This yields
two different implementations of the custom object as the
MESI states should follow the data and not the field.
Therefore, if the field is a value-type then the field itself
should be a custom object. In contrast, if the field is a
reference-type then the referenced object should be a
custom object. Figure 3 illustrate a field with a value-
type where the type of the field has changed from “int” to
the custom object named “MESIValueField<int>”. The
MESIValueField contains all control code to correctly
handle the MESI protocol.

Figure 4 shows the case of a shared field with a refer-
ence-type to an object of type “MyObj” which again
contains a shared field of value-type “int”. The type of
the shared field is now changed from “MyObj” to “ME-
SIReferenceField<MESIReference<MyObj>>”. MESI-

Figure 3. A shared “ByValue” field encapsulated in a MESI
object.

Figure 4. A shared “ByReference” field incapsulated in a
MESI object.

ReferenceField does not contain the MESI protocol;
however, it contains functionality to notify others if the
field is assigned a new object (reference). The MESI
protocol is implemented in the custom object named
MESIReference which contains a reference to the actual
“MyObj” object.

It should be noted that a special case arise with refer-
ence-type fields if the referenced object is of the type
Array. The difference is that the real data of the arrays
are the elements of the arrays and these are accessed
through the CIL instructions Ldelem/Stelem. Therefore,
we need a special case to handle arrays which we define
as “MESIValueArray” (see Figure 5). This object has a
MESI state for each of the elements in the array, but fur-
thermore has support for defining a block size. Thus,
enabling the control code to handle blocks of elements in
order to minimize the overhead when accessing a large
part of an array iterative.

3.3. Code Generator

The third component of DistVES is the code generator,
which has the responsibility for transforming the original
code into a distributed version of the same code. To do
this, the code generator must first make a complete tree-
based structure of the code to ensure efficient rewriting.
The tree contains information on relations between classes
and instructions, e.g., the Add instruction takes two ar-
guments, which means that the Add instruction must
have two incoming instructions. If the result of the addi-
tion is afterwards stored in a variable the Add instruction
has an outgoing instruction, which is the store instruction.
Furthermore, it is necessary to identify instructions that

Copyright © 2012 SciRes. JSEA

A Distributed Virtual Machine for Microsoft .NET 1028

Figure 5. A shared Array field incapsulated in a MESI ob-
ject.

call another method.

During the actual code generation all Parallel.For
loops are identified and the name of the delegate class,
which is the body of the loop, is noted. The next step is
to modify these classes. As we know that the fields are
the only type that can be shared between threads, the
fields are a good starting point in order to keep the modi-
fications of instructions to a minimum. As there only are
to CIL instructions to access a field namely the Ldfld and
Stfld instructions, the code generator looks for these two
instructions and when finding them, a recursive modifi-
cation using the incoming and outgoing instructions starts.

4. Benchmarks

In order to test the performance of the implementation
three algorithms were implemented using the Parallel.For
constructs. The tests were executed on four machines
each with an Intel i7-860 processor at 2.8 GHz and 8 GB
of RAM. The machines were connected using a Gigabit
network through a single switch. The experiments were
performed with 1 - 16 workers (1 - 4 workers per ma-
chine) and repeated five times to get consistent meas-
urements. The tests labeled Microsoft Parallel.For and
DistVES Parallel.For was executed on a single machines.
Tests labeled DistVES Network (3) indicates that one
machine ran the server and main client, and the three
others machines ran the workers (3, 6, 9 and 12 workers
in total). Finally the tests labeled DistVES Network (3 +
1) means that all machines ran the same amount of
workers giving a total of 4, 8, 12 and 16 workers. In ad-
dition one of the machines ran the server and the main
client.

The three test applications were written in C# and the
source code was not changed between running with the

Microsoft .NET Parallel.For and the DistVES Paral-
lel.For other than a switch indicating which Parallel.For
method to use.
 Black-Scholes: The algorithm gives the price of Euro-

pean style options and is frequently used in the finan-
cial world.

 Ising: A Monte Carlo simulation of the ising model
which is a mathematical model for simulating mag-
netism in statistical mechanics.

 Prototein: Simplification of protein folding with only
2 dimensions and folding in angles of 90 degrees.

Discussion

The Black-Scholes is an embarrassingly Parallel problem;
it has very little input data and generates only a single
double value as output. Therefore, a good speed-up is
expected from both Parallel methods. As seen in Figure
6 linear speed up is achieved using one to six workers.
Afterwards, the two tests using multiple machines still
show an increase in speed-up, but with a much lower
gradient which flattens as the number of workers in-
creases. The single machine tests show that both methods
scales well when running; however, both methods gener-
ate some overhead, which result in s scaling that is not
perfect. The result is acceptable as the code is much eas-
ier to write, than the code required to make perfect scal-
ing. In the network tests, we have a good scaling when
using one or two cores per machine; however, using
more than three cores result in decreasing utilization. The
primary problem is the time span between the main client
creating tasks and the initial work being distributed to the
workers. The time span was measured to around 25% of
the total running time, when using 16 workers (4 per
machine). A secondary problem is the time required in

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Number of workers

Microsoft Parallel.For

DistVES Parallel.For

DistVES Network (3)

DistVES Network (3 + 1)

Figure 6. Black-Scholes.

Copyright © 2012 SciRes. JSEA

A Distributed Virtual Machine for Microsoft .NET 1029

the server to handle messages from clients. The time
span is too high between a client sending a request and
receiving the responds.

The Ising simulation is Monte Carlo based and thereby
embarrassingly parallel as well. On the other hand the
Ising simulation contains a barrier to synchronize the
calculation of each round. The cost of the synchroniza-
tion would increase and become the dominating factor if
we ran the simulation on a fixed problem size and just
increased the number of workers. Therefore, we ran this
test increasing the problems size when the number of
workers increases. The size of the array for a single
worker is 3500 × 3500 elements, for two workers 7000 ×
3500, for three workers 10,500 × 3500 and so forth. It
was not possible to make a run using a total of 16 work-
ers due to memory restraints. When using DistVES these
arrays must be transferred even though one of the tests is
executed on a single machine, on the contrary Microsoft
Parallel use shared memory, and therefore access the
memory directly. Therefore, we expect that Microsoft
Parallel will scale better than DistVES. A decrease in
utilization should furthermore be expected when using
the network. As we see in the Gustafsson graph in Fig-
ure 7, DistVES is actually outperformed with 20%,
which is a bit high. Nevertheless, none of the four meth-
ods are close to the optimal horizontal line. The two
network tests show a linear decrease in utilization and
when using 12 workers the utilization becomes less than
50%. The main problem is the overload of the central
server and the barriers, but also the high number of ac-
cesses to the elements in the array. Each element access
has a higher cost in DistVES because of all the book-
keeping required to guarantee consistency among other
things.

The final benchmark is the simplified protein folding,
which again should yield very good speed-up. The initial
step in the program is that the main client creates tasks
each containing a partly folded prototein. The tasks are
then distributed to the clients, which locally keeps a copy
of the fully folded prototein with the highest score. When
all prototeins are folded the main client collects the best
scores from the workers and finally finds the overall best
prototein structure.

As with the Ising simulation, the Prototein folding
have an input of some size; however, it is not as large as
the Ising simulation. Furthermore, the Prototein folding
does not require any barriers to synchronize calculations.
Therefore, the expectations are a linear scaling where
Microsoft Parallel will have a better gradient e.g. closer
to optimal scaling. As seen in Figure 8 all methods show
good scaling, again; however, the two network tests show
a decrease when using more than two workers per ma-
chine.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

U
ti

li
sa

ti
on

Number of workers

Microsoft Parallel.For

DistVES Parallel.For

DistVES Network (3)

DistVES Network (3 + 1)

Figure 7. Ising simulation.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

ee
d

up

Number of workers

Microsoft Parallel.For

DistVES Parallel.For

DistVES Network (3)

DistVES Network (3 + 1)

Figure 8. Prototein folding.

Furthermore, the two single machine tests show that
DistVES scales as well as the method provided by Mi-
crosoft; however, DistVES is a bit slower due to more
overhead.

The reason for utilization of only 50% when employ-
ing a total of 16 workers is the same as seen in the pre-
vious tests, namely the cost of the element access.

5. Future Work

As seen in the previous section the major problem with
the current version of DistVES is the high cost of ac-
cesses to shared variables. Furthermore, the consistency
model is strict and to gain a better performance a more
released consistency model is required. There are a cou-
ple of ways to achieved this; either by code annotation,

Copyright © 2012 SciRes. JSEA

A Distributed Virtual Machine for Microsoft .NET

Copyright © 2012 SciRes. JSEA

1030

by a more intelligent code generation, or by modifying
the virtual machine of .NET (VES/CLR).

It is clear, that code annotation would make it easier to
implement a more release consistency model like entry
consistency. However, this shifts attention away from
making it easier for the programmer to write code, which
is essential. Unfortunately, it seems that achieving a good
performance is not possible without code annotation.

The second option is to make the code generator more
intelligent. A solution could be to categorize shared fields
into read-only (write-once) and read-write. Thereby, the
control code for the MESI protocol could be skipped by
read-only fields and they would work like a normal field,
making the performance better.

The best solution is properly to integrate a system like
DistVES directly into the VES, but the open-sourced
Mono project is the only choice for implementation as
the Microsoft implementation of .NET is closed-sourced.
The gain is that the user’s code does not need to be
changed at all and the accesses to shared variable will be
the same running with or without a distributed Paral-
lel.For. There will; however, be added some overhead
when using the distributed version, but it will hopefully
be less than in DistVES. The main concern is that the
incredible effort it will require to modify the execution
engine of Mono will not be justified by the gained speed-
up.

6. Conclusion

Improving ease-of-use for scientists with limited pro-
gramming knowledge to utilize the available hardware on
multi-core and cluster computers is very important. There-
fore, much effort has been put into making tools that as-
sist the scientists; however, many tools are not widely
used and/or will not give the wanted scalability. In this
paper we have presented our view on such a system us-
ing .NET and a Parallel.For construct, which allows the
users to easily convert their existing scientific programs
into programs that utilize a distributed computer setup.
Microsoft has already made support for using the Paral-
lel.For construct on a single multi-core machine, but the
system described in this paper extent that idea to utilize
multiple machines. The implemented test cases show that
for some simple scientific problems DistVES scales as
well as Microsoft’s solution; however, in some cases it
does not. Altogether it is should be clear that a Parallel
programmer’s implementation of the tested problems at
any time will scale better than the versions using Dist-
VES or Microsofts Parallel Library; however, the two
systems can be used by scientists that are not experts in

Parallel programming and are having a simple scientific
application that they want to parallelize. Therefore DistVES
cannot be used to parallelize all types of programs, but
for a subset e.g. simple scientific application, it will do
fine. To improve DistVES a number of ideas, ranging
from code annotation to rewriting the VES implementa-
tion in Mono in order to support distribution have been
proposed as future work.

REFERENCES
[1] A. Geist, et al., “MPI-2: Extending the Message-Passing

Interface,” Euro-Par’96 Parallel Processing, Springer,
Berlin/Heidelberg, 1996, pp. 128-135.

[2] M. R. B. Kristensen and B. Vinter, “Numerical Python
for Scalable Architectures,” Proceedings of the Fourth
Conference on Partitioned Global Address Space Pro-
gramming Model (PGAS’10), New York, 12-15 October
2010, pp. 15:1-15:9. doi:10.1145/2020373.2020388

[3] C. A. R. Hoare, “Communicating Sequential Processes,”
Communications of ACM, Vol. 21, No. 8, 1978, pp. 666-
677. doi:10.1145/359576.359585

[4] Microsoft, “Parallel Programming in the .NET Frame-
work,” 2012.
http://msdn.microsoft.com/en-us/library/dd460693

[5] OpenMP, “OpenMP,” 2012. http://www.openmp.org

[6] J. P. Hoeflinger, “Extending OpenMP to Clusters,” 2012.
http://www.hearne.co.uk/attachments/OpenMP.pdf

[7] T. Seidmann, “Distributed Shared Memory Using the .NET
Framework,” 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid, Tokyo, 12-15 May
2003, pp. 457-462.
doi:10.1109/CCGRID.2003.1199401

[8] K. Asanovic, “The Landscape of Parallel Computing Re-
search: A View from Berkeley,” University of California,
Berkeley, 2006.

[9] L. Lamport, “How to Make a Multiprocessor That Cor-
rectly Executes Multiprocess Programs,” IEEE Transac-
tions on Computers, Vol. C-28, No. 9, 1979, pp. 690-691.
doi:10.1109/TC.1979.1675439

[10] S. V. Adve and H. D. Mark, “Weak Ordering—A New
Definition,” Proceedings of the 17th Annual International
Symposium on Computer Architecture (ISCA’90), Seattle,
28-31 May 1990, pp. 2-14.

[11] M. S. Papamarcos and J. H. Patel, “A Low-Overhead
Coherence Solution for Multiprocessors with Private
Cache Memories,” Procedings of the 11th Anual Interna-
tion Symposium on Computer Architecture, Ann Arbor
Michigan, 5-7 June 1984, pp. 348-354.

[12] J. P. Hoeflinger, “Extending OpenMP to Clusters,” 2012.
http://www.hearne.co.uk/attachments/OpenMP.pdf

http://dx.doi.org/10.1145/2020373.2020388
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1109/CCGRID.2003.1199401
http://dx.doi.org/10.1109/TC.1979.1675439

