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1 Introduction

There are generically two main physical and observable consequences of theories with spon-

taneously broken continuous symmetries; namely i) the appearance of Nambu-Goldstone

(NG) bosons and their dynamics, and ii) the existence of so-called soft theorems, which fix

the behavior of scattering amplitudes when the momentum of one or more NG bosons goes

to zero. They are direct consequences of the Ward identities of the theory.

There are, nevertheless, various important differences between spontaneously breaking

an internal or a space-time symmetry. In the case of an internal symmetry, the number

of NG bosons is equal to the number of broken generators, while in the case of a spon-

taneously broken space-time symmetry, the number of NG bosons is less [1]; for instance

when conformal symmetry is spontaneously broken to Poincaré symmetry only one NG
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boson appears, although five generators corresponding to dilatations and special conformal

transformations are broken [2, 3].

The two kinds of NG bosons also differ in their soft behavior: in the case of a spon-

tanously broken internal symmetry, amplitudes involving the NG bosons vanish when the

momentum of one of the NG bosons goes to zero.1 A famous example is the non-linear σ-

model (NLSM) describing the low-energy behaviour of SU(n)×SU(n) theory spontaneously

broken to the vectorial subgroup SU(n). These zeroes are in the literature called Adler

zeroes and their discovery, purely based on current algebra, dates back to the 1960s [4–6].

The situation is different for the NG boson of spontaneously broken conformal in-

variance, called the dilaton.2 In this case the amplitude involving a number of dilatons

together with other particles does not vanish when the momentum, q, of one dilaton goes

to zero, but is fixed in terms of the amplitude without the soft dilaton; i.e. the dilaton has

a nonvanishing soft theorem. Specifically, since the dilaton couples linearly to the trace

of the energy-momentum tensor, it couples in particular linearly to the mass of any mas-

sive particles. Therefore there is a nonzero, and in fact divergent, universal contribution

to the amplitude associated to the emission of a zero-momentum dilaton from any mas-

sive particle, in complete analogy to the emission of soft photons [18] and gravitons [19].

But moreover, it turns out that the regular part of the dilaton soft behavior at orders

q0 and q1, which is not associated to emission from external legs, is nonzero and also

fixed universally. This follows from the Ward identities of spontaneously broken conformal

invariance [7, 15–17], and applies to both massive and massless particle interactions, as em-

phasized in ref. [17]. This of course applies to conformal theories that are not anomalous,3

and this was in particular tested in the impressive work in ref. [21] in the Coulomb branch

of N = 4 super Yang-Mills, both perturbatively through one-loop and non-perturbatively

by considering the one-instanton effective action. In the same work constraints on dilaton

effective actions, new non-renormalization theorems, as well as a recursive proof of con-

formal invariance following scale invariance of amplitudes, were all given utilizing the soft

dilaton theorem of ref. [17].

In the case of NLSM-type theories also the double-soft behavior has been stud-

ied [6, 22–26]. In particular, it has been shown that the amplitude for the emission

1As discussed in ref. [21], this is not always true, if the internal symmetry is broken alongside space-time

symmetries.
2It is difficult to give a historical account of this case, as the early literature from the 1960s on the subject

goes in many directions, not immediately relevant to us. Let us mention, however, that to our knowledge

G. Mack is the first that explicitly discusses the dilaton soft behavior and provides its leading soft theorem

in ref. [7], while its subleading behavior is implicit in the work by D. Gross and J. Wess in ref. [8]. In these

papers earlier references on the realization of conformal symmetry in nature is also given, among which the

works of F. Gürsey [9], J. Wess [10], and H. Kastrup [11] were frequently cited as well as the early review

by T. Fulton, F. Rohrlich and L. Witten [12]. The seminal papers by Callan [13], Coleman and Jackiw [14]

diminished these works to some extend, as it was realized that conformal invariance is anomalous in the

quantum theory, especially that of strong interactions. The dilaton has reappeared in a more modern

context in phenomenological models for electroweak symmetry breaking, inflationary cosmology, as well as

in condensed matter applications. The modern take on the dilaton soft theorems, especially in the context

of the recent S-matrix program, were put forward recently in refs. [15–17].
3In generic quantum field theory models of dilatons, the presence of the trace anomaly introduces a mass

for the dilaton, which only in certain cases can be controllably small [20].
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of any even number of NG bosons does no longer vanish when the momenta of two of

them go simultaneously to zero. Instead, it is fixed in terms of the amplitude without

the two NG bosons with vanishing momenta and of the structure constants of the group

in consideration.

In this work we detail the main physical consequences of a spontaneously broken confor-

mal theory. While property i) has been studied intensively in the literature, little attention

has been given to property ii), and this is the main purpose of this work. Our main new re-

sult is the derivation of the double-soft theorem for the NG boson of spontaneously broken

conformal symmetry, i.e. the dilaton.4

We prove that the soft theorem factorizes any amplitude involving two soft dilatons

through subleading order in the two soft momenta. We see that, also in this case, the

double-soft behavior of the dilaton differs from that of the NG bosons of a spontaneously

broken internal symmetry. It turns out that the double-soft behavior of the dilaton, ob-

tained from the Ward identities for the scale and special conformal transformations, is

equivalent to the one obtained by making two single-soft limits one after the other. This

particular form of the double-soft theorem allows us additionally to conjecture an any-

multiplicity soft dilaton theorem.

The paper is organized as follows. In sections 2 and 3 we summarize some general

properties of conformal field theories in D-dimensional space-time. In section 4 we discuss

the Ward identities that follow from the conservation of the Nöther currents associated with

the scale and special conformal transformations. Then, in a first subsection, we derive their

implication for the scattering amplitude involving a single current and an arbitrary number

of other states, while, in the two subsequent subsections, we specify our analysis first to

the current corresponding to a scale transformation and then to that corresponding to a

special conformal transformation. Section 5 is devoted to the case of the Ward identities

for amplitudes involving two Nöther currents. Then, in the first subsection, we discuss the

case of two dilatation currents, and in the second subsection, the case of one dilatation

current and one current associated to a special conformal transformation. In section 6 we

show that the double-soft behavior, derived in section 5) from the Ward identities, can be

equivalently obtained by performing two consecutive soft limits, one after the other, and

we conjecture that the same behavior is also valid in the case of a multi-soft limit. In

section 7 we check the previously derived double-soft behavior with specific amplitudes of

a D-dimensional conformal scalar theory that has been recently studied in the literature

and of the “gravity dual” of N = 4 super Yang-Mills on the Coulomb branch. Finally, in

the appendix we give some detail on the calculation of the soft behavior in the “gravity

dual” of N = 4 super Yang-Mills on the Coulomb branch.

4The subject of single-, double-, and multi-soft theorems has received much interest in recent years due

to their proposed relations with asymptotic symmetries put forward recently by A. Strominger [27, 28], and

many papers following. (In particular, the relation between the soft dilaton and asymptotic symmetries was

recently discussed in ref. [29].) This has additionally lead to the discovery of many new soft theorems in

both field and string theory, and has lead to new developments in the context of the S-matrix and effective

field theory programs, where of particular relevance we should point out refs. [21, 30]. A comprehensive list

of references to this literature can be found in Strominger’s recent lecture notes in ref. [31].
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We would like to add a note of caution: the dilaton discussed in this paper should not be

confused with the ‘gravity dilaton’ appearing in the literature on theories of (super)gravity

and string theory, where it is parametrizing the spin zero mode of the gravitational field.

This gravity dilaton also has a soft theorem similar to the NG dilaton discussed in this

work, which was first studied in refs. [32, 33], where its leading behavior was determined,

and recently its subleading behavior was also shown to be fixed [17, 34–36]. But the two

soft theorems are not equal, although very similar [17], and there is still a lack of rigorous

understanding of the relation between the two.

2 Prelude

To set our notations, we start by briefly reviewing aspects of conformal symmetry and

its representations in field theory. For more details, we refer to the seminal works in

refs. [37, 38] as well as the textbook in ref. [39].

The conformal group is the group that leaves the metric invariant up to a scale

gµν(x)→ Λ(x)gµν(x) and can be considered an extension by dilatations and special confor-

mal transformations of the Poincaré group, which belong to Λ(x) = 1. The group is locally

isomorphic to SO(D, 2), where by D we denote the number of space-time dimensions.

Infinitesimally, the group transforms space-time coordinates and fields as follows

xµ → x′
µ

= xµ + εMNfµMN (x)

Φ(x)→ Φ′(x) = Φ(x) + iεMNΓMN (x)Φ(x)
(2.1)

where εMN are infinitesimal parameters and fµMN are functions obeying

∂µfνMN + ∂νfµMN =
2

D
gµν∂ρf

ρ
MN . (2.2)

ΓMN are the (D + 1)(D + 2)/2 conformal generators, so that ΓMN is imaginary and anti-

symmetric in M,N = 0, . . . , D + 1. We consider in this work the flat space limit and take

gµν → ηµν = diag(−1,+1, . . .), and D > 2.

It is useful to decompose the conformal transformations and generators into transla-

tions, Lorentz transformations, dilatations and special conformal transformations. First

consider the solutions for fMN :

fρD,µ(x) = ηρµ , fρµν(x) = ηρµxν − ηρνxµ ,

fρD+1,D(x) = xρ , fρD+1,µ(x) = 2xµx
ρ − ηρµx2

(2.3)

where, µ, ν, ρ = 0, . . . , D−1 are the space-time indices. The corresponding generators read:

ΓD,µ = Pµ = i∂µ , Γµν = J µν = −i(xµ∂ν − xν∂µ)− Sµν , (2.4)

ΓD+1,D = D = i(dΦ + xµ∂
µ) , ΓD+1,µ = Kµ = i(2xµxν∂

ν − x2∂µ + 2dΦx
µ) + 2xνSµν ,

where Pµ are the generators of translation, J µν are the generators of Lorentz transforma-

tions with Sµν corresponding to the spin angular momentum operator, D is the generator
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of dilatation, and Kµ are the generators of special conformal transformation. The coeffi-

cient dΦ denotes the scaling dimension of the field Φ. The generators obey the commuta-

tion relations:

[J µν ,J ρσ] = i(ηµρJ νσ + ηνσJ µρ − ηµσJ νρ − ηνρJ µσ)

[Pρ,J µν ] = i(ηρνPµ − ηρµPν)

[Kρ,J µν ] = i(ηρνKµ − ηρµKν)

[Kµ,Pν ] = 2i(J µν − ηµνD)

[D,Pµ] = −iPµ

[D,Kµ] = iKµ ,

(2.5)

with all other commutators vanishing.

The currents associated to the conformal generators can be constructed by varying the

conformal invariant action as in eq. (2.1) assuming that the infinitesimal parameters εMN

are arbitrary functions of x. In this way, for the conformal group, one can get:

δS =

∫
dDx εMN (x)(∂µJ

µ
MN ) =

∫
dDx εMN (x)∂µ (fνMNTµν) (2.6)

where Tµν is the improved energy-momentum tensor. Using eq. (2.2), it turns out that

the Nöther current is conserved if the improved energy-momentum tensor is conserved

and traceless:

∂νTµν = Tµµ = 0 (2.7)

when the classical equations of motion are satisfied. It is easy to see by eq. (2.3) that the

currents Jρµν and JρD,µ are conserved independently of the zero-trace condition Tµµ = 0,

since ∂ρf
ρ
µν = ∂ρf

ρ
D,µ = 0. The currents JρD+1,µ and JρD+1,D, on the other hand, are only

conserved if Tµµ = 0. Specifically,

JµD+1,D = JµD = xνT
µν , JµD+1,ρ = JµK,ρ = (2xνxρ − ηρνx2)Tµν (2.8a)

∂µJ
µ
D = Tµµ , ∂µJ

µ
K,ρ = 2xρT

µ
µ (2.8b)

where we stress once more that Tµν is the improved energy-momentum tensor.

3 Hidden conformal symmetry

We consider the situation where conformal symmetry of some underlying conformal field

theory is spontaneously broken due to a Lorentz scalar primary operator getting a nonzero

vacuum expectation value (vev), i.e.

〈0|Oscalar|0〉 = vdO , (3.1)

where dO is the scaling dimension of O so that v has mass dimension one. The vev v is

the only mass scale of the broken theory. The vacuum remains invariant under Lorentz

– 5 –
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transformations and translations, but dilatations and special conformal transformations

are then no longer symmetries of the vacuum.

It follows from Goldstone’s theorem [2, 3] that a massless scalar state of conformal

dimension one (for D = 4) appears in the spectrum of the broken theory, parametrizing

the massless excitations of the vacuum generated by the broken symmetry currents. This

Nambu-Goldstone (NG) boson of spontaneously broken scale invariance is also known as

the dilaton.5

As a consequence, the dilaton couples linearly to the energy-momentum tensor

Tµν = −fξ
(
ηµν∂

2 − ∂µ∂ν
D − 1

)
ξ(x) + · · · , (3.2)

where ξ(x) parametrizes the dilaton field and fξ is a dimensionful constant, thus related

to v, which can be thought of as the dilaton decay constant. The ellipsis · · · denote term

of higher order in the fields, i.e. the dilaton is the only field that couples linearly to the

energy-momentum tensor.

Taking the trace of the above expression and imposing the equation of motions leads

to the expression

Tµµ = fξ(−∂2ξ) , (3.3)

which is exact on the equations of motion. As expected, the trace of the energy-momentum

no longer vanishes in the broken phase. Instead it is simply parametrized by the equation

of motion of the dilaton field. The statement can also be reversed; the dilaton equation of

motion is described by the trace of the energy-momentum tensor.

To better appreciate the latter statement, and to also comment on the occurrence of

the trace anomaly in generic quantum field theories, let us consider a generic renormalized

action inD-dimensions. It can be described in a basis of eigenoperators Ψi of (renormalized)

scaling dimension di as follows:

S0(µ) =

∫
dDx

∑
i

gi(µ)Ψi(x) , (3.4)

where gi(µ) are renormalized coupling constants at a renormalization scale µ.

The change of the action under dilatations yields by definition the trace of the energy-

momentum tensor, as can be verified from eq. (2.6) using eq. (2.3). Specifically, taking

x′µ = eλxµ ≈ xµ + λxµ, yields for any action

δS = λ

∫
dDxTµµ (x) . (3.5)

The explicit variation of the action S0 is, on the other hand, readily derived by mak-

ing a scale transformation of the scale µ′ = µe−λ, as well as of the (scalar) operators

5Although D + 1 generators are broken, only one NG boson appears. This mismatch of degrees of

freedom is a consequence of space-time symmetries being broken, as opposed to when global continuous

internal symmetries are broken [3].

– 6 –
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Ψ′i(x) = e−λdiΨi(e
−λx). Then for infinitesimal transformations, we find at linear order

in λ:

δS0 = −λ
∫
dDx

∑
i

(
(di −D)gi(µ) + µ

∂gi
∂µ

)
Ψi(x) ≡ λ

∫
dDxT0

µ
µ(x) , (3.6)

where in the second equality we identified T0
µ
µ. For marginal operators where the scaling

dimension di = D, the first term vanishes, but the β-functions, βi(g) = µ∂gi/∂µ, for the

corresponding coupling constants still contribute to the trace. This is the consequence

of the trace-anomaly for general quantum field theories. In a theory with only marginal

operators and where the couplings remain unrenormalized, the trace anomaly vanishes. An

example is N = 4 super Yang-Mills theory.

Let us now connect this to our previous expressions for a spontaneously broken con-

formal theory. It is possible to render the action scale invariant by introducing a confor-

mal compensator field [40], ξ̄, with canonical kinetic term and free-field scaling dimension

d = (D − 2)/2 by the following formal replacement:

gi(µ)Ψi(x)→ gi

(
µ v

ξ̄
1
d (x)

)(
ξ̄(x)

vd

)D−di
d

Ψi(x) (3.7)

yielding the Lagrangian

L0(µ)→ L(µ) = −1

2
∂ν ξ̄∂

ν ξ̄ +
∑
i

gi

(
µ v

ξ̄
1
d (x)

)(
ξ̄(x)

vd

)D−di
d

Ψi(x) (3.8)

It is easy to check that under the transformations

ξ̄(x)→ e−λdξ̄(e−λx) ; Ψi(x)→ e−λdiΨi(e
−λx) ; µ→ e−λµ , (3.9)

the action, corresponding to the Lagrangian in eq. (3.8), is left invariant. The introduction

of the field dependent coupling constants is a formal trick and should be understood as an

expansion in the shifted (dilaton) field ξ̄ = vd + ξ, which is well-defined only in the broken

phase, i.e.

gi

(
µ v

ξ̄
1
d (x)

)
= gi(µ)− ξ(x)

dvd
µ
∂gi
∂µ

+ · · · (3.10)

Alternatively, the formal replacement can also be understood through a nonlinear realiza-

tion, by the replacement of the field ξ̄(x) = vdeσ(x)/vd .

Now it can be checked that the renormalized low-energy action of the broken phase,

where ξ � vd, is given by

S(µ) = S0(µ) +

∫
dDx

(
−1

2
∂µξ∂

µξ +
1

d

ξ

vd
T0

µ
µ + · · ·

)
(3.11)

where T0
µ
µ was defined in eq. (3.6) and the ellipses · · · stand for terms of higher order in

ξ/vd. Finally, we see that the equation of motion of the dilaton ξ is given by:

d vd(−∂2ξ) = T0
µ
µ + · · · (3.12)

– 7 –
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This is equivalent to the general expression in eq. (3.3), with the identification of the decay

constant fξ = dvd. We furthermore learn that this expression contains the effects of renor-

malization, or, in other words, of the trace anomaly of the theory without the dilaton. The

low-energy effective action of the dilaton can also be obtained by integrating out the massive

fields in the broken phase, and can be constructed using anomaly matching considerations,

put forward in ref. [41], and since studied in the recent a-theorem literature [42–44].

The simplest example of the above construction is to consider a free massive scalar

field in D dimensions. Its Lagrangian reads:

L0 = −1

2
∂µχ∂

µχ− m2

2
χ2 (3.13)

with [χ] = d = (D − 2)/2. Introducing the conformal compensator, and defining a dimen-

sionless coupling constant λ through the relation m2 = v2λ2/d, the resulting theory reads:

L = −1

2
(∂µχ)2 − 1

2
(∂µξ̄)

2 − v2

2

(
λξ̄

vd

)2/d

χ2 (3.14)

This is a classically scale invariant theory in D dimensions. As we have argued, it stays

scale invariant in the renormalized theory by substituting λ(µ) → λ(µv/ξ̄1/d(x)). This

model has been considered in recent works [15, 45–47], where its validity as a quantum

conformal theory has been studied (see also the early related work [48]). We will later

come back to this model for computing tree-level scattering amplitudes of the theory, and

thus only its classical scale invariance is of importance to us.

4 Current algebra and soft theorems from Ward identities

An observable consequence in scattering processes of spontaneously broken symmetries is

the so-called soft theorems. These are identities relating S-matrices with NG bosons to

S-matrices without the NG bosons, and they exist as a consequence of the Ward identities

of the broken symmetry currents.

In this section we detail the relationship between Ward identities of the broken confor-

mal currents and their implications on scattering amplitudes, leading to soft theorems for

the dilaton. The main observation of the previous section that we will draw on, is that, by

eq. (2.8b) and eq. (3.3), the divergence of the broken conformal currents are parametrized

solely by the equation of motion of the dilaton, i.e.

∂µJ
µ
D = fξ(−∂2ξ) , ∂µJ

µ
K,ρ = 2fξxρ(−∂2ξ) . (4.1)

The dilatation current is broken by a dimension d + 2 operator, while the special

conformal transformation currents are broken by dimension d + 1 operators, where

d = [ξ] = (D − 2)/2. In both cases, the dimensions are below the space-time dimension

D = 2d + 2, and the currents can thus be considered partially conserved [49]. It is due

to this that we can proceed and formulate a current algebra for the spontaneously broken

symmetries in analogy to the PCAC method.

– 8 –
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The main object one must study to derive low energy theorems is the matrix element

T ∗〈0|Jµ11 (y1) · · · Jµmm (ym)φ1(x1) · · ·φn(xn)|0〉 (4.2)

where Ji represent some broken symmetry currents, φi are generic fields with scaling di-

mension di, which for simplicity will all be taken to be scalars, and T ∗ denotes the Lorentz

covariantized time-ordered product, which for our concern implies that derivatives act out-

side of the time ordering. This is a modified definition of the usual T-product, which

importantly leads to the removal of the so-called Schwinger terms in the Ward identities,

when the currents are partially conserved [49, 50].

It will be useful to define the Fourier transformed field operators:

J̃µi (q) =

∫
dDx e−iq·xJµi (x) , for i = 1, . . . ,m

φ̃i(ki) =

∫
dDx e−iki·xiφi(xi) , for i = 1, . . . , n

(4.3)

It is also useful to remember that the charge associated to a current is given by:

Qi =

∫
dD−1x J0

i (t,x) =

∫
dDx J0

i (x)δ(x0 − t) (4.4)

and that the infinitesimal symmetry transformation of a field associated with a conserved

current is given by the equal-time commutator:

δiφ(x) = i[Qi, φ(x)] = i

∫
dDy [J0

i (y), φ(x)]δ(x0 − y0) (4.5)

By eqs. (2.1) and (4.5) the charges and the generators are simply related by:

[Qi, φ(x)] = Γi(x)φ(x) . (4.6)

A basic assumption for current algebra is that we can make use of the following dis-

tributional identification even for partially conserved currents:

[J0
i (y), φ(x)]δ(x0 − y0) := [Qi, φ(x)]δ(D)(x− y) (4.7)

This identity assumes that there are no boundary terms that vanish upon integrations,

which are the would-be Schwinger terms. We assume that such terms vanish, as is generally

true for partially conserved currents when considered in T ∗-ordered correlation functions.

This assumption becomes useful when considering the derivative of the matrix-element

with respect to the current coordinates. For instance:

∂xµT
∗〈0|Jµ1 (x)Φ(y)|0〉 = T ∗〈0|∂ · J1(x)Φ(y)|0〉+ δ(D)(x− y)〈0|[Q1,Φ(y)]|0〉 (4.8)

where the second term on the right-hand side arises from taking the derivative of the

step-function θ, and we used the distributional identity eq. (4.7).

In the following subsections we study the Ward identity implications for the case of

spontaneously broken symmetries, and in particular the specific cases of theories with

broken dilatation and special conformal transformations.
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4.1 Single-soft Ward identity: general treatment

Considering one derivative acting on the matrix element of the T ∗-ordered product of

operators with one current insertion, we get:

∂xµT
∗〈0|Jµ(x)φ(x1) · · ·φ(xn)|0〉 (4.9)

= T ∗〈0|∂µJµ(x)φ(x1) · · ·φ(xn)|0〉 − i
n∑
i=1

δ(D)(x− xi)T ∗〈0|φ(x1) · · · δφ(xi) · · ·φ(xn)|0〉

If Jµ parametrizes an unbroken symmetry, its divergence vanishes, and thus the first term

on the right-hand side is zero, leading to the usual Ward identity of conserved currents.

If the symmetry is, on the other hand, spontaneously broken one may proceed in two

different ways: one can either define and work with a new current, whose divergence also

vanishes (as we will briefly explain below) or parametrize the divergence of the current in

terms of the associated NG boson. In these notes we are taking the latter approach.

Due to eq. (4.1), we assume the divergence of the current to be parametrized in terms

of the NG boson, ξ, i.e. the dilaton, as follows:

∂µJ
µ(x) = gJ(x)(−∂2)ξ(x) (4.10)

where gJ is some function that is determined by the broken symmetry current, J . The

function gJ may at most be of dimension less than D to obey partial conservation. Fur-

thermore, if gJ satisfies ∂2gJ = 0, which is the case for dilatations and special confor-

mal transformations, then, as mentioned before, we may define a new conserved current

jµ(x) = Jµ+gJ(x)(∂µξ)−(∂µgJ)ξ(x). This contains explicitly in its definition the Nambu-

Goldstone field, ξ(x), which, when inserted in a correlation function, gives:

〈0|jµ . . . |0〉 ∼
∫
dDq〈0|jµ|ξ〉 1

q2
〈ξ| . . . |0〉 (4.11)

where 1
q2

is the propagator of the Goldstone boson, with four-momentum q, emitted from

the vacuum by the current. This is the textbook approach of ref. [51], which was recently

taken in ref. [21]. We prefer, however, to keep working with the current Jµ and instead

directly consider eq. (4.9) for small transferred momentum of the current. Therefore, we

may assume that the Fourier transform of the correlation functions in eq. (4.2) have no

pole in the momentum variables of the current. This implies that the left-hand side of

eq. (4.9) vanishes in the soft limit of transferred momentum, i.e.

iqµ〈0|J̃µ(q)φ(x1) · · ·φ(xn)|0〉 = 0 +O(q) (4.12)

This leads to what we call the single-soft Ward identity :∫
dDx e−iqxT ∗〈0|∂µJµ(x)φ(x1) · · ·φ(xn)|0〉

= −
n∑
i=1

e−iqxiT ∗〈0|φ(x1) · · ·ΓJ(xi)φ(xi) · · ·φ(xn)|0〉+O(q)
(4.13)
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where we used the relation in eq. (4.6) between the charge commutator and the infinitesimal

generators, which, on more general ground, may induce a linear combination of other fields,

and this should be understood implicitly.

The Fourier transform on all variables of eq. (4.13) leads to the momentum space

version of the single-soft Ward identity:

g̃J(q)
(
q2〈ξ̃(q)φ̃(k1) · · · φ̃(kn)〉

)
= −

n∑
i=1

Γ̃J(ki + q)〈φ̃(k1) · · · φ̃(ki + q) · · · φ̃(kn)〉+O(q)

(4.14)

where by 〈· · · 〉 we denote the Fourier transform of the T ∗-ordered matrix element, and

we remember that the Fourier transform of functions of x are operators in the dual mo-

mentum space. Amputating the correlation functions reduces the expression further. The

amputated correlation function is defined as:

〈φ̃1 · · · φ̃n〉amp =
〈φ̃1 · · · φ̃n〉

〈φ̃1φ̃1〉 · · · 〈φ̃nφ̃n〉
. (4.15)

The two-point correlator (the propagator) of a scalar field reads:

∆i(k) ≡ 〈φ̃i(k)φ̃i(k)〉 =

(
(−i)

k2 +m2

)D
2
−di

(4.16)

where m is the mass of the scalar field, di is its scaling dimension, D is the number of

space-time dimensions, and we defined ∆i.

Since ξ is massless and [ξ] = (D − 2)/2, it follows from eq. (4.14) that

i

n∏
i=1

∆i(ki) g̃J(q)〈ξ̃(q)φ̃(k1) · · · φ̃(kn)〉amp

=
n∏
j 6=i

∆j(kj)
n∑
i=1

Γ̃J(ki + q)∆i(ki + q)〈φ̃(k1) · · · φ̃(ki + q) · · · φ̃(kn)〉amp +O(q)

(4.17)

It is useful to define the commutator of Γ̃J with the propagator as the propagator multi-

plying a new operator F̃J(ki + q,mi), i.e.:[
Γ̃J(ki + q) , ∆i(ki + q)

]
= ∆i(ki + q)F̃J(ki + q,mi) (4.18)

This allows us to finally write the soft Ward identity as an identity among amputated

correlators:

ig̃J(q)〈ξ̃(q)φ̃(k1) · · · φ̃(kn)〉amp (4.19)

=

n∑
i=1

(
F̃J(ki + q,mi) + Γ̃J(ki + q)

)
〈φ̃(k1) · · · φ̃(ki + q) · · · φ̃(kn)〉amp +O(q)

It shows explicitly the relation between the correlation functions with a soft Nambu-

Goldstone boson inserted and the correlation functions without the Nambu-Goldstone

boson. The expansions in q of the right-hand side should be considered with care.
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We can proceed further and derive the consequences of this identity on amplitudes.

According to LSZ reduction, the amplitude is the on-shell residue of correlation functions

in Fourier space, or equivalently in terms of the amputated correlation functions it is the

on-shell T -matrix element of those functions. Therefore the previous expression yields

the relation:

ig̃J(q)δ(D)(
∑

iki + q)Tn+1(q; k1, . . . , kn) (4.20)

=
n∑
i=1

(
F̃J(ki + q,mi) + Γ̃J(ki + q)

)
δ(D)(

∑
iki + q)Tn(k1, . . . , ki + q, . . . kn) +O(q)

To remove the delta functions on both sides, we need to commute the momentum-conserving

delta-functions through the F̃J and Γ̃J operators. We assume that this commutator is a

function multiplying the delta-function over the momenta and we thus define:[
F̃J(ki + q,mi) , δ

(D)(
∑

iki + q)
]

= fJ(ki + q,mi)δ
(D)(

∑
iki + q)[

Γ̃J(ki + q) , δ(D)(
∑

iki + q)
]

= γJ(ki + q)δ(D)(
∑

iki + q)
(4.21)

In the next sections we will see that this assumption is satisfied in the case of the scale and

special conformal transformations.

The soft-identity for amplitudes now reads:

ig̃J(q)Tn+1(q; k1, . . . , kn) =
n∑
i=1

[
fJ(ki + q,mi) + γJ(ki + q) + F̃J(ki + q,mi)

+ Γ̃J(ki + q)
]
Tn(k1, . . . , ki + q, . . . kn) +O(q)

(4.22)

where momentum conservation is implicit on both sides. More precisely, the identity holds

once momentum conservation is imposed to fix the same momentum on both sides of the

equation. To make this statement explicit in our expression, we introduce the notation for

the nth momentum:

k̄n = −
n−1∑
i=1

ki − q (4.23)

meaning that one hard momentum is kept fixed. The expansion in q on both sides should

be done carefully, once the functions and operators are specified. Whether this leads to

a soft theorem depends on the Fourier transform of gJ which may be an operator valued

function acting on the dual momentum variables.

4.2 Soft Ward identity of the dilatation current, JµD

We consider the construction in the previous section for the specific case of dilatations

Jµ = JµD and ΓD = D. Following the notation of section 2 we have

Dϕ(x)ϕ(x) = i(dϕ + xµ∂µ)ϕ(x) , ∂µJ
µ
D = Tµµ = fξ(−∂2)ξ , (4.24)
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where ϕ is any field and dϕ is its scaling dimension. This defines gD(x) = fξ. The Fourier

transforms are:

g̃D = fξ , D̃i(k) = i(di −D − k · ∂k) (4.25)

and the commutator with the scalar propagator reads:[
D̃i(ki + q) , ∆i(ki + q)

]
= ∆i(ki + q)

[
i(D − 2di)

(
1− m2

i

(ki + q)2 +m2
i

)]
(4.26)

This defines the operator F̃i(ki + q,mi), which is simply a function because Di is a linear

operator. In the massless case it is simply a number F̃i(ki + q, 0) = i(D − 2di). The term

m2
i /((ki + q)2 + m2

i ) should not be expanded in small q, since it then blows up on shell,

where k2
i = −m2

i . Instead, as explained in ref. [17], these terms should be kept through

LSZ reduction, and taken on-shell yielding m2
i /(2ki · q). It was then shown in ref. [17] that

this procedure reproduces the correct mass-dependence of amplitude in the soft limit. For

the sake of simplicity, we will here, and throughout this work, neglect such ‘Laurent’ terms

in the soft expansion and only focus on the ‘Taylor’ terms. To be precise, we define

F̃T
i (ki + q,mi) = F̃i(ki + q,mi)− F̃L

i (ki + q,mi) (4.27)

where F̃L
i is the part of F̃i which on-shell has all the soft momentum poles of the form

F̃L
i ∼

∞∑
n=1

Ln
(ki · q)n

(4.28)

and thus F̃T
i represents the part of F̃i which has a well-defined Taylor expansion on-shell.

We now have all the ingredients to write down the soft Ward identity. Considering

for simplicity only the finite parts of the soft limit as just described, i.e. neglecting parts

belonging to the Laurent expansion, we get from eq. (4.19) for F̃i → F̃T
i :

ifξ〈ξ̃(q)φ̃(k1) · · · φ̃(kn)〉amp

= i

n∑
i=1

(D − 2di + (di −D − (ki + q) · ∂ki)) 〈φ̃(k1) · · · φ̃(ki + q) · · · φ̃(kn)〉amp +O(q)

= i
n∑
i=1

(−di − ki · ∂ki) 〈φ̃(k1) · · · φ̃(ki + q) · · · φ̃(kn)〉amp +O(q) (4.29)

Using furthermore the commutation relation:[
n∑
i=1

ki · ∂ki , δ
(D)(

∑
iki + q)

]
= −Dδ(D)(

∑
iki + q) (4.30)

which according to eq. (4.21) defines the function γD(ki + q) = iD, we arrive at the

soft theorem:

Tn+1(q; k1, . . . , k̄n) =
1

fξ

[
D −

n∑
i=1

(di + ki · ∂ki)

]
Tn(k1, . . . , k̄n) +O(q) (4.31)
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This is a well-known expression dating back to works by G. Mack [7]. It is worth ob-

serving that, due to the momentum conservation, the T-matrix, in eq. (4.31), depends

only on (n − 1) momenta. Therefore in the definition of dilatation operator, one of the

momentum derivatives does not give any contribution when evaluated on the amplitude.

The
∑n

i=1 ki · ∂ki is thus a sum on only (n− 1) momenta. This observation will be used in

the section 7 where the soft theorems will be verified on specific amplitudes computed in

models with spontaneously broken conformal symmetry.

The complete treatment given in simplified form here, where all terms including those

belonging to the soft Laurent expansion were taken into account, was performed in ref. [17],

where it was shown to also yield a soft factorizing theorem. The additional Laurent contri-

butions automatically yield the terms that one can explicitly derive by Feynman diagram

techniques, when noting that the dilaton couples linearly on the legs of massive exter-

nal states. This was indeed the route taken in ref. [15], but by our method it follows

automatically from the Ward identity, as shown in ref. [17].

4.3 Soft Ward identity of special conformal transformations, JµK,λ

We specify in this section the general treatment to the case of special conformal trans-

formations with Jµ = JµK,λ and ΓK,λ = Kλ. Following the notation of section 2 we have

Kλ,ϕ(x)ϕ(x) = i
(
(2xλxν − ηλνx2)∂ν + 2 dϕ xλ + 2ixνSνλ

)
ϕ(x) (4.32a)

∂µJ
µ
K,λ = 2xλ T

µ
µ = 2 fξ xλ(−∂2) ξ(x) (4.32b)

where ϕ is any field and dϕ is its scaling dimension. The second expression defines gλ(x) =

2fξxλ.

To derive the Fourier transformed operators, we simply replace every xµ with a deriva-

tive i ∂
∂kµ , while the derivative ∂ν can be replaced with ikν . Then after passing k-derivatives

through kν , one finds:

g̃λ(q) = i2fξ∂q,λ ,

K̃λ,ϕ(k) = 2kν∂
ν
k∂k,λ − kλ∂2

k − 2(dϕ −D)∂k,λ + 2iSλν∂νk
(4.33)

To derive the commutation relations with the propagators, we need to specify the spin

of the hard states to define the form of their propagator. Assuming for simplicity that the

hard states are spin 0 scalar fields, we should neglect the spin operator. Then it can be

checked that the commutator with the scalar propagator reads:[
K̃λ,i(ki+q) , ∆i(ki+q)

]
= ∆i(ki+q)

[
2(D−2di)(ki+q)λ

(ki+q)2+m2
i

((
D
2 −di+1

)
m2
i

(ki+q)2+m2
i

)]

+∆i(ki+q)

[
−2(D−2di)

(
1− m2

i

(ki+q)2+m2
i

)
∂k,λ

] (4.34)

where the first term is coming from the full action of K̃λ,i on the propagator, while the

second term arises due to the non-linearity of K̃λ,i, i.e. terms where one derivative hits the
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propagator and the other goes through. This expression defines the operator F̃λ,i(ki+q,mi),

which due to the non-linearity of K̃λ,i has a part which is not just a function, but a derivative

operator. In reduced form:

F̃λ,i(ki + q,mi) =− 2(D − 2di)∂k,λ

+
2(D − 2di)m

2
i

(ki + q)2 +m2
i

[(
D

2
− di + 1

)
(ki + q)λ

(ki + q)2 +m2
i

+ ∂k,λ

]
(4.35)

As in the previous section, we will here restrict our analysis to the part only belonging to

the soft Taylor expansion, and refer to ref. [17] for the full treatment. Thus, according to

the definition in eq. (4.27), we simply consider:

F̃λ,i → F̃T
λ,i(ki + q,mi) = 2(2di −D)∂k,λ , for spinless ϕi (4.36)

We note again that this is equivalent to the massless case, however, this restriction be-

ing more general. By this prescription, we find from eq. (4.19) the following single-soft

Ward identity:

−2fξ∂q,λ〈ξ̃(q)φ̃(k1) · · · φ̃(kn)〉amp (4.37)

=
n∑
i=1

(
2(2di−D)∂ki,λ+K̃λ,i(ki+q)

)
〈φ̃(k1) · · · φ̃(ki+q) · · · φ̃(kn)〉amp+O(q)

=
n∑
i=1

(
2di∂ki,λ+2(ki+q)ν∂

ν
ki
∂ki,λ−(ki+q)λ∂

2
ki

)
〈φ̃(k1) · · · φ̃(ki+q) · · · φ̃(kn)〉amp+O(q)

It is useful to define the operator

K̂λ
ki

=
1

2
kλi ∂

2
ki
− (di + ki · ∂ki)∂

λ
ki
, (4.38)

and then the single-soft Ward identity of special conformal transfomations reads:

fξ∂q,λ〈ξ̃(q)φ̃(k1) · · · φ̃(kn)〉amp =

n∑
i=1

K̂ki+q,λ〈φ̃(k1) · · · φ̃(ki+q) · · · φ̃(kn)〉amp+O(q) (4.39)

Imposing LSZ reduction on this expression, and noting that the action of special confor-

mal transformations on the momentum conserving delta-function does not introduce extra

terms [17], this expression readily yields:

fξ∂q,λTn+1(q; k1, . . . , k̄n) =
n∑
i=1

K̂ki+q,λTn(k1, . . . , ki + q, . . . , k̄n) +O(q) (4.40)

Since both sides of this expression should be evaluated for q ∼ 0, it is clear that the left-

hand side, when multiplied by qλ is the first order term in the Taylor expansion of Tn+1

around q = 0. Thus:

Tn+1(q, k1, . . . , k̄n) = Tn+1(0, k1, . . . , k̄n) + qµ
∂

∂qµ
Tn+1(0, k1, . . . , k̄n) +O(q2)

=
1

fξ

[
D −

n∑
i=1

(di + ki · ∂ki) + qλ
n∑
i=1

K̂ki,λ

]
Tn(k1, . . . , k̄n) +O(q2)

(4.41)
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where we used eq. (4.31) for the leading term in the expansion and eq. (4.40) for the

subleading term. For the Laurent terms, the order of soft limit and on-shell limit is subtle

and must be performed with care, nevertheless it is possible to show that one can derive

the soft theorem through subleading order [17] following the same procedure, including all

the correct terms of the Laurent expansion.

5 Double-soft Ward identity and double-soft dilaton theorem

In this section we apply the same current algebra procedures as defined and performed in

the preceeding section, but with the complication of inserting two currents in the matrix

element of T ∗-ordered product of operators. This leads to new soft Ward identities as well

as a new double-soft theorem for the dilaton.

We consider the forementioned matrix element and take space-time derivatives on

the space-time variables of the two currents. In addition to the single-soft assumption of

eq. (4.12), we similarly assume∫
dDy e−iky

∫
dDx e−iqx∂yν∂

x
µT
∗〈0|Jµ1 (x)Jν2 (y)φ(x1) · · ·φ(xn)|0〉 = 0 +O(kνqµ) (5.1)

This follows from taking the Fourier transform of the derivatives, and assuming that the

correlation function has no poles in the momentum variables of the currents.

Considering instead the action of the derivatives on the matrix element we find:∫
dDy e−iky

∫
dDx e−iqx∂yν∂

x
µT
∗〈0|Jµ1 (x)Jν2 (y)φ(x1) · · ·φ(xn)|0〉

=

∫
dDy e−iky∂yν

[∫
dDx e−iqxT ∗〈0|(∂µJµ1 (x))Jν2 (y)φ(x1) · · ·φ(xn)|0〉

+ e−iqyT ∗〈0|[Q1, J
ν
2 (y)]φ(x1) · · ·φ(xn)|0〉

+
n∑
i=1

e−iqxiT ∗〈0|Jν2 (y)φ(x1) · · · [Q1, φ(xi)] · · ·φ(xn)|0〉

]

=

∫
dDy e−iky

∫
dDx e−iqxT 〈0|(∂µJµ1 (x))(∂yνJ

ν
2 (y))φ(x1) · · ·φ(xn)|0〉

+

∫
dDx e−i(q+k)xT ∗〈0| [Q2, ∂µJ

µ
1 (x)] φ(x1) · · ·φ(xn)|0〉

+

n∑
i=1

∫
dDx e−i(qx+kxi)T ∗〈0|(∂µJµ1 (x))φ(x1) · · · [Q2, φ(xi)] · · ·φ(xn)|0〉

+

∫
dDy e−iky∂yν

(
e−iqyT ∗〈0|[Q1, J

ν
2 (y)]φ(x1) · · ·φ(xn)|0〉

)
+

n∑
i=1

∫
dDy e−i(ky+qxi)T ∗〈0|(∂νJν2 (y))φ(x1) · · · [Q1, φ(xi)] · · ·φ(xn)|0〉

+
∑
i 6=j

e−iqxie−ikxjT ∗〈0|φ(x1) · · · [Q2, φ(xj)] · · · [Q1, φ(xi)] · · ·φ(xn)|0〉

+

n∑
i=1

e−i(q+k)xiT ∗〈0|φ(x1) · · · [Q2, [Q1, φ(xi)]] · · ·φ(xn)|0〉

(5.2)
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where we are assuming x 6= y. This expression can be further reduced by using the single-

soft Ward identity in eq. (4.13), as well as the identities in eq. (4.10) and eq. (4.6). Let

us remark that the left-hand side of this Ward identity is manifestly symmetric under

q ↔ k and J1 ↔ J2. This means that our end result for the right-hand side must as well

possesses this symmetry. For simplicity, we impose this at the end, but in principle the

above expression could be already symmetrized.

The left-hand side of eq. (5.2) is by eq. (5.1) zero up to O(kνqµ). The first term on

the right-hand side can by eq. (4.10) be reduced to:∫
dDy e−iky

∫
dDx e−iqxT ∗〈0|(∂µJµ1 (x))(∂νJ

ν
2 (y))φ(x1) · · ·φ(xn)|0〉

=

∫
dDy e−ikyg2(y)

∫
dDx e−iqxg1(x)T ∗(−∂2

x)(−∂2
y)〈0|ξ(x)ξ(y)φ(x1) · · ·φ(xn)|0〉

= g̃1(q)g̃2(k)
(
k2q2〈ξ̃(q)ξ̃(k)φ(x1) · · ·φ(xn)〉

) (5.3)

Performing the Fourier transform of the remaining fields gives:

g̃1(q)g̃2(k) k2 q2

∫ n∏
j=1

[
dDki
(2π)D

e−ikjxj
]
〈ξ̃(q)ξ̃(k)φ(x1) · · ·φ(xn)〉

= −
n∏
i=1

∆i(ki)g̃1(q)g̃2(k)〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp

(5.4)

where the correlation function on the right-hand side is amputated, and ∆i are the two-

point correlation functions of the fields φi, defined in eq. (4.16).

The second term can be simplified as follows∫
dDx e−i(q+k)xT ∗〈0| [Q2, ∂µJ

µ
1 (x)] φ(x1) · · ·φ(xn)|0〉

=

∫
dDx e−i(q+k)xT ∗〈0| [Q2, g1(x)(−∂2)ξ(x)] φ(x1) · · ·φ(xn)|0〉

=

∫
dDx e−i(q+k)xΓ2,g1∂2ξ(x)g1(x)T ∗〈0| (−∂2)ξ(x)φ(x1) · · ·φ(xn)|0〉

= Γ̃2,g1∂2ξ(q + k)g̃1(q + k)
(

(q + k)2〈ξ̃(q + k)φ(x1) · · ·φ(xn)〉
)

(5.5)

where Γ̃2g1∂2ξ(q + k) is the Fourier transform of the generator of infinitesimal transfor-

mations related to Q2 and g1∂
2ξ, as defined in eq. (4.5). Again, performing the Fourier

transform of the remaining fields gives:

Γ̃2,g1∂2ξ(q + k)g̃1(q + k)(q + k)2

∫ n∏
j=1

[
dDki
(2π)D

e−ikjxj
]
〈ξ̃(q + k)φ(x1) · · ·φ(xn)〉

= −i
n∏
i=1

∆i(ki)Γ̃2,g1∂2ξ(q + k)g̃1(q + k)〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp

(5.6)

We cannot reduce this expression further, since we need to know the explicit form of

the operator Γ̃2,g1∂2ξ, which acts on both g̃1 and the (n + 1)-point amputated correlation
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function, involving the dilaton. We will later see that when one of the associated currents

is the dilatation current, this expression can be further reduced by using the single-soft

theorem of the previous section.

The third term on the right-hand side of eq. (5.2) can similarly be reduced to:

n∑
i=1

∫
dDx e−i(qx+kxi)T ∗〈0|(∂µJµ1 (x))φ(x1) · · · [Q2, φ(xi)] · · ·φ(xn)|0〉

=

n∑
i=1

e−ikxi g̃1(q)

∫
dDx e−iqxT ∗〈0|(−∂2)ξ(x)φ(x1) · · ·Γ2,φi(xi)φ(xi) · · ·φ(xn)|0〉

=

n∑
i=1

e−ikxi g̃1(q)
(
q2〈ξ̃(q)φ(x1) · · ·Γ2,φi(xi)φ(xi) · · ·φ(xn)〉

)
(5.7)

This expression can be further reduced by making use of the singe-soft Ward identity given

in eq. (4.14), after Fourier transforming also the xi variables. Thus, the previous expression

transforms to

n∑
i=1

g̃1(q)
(
q2〈ξ̃(q)φ̃(k1) · · · Γ̃2,φi(ki+k)φ̃(ki+k) · · · φ̃(kn)〉

)
=−

n∑
i=1

n∑
j 6=i

Γ̃1,φj (kj+q)Γ̃2,φi(ki+k)〈φ̃(k1) · · · φ̃(kj+q) · · · φ̃(ki+k) · · · φ̃(kn)〉

−
n∑
i=1

Γ̃1,φi(ki+k+q)Γ̃2,φi(ki+k+q)〈φ̃(k1) · · · φ̃(ki+k+q) · · · φ̃(kn)〉+O(q)

(5.8)

where care was taken on using the soft Ward identity for j = i. We may now amputate

the correlation function, which can be expressed using the definition for F̃ in eq. (4.18)

n∑
i=1

g̃1(q)
(
q2〈ξ̃(q)φ̃(k1) · · · Γ̃2,φi(ki+k)φ̃(ki+k) · · · φ̃(kn)〉

)
=−

n∏
l=1

∆l(kl)

n∑
i=1

(
F̃2,φi(ki+k,mi)+Γ̃2,φi(ki+k)

) n∑
j 6=1

(
F̃1,φj (kj+q,mj)+Γ̃1,φj (kj+q)

)
×〈φ̃(k1) · · · φ̃(ki+k) · · · φ̃(kj+q) · · · φ̃(kn)〉amp

−
n∏
l=1

∆l(kl)

n∑
i=1

(
F̃1,φi(ki+k+q,mi)+Γ̃1,φi(ki+k+q)

)
×
(
F̃2,φi(ki+k+q,mi)+Γ̃2,φi(ki+k+q)

)
×〈φ̃(k1) · · · φ̃(ki+k+q) · · · φ̃(kn)〉amp+O(q,k) (5.9)

where we took the limit k, q → 0 in the propagators ∆l.
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In the fourth term of the right-hand side of eq. (5.2) we did not act with the derivative

∂yν , because we instead Fourier transform it to show that the term is of O(k) by assumption:∫
dDy e−iky∂yν

(
e−iqyT ∗〈0|[Q1, J

ν
2 (y)]φ(x1) · · ·φ(xn)|0〉

)
= ikν

∫
dDy e−i(k+q)yΓ1(y)T ∗〈0|Jν2 (y)φ(x1) · · ·φ(xn)|0〉

= ikνΓ̃1(k + q)

∫
dDy e−i(k+q)yT ∗〈0|Jν2 (y)φ(x1) · · ·φ(xn)|0〉

= 0 +O(k)

(5.10)

where the last line follows from eq. (4.12) (as well as assuming no pole in Γ̃1).

The fifth term is equivalent to the third term, but with the symmetry indices in-

terchanged 1 ↔ 2 and the soft-momenta likewise interchanged q ↔ k. Thus the fifth

term gives:∫ n∏
j=1

[
dDxj e−ikjxj

] n∑
i=1

∫
dDy e−i(ky+qxi)T ∗〈0|(∂νJν2 (y))φ(x1) · · · [Q1,φ(xi)] · · ·φ(xn)|0〉

=−
n∏
l=1

∆l(kl)

n∑
i=1

(
F̃2,φi(ki+k,mi)+Γ̃2,φi(ki+k)

) n∑
j 6=1

(
F̃1,φj (kj+q,mj)+Γ̃1,φj (kj+q)

)
×〈φ̃(k1) · · · φ̃(ki+k) · · · φ̃(kj+q) · · · φ̃(kn)〉amp

−
n∏
l=1

∆l(kl)

n∑
i=1

(
F̃2,φi(ki+k+q,mi)+Γ̃2,φi(ki+k+q)

)
×
(
F̃1,φi(ki+k+q,mi)+Γ̃1,φi(ki+k+q)

)
×〈φ̃(k1) · · · φ̃(ki+k+q) · · · φ̃(kn)〉amp+O(q,k) (5.11)

The terms with the double sum, where j 6= i, are the same as before since the operators here

commute. The operators in the single sum, on the other hand, do not commute. Instead

these terms, together with the similar ones in eq. (5.9), add up to ensure the symmetry

q ↔ k and J1 ↔ J2, which is manifest on the left-hand side of the Ward identity.

The sixth term leads to∑
i 6=j

e−iqxie−ikxjT ∗〈0|φ(x1) · · · [Q2, φ(xj)] · · · [Q1, φ(xi)] · · ·φ(xn)|0〉

=
∑
i 6=j

e−ikxjΓ2,φj (xj)e
−iqxiΓ1,φi(xi)T

∗〈0|φ(x1) · · ·φ(xn)|0〉
(5.12)

It is easy to see that by taking the Fourier transform and amputating the correlation

function, this expression exactly cancels the similar terms with double sums in, either the

third expression in eq. (5.9) or the fifth expression in eq. (5.11).

Finally, for the seventh term we make use of the Jacobi identity:

[Q2, [Q1, φi]] = [[Q2, Q1], φi] + [Q1, [Q2, φi]] (5.13)
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As mentioned earlier, the left-hand side of the Ward identity is manifestly symmetric under

q ↔ k, J1 ↔ J2. To ensure the symmetry on the right-hand side we should symmetrize the

seventh term. This symmetrization gets rid of the commutator [Q2, Q1] above and sends:

[Q2, [Q1, φi]]→
1

2
(Γ2,φiΓ1,φi + Γ1,φiΓ2,φi)φi (5.14)

Thus the seventh term by symmetrization is the sum of the two terms

1

2

n∑
i=1

e−i(q+k)xiT ∗〈0|φ(x1) · · · [Q2, [Q1, φ(xi)]] · · ·φ(xn)|0〉+ (1↔ 2)

=
n∑
i=1

e−i(q+k)xi
1

2
(Γ2,φiΓ1,φi + Γ1,φiΓ2,φi)T

∗〈0|φ(x1) · · ·φ(xi) · · ·φ(xn)|0〉
(5.15)

It is readily seen that after Fourier transforming and amputating, this expression cancels

one half of the similar terms in eq. (5.9) and eq. (5.11).

Finally, taking into account the symmetrization, we can express the full double-soft

Ward identity on amputated correlation functions in momentum space:

g̃1(q)g̃2(k)〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp |q,k∼0

=− i
2

[
Γ̃2,g1∂2ξ(q+k)g̃1(q+k)+Γ̃1,g2∂2ξ(q+k)g̃2(q+k)

]
〈ξ̃(q+k)φ̃(k1) · · · φ̃(kn)〉amp

−

[
n∑
i=1

(
F̃1,φi(ki+k,mi)+Γ̃1,φi(ki+k)

) n∑
j 6=i

(
F̃2,φj (kj+q,mj)+Γ̃2,φj (kj+q)

)
+

1

2

n∑
i=1

(
F̃1,φi(ki+k+q,mi)+Γ̃1,φi(ki+k+q)

)(
F̃2,φi(ki+k+q,mi)+Γ̃2,φi(ki+k+q)

)
+

1

2

n∑
i=1

(
F̃2,φi(ki+k+q,mi)+Γ̃2,φi(ki+k+q)

)(
F̃1,φi(ki+k+q,mi)+Γ̃1,φi(ki+k+q)

)]
×〈φ̃(k1) · · · φ̃(ki+k) · · · φ̃(kj+q) · · · φ̃(kn)〉amp+O(q,k) (5.16)

where in the last correlator it is implicitly assumed that for the single-sum expressions one

should understand φ̃(ki + k) · · · φ̃(ki + q) ∼ φ̃(ki + k + q).

In the case of massless hard states, the limit q, k → 0 may be well-behaved. If that is

so, and if furthermore [Γ1,Γ2] = 0, then the above expression simplifies to:

g̃1(q)g̃2(k)〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp |q,k∼0 (5.17)

=− i
2

[
Γ̃2,g1∂2ξ(q+k)g̃1(q+k)+Γ̃1,g2∂2ξ(q+k)g̃2(q+k)

]
〈ξ̃(q+k)φ̃(k1) · · · φ̃(kn)〉amp

−
n∑
i=1

(
F̃1,φi(ki)+Γ̃1,φi(ki)

) n∑
j=i

(
F̃2,φj (kj)+Γ̃2,φj (kj)

)
〈φ̃(k1) · · · φ̃(kn)〉amp+O(q,k)
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5.1 Double-soft Ward identity of two dilatation currents

We specialize the previous analysis to the case of two dilatation current insertions in the

matrix element. Following the definitions and expressions in section 4.2, we have

g̃1 = g̃2 = fξ , D̃i(k) = i(di −D − k · ∂k) ,

F̃i(ki + q,mi) = i(D − 2di)

(
1− m2

i

(ki + q)2 +m2
i

)
fi(ki + q,mi) = 0 , γi(ki + q) = iD .

(5.18)

We will in this work only focus on the parts of the double-soft Ward identities belonging

to the Taylor expansion in the soft momenta, as described and prescribed in eq. (4.27).

In this case, this is equivalent to setting F̃i → F̃T
i = F̃i(ki + q, 0). Due to this restriction

and since [D,D] = 0, we need only to consider the simpler form of the double-soft Ward

identity in eq. (5.17).

Let us first consider the first term on the right-hand side of eq. (5.17), which under

the above specifications takes the form:

− iΓ̃2,g1∂2ξ(q + k)g̃1(q + k)〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp

= (d∂2ξ −D − (k + q) · ∂k+q)fξ〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp

(5.19)

Now using the single-soft Ward identities given in eq. (4.29) it follows that the right-hand

side of eq. (5.19) is equal to:

(d∂2ξ −D)

n∑
i=1

(−di − ki · ∂ki)〈φ̃(k1) · · · φ̃(ki + k + q) · · · φ̃(kn)〉amp +O(k + q) (5.20)

Then it is straightforward to write the full expression for eq. (5.17):

f2
ξ 〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp (5.21)

= (d∂2ξ−D)
n∑
i=1

(−di−ki ·∂ki)〈φ̃(k1) · · · φ̃(ki+k+q) · · · φ̃(kn)〉amp

−
n∑
i=1

(i(D−2di)+i(di−D−ki ·∂ki))
n∑
j=1

(
i(D−2dj)+i(dj−D−kj ·∂kj )

)
×〈φ̃(k1) · · · φ̃(kn)〉amp+O(q,k)

=
n∑
i=1

(−di−ki ·∂ki)

(d∂2ξ−D)+
n∑
j=1

(
−dj−kj ·∂kj

)〈φ̃(k1) · · · φ̃(kn)〉amp+O(q,k)

Since ∂2ξ is the second descendant of the primary field, ξ, the dilaton, it follows that

d∂2ξ = 2 + dξ = D − dξ (5.22)
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Thus

f2
ξ 〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp (5.23)

=
n∑
i=1

(−di − ki · ∂ki)

−dξ +
n∑
j=1

(
−dj − kj · ∂kj

) 〈φ̃(k1) · · · φ̃(kn)〉amp +O(q, k)

This expression is nothing but two consecutive applications of the single-soft Ward identity,

where in the first application, one of the dilatons is taken to be hard. This shows that

there is no difference at leading order between the two limits: q ∼ k � ki and q � k � ki.

We can go on and express this in terms of amplitudes by performing the LSZ reduction.

This gives us the double-soft theorem:

f2
ξ Tn+2(q, k, k1, . . . , k̄n) =

[
D − dξ −

n∑
j=1

(
dj + kj · ∂kj

) ] [
D −

n∑
i=1

(di + ki · ∂ki)

]
× Tn(k1, . . . , k̄n) +O(q, k)

(5.24)

This is again nothing but two single-soft dilaton theorems applied consecutively. Thus there

is no distinction between two soft dilatons emitted consecutively with two soft dilatons

emitted simultaneously. The bar on kn means that we keep one of the hard momenta, say

kn, fixed by momentum conservation, as in eq. (4.23).

In the case where all fields have free scalar field dimension di = dξ = d = (D − 2)/2,

then

f2
ξ Tn+2(q, k, k1, . . . , k̄n) =

[
D − (n+ 1)d−

n∑
j=1

kj · ∂kj

][
D − nd−

n∑
i=1

ki · ∂ki

]
× Tn(k1, . . . , k̄n) +O(q, k)

(5.25)

Eq. (5.24) is, however, more general, since the hard states can be interacting fields carying

anomalous dimension. We can parametrize this by denoting di = d+ ηi, while still dξ = d,

then:

f2
ξ Tn+2(q, k, k1, . . . , k̄n) =

D − (n+ 1)d−
n∑
j=1

(ηj + kj · ∂kj )


×

[
D − nd−

n∑
i=1

(ηi + ki · ∂ki)

]
Tn(k1, . . . , k̄n) +O(q, k)

(5.26)

where ηi are the anomalous dimensions of the scalar fields φi.

5.2 Double-soft Ward identity of the two currents, JµD and JµK,λ

We consider the double-soft Ward identity in eq. (5.16), following insertions of a dilatation

current, JµD, and a special conformal transformation current, JµK,λ, in the matrix element
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eq. (4.2). Following the definitions and expressions in section 2, 4.2 and 4.3, as well as the

restriction described at eq. (4.27), we take

g̃1 = fξ , g̃2,λ(k) = i2fξ∂k,λ ,

D̃i(k) = i(di−D−k ·∂k) , K̃λ,i(k) = 2kν∂k,ν∂k,λ−kλ∂2
k−2(di−D)∂k,λ

F̃T
1,φi

(ki+q,mi) = i(D−2di) , F̃T,λ
2,φi

(ki+q,mi) =−2(D−2di)∂
λ
k ,

f1,φi(ki+q,mi) = 0 , γ1,φ1(ki+q) =D,

fλ2,φi(ki+q,mi) = 0 , γλ2,φi(ki+q) = 0 , (5.27)

For consistency it can be checked that:

[D̃, K̃λ] = iK̃λ (5.28)

This is in fact true for any value of di and thus this term in K̃λ can take any prefactor and

still preserve the commutation relation above.

Let us consider the first line on the right-hand side of eq. (5.16), reading:

− i
2

[
Γ̃2,g1∂2ξ(q + k)g̃1(q + k) + Γ̃1,g2∂2ξ(q + k)g̃2(q + k)

]
〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp

= − i
2

[
fξKλ,∂2ξ(q + k) + i2fξDx∂2ξ(q + k)∂k+q,λ

]
〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp

= ifξ
[
d∂2ξ + dx∂2ξ − 2D

]
∂k+q,λ〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp +O(k + q) (5.29)

The last expression can be further reduced by making use of the single-soft Ward identity

for special conformal transformations, given in eq. (4.39), getting

= i(d∂2ξ + dx∂2ξ − 2D)

n∑
i=1

K̂ki,λ〈φ̃(k1) · · · φ̃(kn)〉amp +O(k + q) (5.30)

where K̂ki,λ was defined in eq. (4.38), and differs from K̃i,λ only in the term with a single

derivative and an overall factor −1/2. It therefore obeys the same commutation relations

as K̃i,λ, i.e. [D̃, K̂λ] = iK̂λ.

Considering the remaining terms, let us notice that we have:

F̃T
1,φi

(ki, 0) + Γ̃1,φi(ki) = i(−di − ki · ∂ki) = iD̂i

F̃T
2,φi

(ki, 0) + Γ̃2,φi(ki) = −2(D − 2di)∂ki,λ + K̃λ,φi = −2K̂kj ,λ

(5.31)

where for brevity we also defined D̂i, thus [D̂, K̂λ] = K̂λ. From this we find that eq. (5.16)

reads:

i2f2
ξ ∂k,λ〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp |q,k∼0

=

[
i(d∂2ξ + dx∂2ξ − 2D)

n∑
i=1

K̂ki,λ + 2

n∑
i=1

iD̂i

∑
j 6=i

K̂kj ,λ

+
n∑
i=1

iD̂iK̂ki,λ +
n∑
i=1

iK̂ki,λD̂i

]
〈φ̃(k1) · · · φ̃(kn)〉amp +O(q, k)

= i

n∑
j=1

K̂kj ,λ

[
d∂2ξ + dx∂2ξ − 2D + 1 + 2

n∑
i=1

D̂i

]
〈φ̃(k1) · · · φ̃(kn)〉amp +O(q, k)

(5.32)
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In going from the first equality to the second equality, we used the commutation relation

between D̂ and K̂λ.

Using that d∂2ξ = d+ 2 = D − d and dx∂2ξ = d+ 1 = D − d− 1, we arrive at:

f2
ξ ∂k,λ〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp |q,k∼0

=

n∑
j=1

K̂kj ,λ

(
−d+

n∑
i=1

D̂i

)
〈φ̃(k1) · · · φ̃(kn)〉amp +O(q, k)

(5.33)

It follows that by studying instead the Ward identity of Qµ1 = Kµ and Q2 = D, we

equivalently find an expression reading

f2
ξ ∂q,λ〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp |q,k∼0

=
n∑
j=1

K̂kj ,λ

(
−d+

n∑
i=1

D̂i

)
〈φ̃(k1) · · · φ̃(kn)〉amp +O(q, k)

(5.34)

which differs only from eq. (5.33) by the soft-momentum derivative on the left-hand side.

Contracting either expression with the respective soft momentum kλ and qλ, it follows

that these expressions provide the O(q, k) terms in the Taylor series of the double-soft

Ward identity.

Reducing these to relations among amplitudes, we use that only the dilatations give a

contribution by acting on the momentum-conserving delta-function, thus yielding:

f2
ξ ∂k,λTn+2(q, k, k1, . . . , k̄n) =

n∑
j=1

K̂kj ,λ

(
D − d+

n∑
i=1

D̂i

)
Tn(k1, . . . , k̄n) +O(q, k)

(5.35)

and similarly for ∂q,λ acting on Tn+2. By contracting these identities with kλ and qλ yields

the soft expansion of Tn+2,

Tn+2(q, k; ki) = Tn+2(0, 0; ki) + q · ∂qTn+2(0, 0; ki) + k · ∂kTn+2(0, 0; ki) + · · · (5.36)

which together with the result of the previous subsection explicitly reads:

f2
ξ Tn+2(q, k, k1, . . . , k̄n) =

[(
D − d+

n∑
i=1

D̂i

)(
D +

n∑
i=1

D̂i

)

+ (qλ + kλ)
n∑
i=1

K̂ki,λ

(
D − d+

n∑
i=1

D̂i

)]
Tn(k1, . . . , k̄n) +O(q2, k2, qk)

(5.37)

5.3 Double-soft Ward identity of two special conformal currents

We finally consider the double-soft Ward identity following two insertions of special confor-

mal currents in the matrix element. We restrict again our attention to the part belonging

only to the Taylor series of the soft expansion. Then since [Kµ,Kν ] = 0 we may simply
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study eq. (5.17). Using the identities in eq. (5.27) and eq. (5.31) for the special conformal

current, we can immediately write the double-soft Ward identity following from eq. (5.17):

− 4f2
ξ ∂q,λ∂k,γ〈ξ̃(q)ξ̃(k)φ̃(k1) · · · φ̃(kn)〉amp |q,k∼0

= −iK̃γ,xν∂2ξ(q + k)(i2fξ∂q+k,λ)〈ξ̃(q + k)φ̃(k1) · · · φ̃(kn)〉amp

− 4
n∑
i=1

K̂λ,i(ki)
n∑
j=1

K̂γ,i(kj)〈φ̃(k1) · · · φ̃(kn)〉amp +O(q, k)

(5.38)

where K̃γ,xν∂2ξ(q + k) is defined in eq. (4.33).

This time we have run into a problem: there is no single-soft Ward identity that relates

the first term on the right-hand side to an expression in terms of the n-point correlation

function. We have not been able to circumvent this problem, and it thus looks like a no-

go theorem for obtaining soft factorization at the order qµkν . We furthermore note that

we have no Ward identities that could potentially lead to soft factorization of terms with

qµqν and kµkν , which would be required to establish a full soft theorem at the order q k.

We note, however, that the second term does takes the form of a soft theorem, relating

the n + 2 point correlation function to the n-point function acted upon by two special

conformal transformation. One may be able to express this for amplitudes as a relation

between n+ 2-, n+ 1- and n-point function, but we do not attempt to do so here.

6 Multi-soft dilatons

In section 4 we have derived the soft theorem for the emission of a single soft dilaton,

through O(q) in the soft momentum, q, while in section 5 we have obtained a soft theorem

for two soft dilatons through O(qµ1 q
ν
2 ) with q1 and q2 the momenta of the two soft dilatons

taken to be q1 ∼ q2 � ki, where ki is any of the hard momenta involved in the amplitude.

In this section we will first show that the double-soft theorem is equivalent to what one

would get by making two consecutive emissions of the soft dilatons, one after the other,

with q1 � q2 � ki. From this observation we can make the conjecture that the amplitude

for the emission of any number of soft dilatons is fixed by the consecutive soft limit of

single dilatons emitted one after the other, that is:

lim
q1,...,qm→0

Am+n(q1, . . . , qm;k1, . . . ,kn) = lim
q1→0

lim
q2→0

· · · lim
qm→0

Am+n(q1, . . . , qm;k1, . . . ,kn) (6.1)

where on the left-hand side it is assumed that all soft momenta scale simultaneously to

zero, while on the right-hand side it is assumed that qm � qm−1 � · · · � q1 � ki.

To see that this conjecture holds for the double-soft case, let us first summarize our

previous results. The soft theorem for the emission of a single soft dilaton reads:

Tn+1(q, k1, . . . , k̄n) =
1

fξ

[
D +

n∑
i=1

D̂i + qµ
n∑
i=1

K̂ki,µ

]
Tn(k1, . . . , k̄n) +O(q2) (6.2)
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The soft theorem for the simultaneous emission of two soft dilatons reads:

f2
ξ Tn+2(q1, q2, k1, . . . , k̄n) =

[(
D − d+

n∑
i=1

D̂i

)(
D +

n∑
i=1

D̂i

)

+ (qλ1 + qλ2 )

n∑
i=1

K̂ki,λ

(
D − d+

n∑
i=1

D̂i

)]
Tn(k1, . . . , k̄n) +O(q2

1, q
2
2, q1q2)

(6.3)

where

D̂i = − (di + ki · ∂ki) , K̂ki,µ =
1

2
kiµ∂

2
ki
− (ki · ∂ki)∂ki,µ − di ∂ki,µ (6.4)

Now let us consider an (n + 2)-point amplitude, which involves at least two dilatons,

carying momenta q1 and q2. If we take the momentum q1 to be soft compared to the other

momenta, i.e. q1 � q2, ki, then the single soft theorem gives us:

fξTn+2(q1, q2, k1, . . . , k̄n) (6.5)

=

[
D +

n∑
i=1

D̂i − (d+ q2 · ∂q2) + qλ1

n∑
i=1

K̂ki,λ + qλ1 K̂q2,λ

]
Tn+1(q2, k1, . . . , k̄n) +O(q2

1)

If q2 � ki in the above expression, the behavior of the (n+ 1)-point amplitude is also fixed

through O(q2
2), i.e.

Tn+1(q2, k1, . . . , k̄n) =
1

fξ

[
D +

n∑
i=1

D̂i + qµ2

n∑
i=1

K̂ki,µ

]
Tn(k1, . . . , k̄n) +O(q2

2) (6.6)

Inserting this expression in eq. (6.5) we find

f2
ξ Tn+2(q1, q2,k1, . . . , k̄n)

=

[
D+

n∑
i=1

D̂i−(d+q2 ·∂q2)+qλ1

n∑
i=1

K̂ki,λ+qλ1 K̂q2,λ

]

×

[
D+

n∑
i=1

D̂i+q
λ
2

n∑
i=1

K̂ki,λ

]
Tn(k1, . . . , k̄n)+O(q2

1, q
2
2, q1q2)

=

[(
D−d+

n∑
i=1

D̂i

)(
D+

n∑
i=1

D̂i

)
+

(
D+

n∑
i=1

D̂i−d−1

)
qλ2

n∑
i=1

K̂ki,λ

+qλ1

n∑
i=1

K̂ki,λ

(
D+

n∑
i=1

D̂i

)
−dqλ1

n∑
i=1

K̂ki,λ

]
Tn(k1, . . . , k̄n)+O(q2

1, q
2
2, q1q2)

(6.7)

After the second equaltiy, the first three terms are just an organized expansion of the

multiplication, where the form of D̂i and K̂ki,λ is unimportant and one only needs to

use in the second term the identity q2 · ∂q2qλ2 = qλ2 . The last term is obtained by using

qλ1 K̂q2,λ q
ρ
2 = qρ1(−d). The term of order qλ1 q

ρ
2 has been neglected.
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Using the commutation relation [D̂i, K̂ki,λ] = K̂ki,λ, the expression reduces to:

f2
ξ Tn+2(q1, q2,k1, . . . , k̄n) =

[(
D−d+

n∑
i=1

D̂i

)(
D+

n∑
i=1

D̂i

)
(6.8)

+(qλ1 +qλ2 )
n∑
i=1

K̂ki,λ

(
D−d+

n∑
i=1

D̂i

)]
Tn(k1, . . . , k̄n)+O(q2

1, q
2
2)

thus exactly reproducing the double-soft theorem eq. (5.37) derived from current algebra.

Based on this result, we conjecture that multi-soft dilaton amplitudes are fixed by the

consecutive soft limit of single dilatons emitted one after the other, as just detailed for the

consecutive double-soft emission.

7 Examples of dilaton amplitudes

7.1 The simplest D-dimensional conformally broken field theory

We consider amplitudes of the simplest D-dimensional conformal model presented in sec-

tion 3, and specifically given by eq. (3.14). In the spontaneously broken phase, the La-

grangian is expanded around a nonzero vacuum expectation value for the conformal com-

pensator field ξ̄ = fξ/d+ ξ, where ξ is the dilaton field, and fξ = dvd,

L=−1

2
(∂µχ)2− 1

2
(∂µξ)

2− 1

2
m2χ2−m

2

fξ
χ2ξ− c2

2

m2

f2
ξ

χ2ξ2− c3

3!

m2

f3
ξ

χ2ξ3− c4

4!

m2

f4
ξ

χ2ξ4+. . .

(7.1)

where the mass is related to the dimensionless coupling constant and vev in the following

manner:

m2 = v2λ2/d (7.2)

and the first few coefficients read:

c2 =
6−D

2
, c3 =

(6−D)(4−D)

2
, c4 =

(6−D)(4−D)(10− 3D)

4
(7.3)

having used that d = [ξ] = (D − 2)/2.

We have expanded the Lagrangian up to the sixth order in the fields, since we would

now like to compute the three-, four-, five- and six-point amplitudes involving two massive

external states χ, and one, two, three and four dilatons, respectively. The three point

amplitude is given by the only three point vertex, reading:

T 2χ,ξ
3 = −2m2

fξ
= − 4

D − 2

m2

vd
. (7.4)

There are no derivative couplings in the Lagrangian. Thus momenta enter amplitudes only

from internal propagators. For amplitudes with two massive external states, only massive

internal propagators enter. It is useful to define the variables

si1,i2,...in = (ki1 + · · ·+ kin)2 +m2 (7.5)
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where the indices enumerate the external states. We will take the two massive state to be

states 1 and 2, thus entering amplitudes with momenta k1 and k2, while states 3, . . . , n are

taken to be dilatons entering amplitudes with momenta k3, . . . , kn.

The four-point amplitude then reads:

T 2χ,2ξ
4 = −2m2

f2
ξ

(
c2 −

2m2

s13
− 2m2

s23

)
(7.6)

which has contributions both from the four-point vertex and two three-point amplitudes

attached by an internal massive propagator. Momentum conservation is implicit in this

expression, e.g. s13 = s24.

The five-point amplitude reads:

T
(2χ,3ξ)
5 =− c3

2m2

f3
ξ

+ c2

(
2m2

)2
f3
ξ

[
1

s13
+

1

s23
+

1

s14
+

1

s24
+

1

s15
+

1

s25

]
−
(

2m2

fξ

)3 [
1

s14s23
+

1

s24s13
+

1

s24s15
+

1

s14s25
+

1

s25s13
+

1

s15s23

] (7.7)

Finally, the six-point amplitude reads:

T
(2χ,4ξ)
6 =− 2c4

f4
ξ

+ c3
(2m2)2

f4
ξ

6∑
i=3

[
1

s1i
+

1

s2i

]
+ c2

2

(2m2)2

f4
ξ

6∑
i=4

[
1

s13i
+

1

s23i

]

− c2
(2m2)3

2f4
ξ

6∑
i=3

 1

s1i

∑
j 6=1,2,i

(
1

s2j
+

2

s1ij

)
+

1

s2i

∑
j 6=1,2,i

(
1

s1j
+

2

s2ij

)
+

(2m2)4

f4
ξ

6∑
i=3

1

s1i

∑
j 6=1,2,i

1

s2j

∑
k 6=1,2,i,j

1

s1ik

(7.8)

The soft theorems provided in this work can now all be explicitly checked. Some details

should be noted. First, one must fix an overall momentum variable by momentum conser-

vation. Since we are interested in the expansion of the soft momenta, we do not impose

momentum conservation on these variables, but instead impose it on one of the hard dila-

ton momenta. For instance, taking the momenta k5 and k6 to be soft for relating the 6-,

5- and 4-point amplitudes, a consistent choice is to take

k4 → k̄4 (7.9)

where k̄4 is replaced by minus the sum of all other momenta of the 4-, 5- and 6-point

amplitudes. This is already explicit in eq. (7.6) for T4, and is trivially imposed on the 5-

and 6-point amplitudes, e.g. s14 → s235 in T5 or s14 → s2356 in T6.

The next important step one must make to check our expressions, is to subtract from

the amplitudes all terms that belong to the Laurent series in the soft expansion, as defined in

eq. (4.28). For instance, considering the single soft limit of T5 when k5 � ki for i = 1, . . . , 4,

the part of T5 that gives the Taylor series in k5 is:

T
(2χ,3ξ)
5,Taylor = −c3

2m2

f3
ξ

+ c2

(
2m2

)2
f3
ξ

[
1

s13
+

1

s135

]
−
(

2m2

fξ

)3 [
1

s13s135

]
+ (s1... ↔ s2...)

(7.10)
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It is now obvious that at leading order in k5, this expression reads:

T
(2χ,3ξ)
5,Taylor = −2m2

f3
ξ

[
c3 − 2c2

2m2

s13
+

(2m2)2

s2
13

+ (s1... ↔ s2...)

]
+O(k5) (7.11)

It is a straightforward exercise from here to check that:

1

fξ

[
D − 4d−

3∑
i=1

ki · ∂ki

]
T

(2χ,2ξ)
4 (k1, k2, k3, k̄4) = T

(2χ,3ξ)
5,Taylor +O(k5) (7.12)

where d = (D − 2)/2, in agreement with eq. (4.31). We remark that this expression also

takes into account the massive terms in eq. (7.11). The full expression for T5 also has

contributions at O(k0
5) from expanding terms such as

1

s15s135
=

1

2(k1 · k5)s13

(
1 +

2(k1 + k3) · k5

s13

)
+O(k5) (7.13)

however, these terms belong to the Laurent series of the soft expansion, and thus not part

of eq. (4.31).

The check of the single soft theorem is now extended to the subleading order of the

five point amplitude. The O(k5) terms of the five point amplitude read:

T
(2χ, 3ξ)
5 Taylor

∣∣∣
O(k5)

= −2
(2m2)2

f3
ξ

k5 · (k1 + k3)

s2
13

[
(6−D)

2
− 2m2

s13

]
+ (1↔ 2) (7.14)

and it is straightforward to verify that it satisfies the identity:

kµ5
fξ

3∑
i=1

[
1

2
kiµ

∂2

∂kiν∂kνi
− kνi

∂

∂kµi

∂

∂kνi
− d ∂

∂kµi

]
T 2χ;2ξ

4 (k1, k2, k3, k̄n) = T
(2χ, 3ξ)
5 Taylor

∣∣∣
O(k5)

(7.15)

in agreement with the single soft theorem in eq. (4.40), as originally proposed in ref. [17].

The single-soft dilaton relations between T6 and T5 can be checked in a similar fashion.

The double-soft relations between the 5- and 3-point amplitudes can be easily verified.

Choosing the soft momenta to be k4, k5 � ki, i = 1, 2, 3, and using momentum conser-

vation to replace k3 with the other momenta, we first notice that only the first term in

eq. (7.7) is regular in the double-soft limit; i.e. all other terms (which carry the momen-

tum dependence) belong to the Laurent series of the soft-expansion and should not be

considered. It is then easy to see that

T
(2χ,3ξ)
5;Taylor =

(6−D)(4−D)

2 f2
ξ

T
(2χ,ξ)
3 =

1

f2
ξ

(D − 4d)(D − 3d)T
(2χ,ξ)
3 (7.16)

where d = (D − 2)/2 is the scaling dimension of all the fields. Since T
(2χ,ξ)
3 is momentum

independent, this expression is exactly the prediction of the double-soft theorems, both

the one coming from the Ward identity of two dilatation currents, but also (trivially) the

one coming from a dilatation current and a special conformal transformation current, since

∂µ4,5T
(2χ,3ξ)
5;Taylor = K̂µ

i T
(2χ,ξ)
3 = 0. This example also shows, how reversibly one can predict
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coefficients of effective actions from the soft theorems, here a 5-point interaction coefficient

from knowledge of the three-point interaction.

Before making the similar checks on the much less trivial case of 6- and 4-point am-

plitudes, let us note that the rest of T5, which are on-shell singular for k4 = k5 = 0,

read

T
(2χ,3ξ)
5;Laurent =

(
1

s15
+

1

s14
+

1

s245
+

1

s24
+

1

s25
+

1

s245

)
T

(2χ,ξ)
3 V

(2χ,2ξ)
4

+(T
(2χ,ξ)
3 )3

[
1

s14

(
1

s23
+

1

s25

)
+

1

s15

(
1

s24
+

1

s23

)
1

s245

(
1

s24
+

1

s25

)] (7.17)

where we identified the 4-point vertex V
(2χ,2ξ)

4 = −2m2

f2ξ
c2. In this form, it is easy to see that

all terms belonging to the Laurent series of the double-soft expansion are simply coming

from processes where two soft dilatons are directly emitted from the hard external legs

in different ways. This observation applies generally to all tree-amplitudes and trivializes

thus the Laurent part of the soft-expansion.

We now consider the double-soft expansion of T6 in terms of the soft momenta k5 and

k6 through order O(k5, k6). The softness of the two momenta are taken to be equal, and

we should thus consider the Taylor expansion of T6 around (k5, k6) = (0, 0). As prescribed

we need to replace k4 → k̄4 and remove terms that belong to the Laurent series. From

eq. (7.8) we then find:

T
(2χ,4ξ)
6,Taylor =−c4

2m2

f4
ξ

+

(
2m2

f2
ξ

)2[
c3

s13
+

c3

s1356
+

c2
2

s135
+

c2
2

s136
+

(
2m2

)2
s13s1356

(
1

s135
+

1

s136

)
(7.18)

−c2

(
2m2

s13s1356
+

2m2

s13s135
+

2m2

s13s136
+

2m2

s136s1356
+

2m2

s135s1356

)
+(s1...↔ s2...)

]
From here it is straightforward to show that the Taylor-expansion of this expression through

first order around (k5, k6) = (0, 0) exactly match the double-soft theorem in eq. (5.37), by

using the four-point amplitude in eq. (7.6).

For completeness, we note again that the on-shell singular terms for (k5, k6) = 0; i.e.

those belonging to the Laurent expansion of the amplitude, can be compactly written as:

T
(2χ,4ξ)
6,Laurent =

[
T

(2χ,ξ)
3

1

s15
T

(2χ;3xi)
5 (k1+k5,k2,k3,k4,k6)+(5↔ 6)+(1↔ 2)

]
(7.19)

+

[
V

(2χ,2ξ)
4

s256
T

(2χ,2ξ)
4 (s13,s14)−T

(2χ,ξ)
3

s15
T

(2χ,2ξ)
4 (s135,s263)

T
(2χ,ξ)
3

s26
+(1↔ 2)

]
The terms in the first line corresponds to the cases where a soft dilaton is directly emitted

from one of the hard, massive, external states, through the 3-point interaction vertex, which

is equivalent to the amplitude T3. The similar type of process where two soft dilatons are

emitted from the hard, massive legs are given in the second line, involving two factors of

T3, while finally the case corresponding to the process where two soft dilatons are emitted

simultaneously and from the same point from a hard, massive external state is also present

and involves the 4-point interaction vertex, V4 = −c2(2m2)/f2
ξ .
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7.2 N = 4 super Yang-Mills theory on the Coulomb branch

The N = 4 supersymmetric Yang-Mills (SYM) theory is a (super)conformal field theory,

where the gauge coupling stays nonperturbatively unrenormalized. Its action in component

fields of the supermultiplet reads:

S=

∫
d4xTr

(
−1

4
GµνG

µν− 1

2
(Dµφi)

2+
i

2
ψ̄rγµDµψr+

g

2
ψ̄rΓirr′ [φi,ψ

r′ ]+
g2

4

(
[φi,φj ]

2
))

(7.20)

where r, r′ = 1, . . . , 4, i, j = 1 . . . 6, Dµ = ∂µ−ig[Aµ, ·] and Γi are Euclidean six-dimensional

Dirac matrices satifying the anti-commutation relations {Γi,Γj} = ±2δij . All fields are in

the adjoint representation of the gauge group. The theory possesses an SU(4) global R-

symmetry, under which the fermions transform in the fundamental, 4, representation and

the scalars transform in the antisymmetric rank two, 6, representation. The potential is

given by

Tr([φi, φj ][φi, φj ]) = −fabe f cde φai φbjφciφdj (7.21)

where we have used φi = φai T
a, [T a, T b] = ifabcT c, and Tr(T aT b) = δab. If a = b or c = d

then this expression vanishes, due to antisymmetry of the structure constant fabe. This

is independent of the value of φi and thus there is an O(6) symmetry of this minimum.

Any vev acquired by one of the scalars, breaks spontaneously the conformal symmetry and

the SU(4) global R-symmetry, isomorphic to SO(6) (under which the scalars transform

as vectors), is broken to SU(4) → Sp(4) (or equivalently SO(6) → SO(5)). This is the

so-called Coulomb branch of the theory. There will be 5 Nambu-Goldstone (NG) bosons

belonging to the breaking of the global group, and one additional NG boson belonging to

the breaking of conformal symmetry, i.e. the dilaton.

The gauge symmetry is also broken, but the additional gauge degrees of freedom of the

scalars will be eaten up by the corresponding gauge bosons. To be specific, consider the

SU(N+1) gauge theory. The Coulomb branch induce SU(N+1)→ SU(N)×U(1). At low

energies where massive states decouple, the SU(N) and U(1) sectors are two separate SYM

theories, where the 6 NG bosons form the 6 massless scalars of the U(1) supermultiplet.

The Ward identities and soft theorems presented in this work, can be checked to be

satisfied by explicit computation of amplitudes in the weakly coupled regime of the above

action on the Coulomb branch. For the single-soft dilaton, the check has been performed

in ref. [21] through one loop. Here we will instead consider the strongly coupled regime of

the theory on the Coulomb branch by utilizing its gravity dual, for instance described in

section 6 of ref. [43].

The gravity dual of the Coulomb branch is modeled by a D3-probe brane in the gravi-

tational background of N D3-branes. In the large N limit backreaction on the background

can be neglected. The dynamics of the D3 brane is governed by the Dirac-Born-Infeld

(DBI) action on AdS5 × S5, which including the Wess-Zumino term for the zero-force
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condition (the pullback of the 5-form flux), is given by:

S = − 1

κ2

∫
d4x

r4

L4

(√
− det

(
ηµν +

L4

r4

∂xi

∂xµ
∂xi

∂xν
+ κ

L2

r2
Fµν

)
− 1

)
(7.22)

where κ = (2π)3/2α′
√
gs, L is the AdS5 radius, r2 =

∑6
i=1 x

2
i is the S5 radius, ηµν is the

metric on the D3-brane with indices µ, ν = 0, . . . , 3 and xi are the bulk coordinates with

i = 4, . . . 9. The scalar field dynamics on the D3-brane is given by correctly normalizing

the bosonic coordinates

xi = κφi , φ2 =

6∑
i=1

φ2
i (7.23)

leading to

S = − 1

λ2

∫
d4x φ4

(√
− det

(
ηµν +

λ2

φ4

∂φi

∂xµ
∂φi

∂xν
+

λ

φ2
Fµν

)
− 1

)
(7.24)

where

λ ≡ L2

κ
(7.25)

We note that λ is a dimensionless constant. Using the dictionary relating the AdS5 radius

with the gauge coupling constant, one finds that λ is fixed by the SU(N) gauge group of

the N = 4 SYM dual as follows

L4

α′2
= 4πNgs ⇒ λ =

√
2N

2π
(7.26)

The previous action is conformally invariant and is well-defined locally only if one of the

scalar fields gets a non-vanishing vacuum expectation value that breaks spontaneously the

conformal symmetry. Such a field with a non-vanishing vev will be the dilaton, while the

other five scalar fields should describe the NG bosons corresponding to the breaking of the

R-symmetry group SO(6)→ SO(5).

In this setup, the Ward identities and soft theorems proposed in this work should be

satisfied. We will here describe the check on the relations between the 4-, 5-, and 6-point

dilaton tree amplitudes. (We note that as an effective field theory, only tree amplitudes

of this theory are supposed to describe the N = 4 SYM theory in the strongly coupled

regime.) It is to this end only necessary to consider the part of the Lagrangian involving

the dilaton field up to six-point interactions. We choose to take the following Coulomb

branch:

φi = vδi6 + φ̃i , φ̃6 ≡ ξ (7.27)

Then expanding the action, we find the following interaction Lagrangian for the dilaton

Lξ4,5,6 =
λ2

8v4

[
1− 4ξ

v
+ 10

ξ2

v2

]
(∂µξ∂

µξ)2 − λ4

16v8
(∂µξ∂

µξ)3 (7.28)

describing dilaton self-interactions up to six-points.
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It is straightforward to compute the four-point amplitude simply given by the contact

interaction above. It reads:

A4 =
λ2

4v4
[s12s34 + s13s24 + s14s23] =

4∆a

v4
[s2 + t2 + u2] (7.29)

where sij = (ki + kj)
2 and in the second equality we identified the so-called ∆a = 16λ2 =

N2/(8π)2 parameter of the works on the dilaton effective action and a-theorem [41–43], as

well as the Mandelstam variables, s = −s12, t = −s13, u = −s23, after imposing momentum

conservation. The five-point amplitude is also straightforwardly computed from the contact

interaction only, and is simply related to the four-point amplitude as follows:

A5(1, 2, 3, 4, 5) = −4

v

[
A4(1, 2, 3, 4) +A4(1, 2, 3, 5) +A4(1, 2, 4, 5)

+A4(1, 3, 4, 5) +A4(2, 3, 4, 5)
] (7.30)

Finally, we provide the expression for the six-point amplitude. The computation is more

involved, since there are contributions from three different interactions, where two involve

the two different six-point contact interactions and one involve two four-point interactions

where one dilaton is exchanged between them, thus containing an on-shell pole. Accord-

ingly, we divide the amplitude in three partial expressions in the following way:

A6 = λ2A∂
4

6 + λ4
(
A∂

6

6 +Apole
6

)
(7.31)

where we defined the partial amplitudes without the coupling constant, to make explicit

the different powers it enters with. It follows that since A5 and A4 only contain terms

with λ2 couplings, only the first partial amplitude is related to the lower-point amplitudes

through the soft theorems. The soft theorems thus immediately predict that the two other

partial amplitudes should either cancel or vanish in the soft limits.

The pole terms are straightforwardly given in terms of the four-point amplitude

as follows:

λ4Apole
6 =

∑
ineq. perm.

A4(1, 2, 3,−[123])A4([123], 4, 5, 6)

s123
(7.32)

where the entry [123] indicates that the momentum variable is equal to (k1 + k2 + k3),

which due to momentum conservation is the momentum exchanged between the two ver-

tices, explaining also the denominator (propagator). The sum is over the 10 inequivalent

ways of choosing three out of the 6 momenta modulo the complement. The order is unim-

portant, since A4 is totally symmetric in the four momenta. We can denote the 10 terms

by their pole structure, given by:

{s123, s124, s125, s126, s134, s135, s136, s145, s146, s156} (7.33)

The partial amplitude A∂
4

6 can also be given in terms of A4 in the following way:

λ2A∂
4

6 =
20

v2

1,...6∑
cycl.perm

[
A4(1, 2, 3, 4) +A4(1, 2, 3, 5) +

1

2
A4(1, 2, 4, 5)

]
(7.34)
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where the sum is over cyclic permutations of the indices 1, 2, 3, 4, 5, 6 generating six terms

from each of the above three terms. The factor 1/2 on the last term is due to the extra

symmetry of that term, and thus takes care of overcounting of the sum.

Finally, the expression for the partial amplitude A∂
6

6 reads:

λ4A∂
6

6 =
3λ4

8v8

1,...6∑
cycl.perm

[
s14s25s36

6
+
s12s34s56

3
+
s14s23s56

2
+
s15s24s36

2
+ s13s24s56

]
(7.35)

where the denominators of the terms in the bracket indicate the permutation symmetry of

the terms to avoid overcounting, e.g. the first term reproduces itself by any of the 6 cyclic

permutations.

We now study the single-soft and double-soft dilaton properties of these amplitudes.

To study the relations between the 5- and 4-point amplitudes, we first fix momentum con-

servation and replace overall the momentum k4 with minus the sum of the other momenta.

It then becomes a straightforward exercise to check the following relations:

lim
k5→0

A5(1, 2, 3, 4̄, 5) =
1

v

[
4−

4∑
i=1

(di + ki · ∂ki)

]
A4(1, 2, 3, 4̄)

= −1

v

3∑
i=1

ki · ∂kiA4(s, t, u) = −4

v
A4(s, t, u)

(7.36)

lim
k5→0

∂µ5A5(1, 2, 3, 4̄, 5) =
1

v

4∑
i=1

K̂µ
ki
A4(1, 2, 3, 4̄) =

1

v

3∑
i=1

K̂µ
ki
A4(s, t, u)

= −2λ2

v5
[s23 k

µ
1 + s13 k

µ
2 + s12 k

µ
3 ]

(7.37)

To study the similar relations between the 6- and 5-point amplitudes we take k6 to

be soft. It is readily seen that A∂
6

6 and Apole
6 do not contribute to the soft limit k6 → 0

of A6, since they contain in each term the soft momentum k6. This is consistent with the

observation made before that these two contributions should either vanish or cancel in the

soft limits. The leading order single-soft relation between A6 and A5 is easiest to check by

not imposing momentum conservation. It is then easy to confirm that:

lim
k6→0

A6(1, 2, 3, 4, 5, 6) = λ2 lim
k6→0

A∂
4

6 =
1

v

[
−1−

∑5
i=1ki · ∂ki

]
A5(1, 2, 3, 4, 5)

=
20

v2

[
A4(1, 2, 3, 4) +A4(1, 2, 3, 5) +A4(1, 2, 4, 5) +A4(1, 3, 4, 5) +A4(2, 3, 4, 5)

] (7.38)

where the second equality readily follows from
∑5

i=1 ki · ∂kiA5 = 4A5. This works without

the need to impose momentum conservation, because every term is linear in each momen-

tum.

The subleading single-soft relation between A6 and A5 implies the two relations:

lim
k6→0

λ2∂µ6A
∂4

6 =
1

v

5∑
i=1

K̂µ
ki
A5 (7.39a)

lim
k6→0

λ4∂µ6 (A∂
6

6 +Apole
6 ) = 0 (7.39b)
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As explained before, the reason for having two relations is clear by noting that A5 only

involves terms with λ2 couplings. The first relation can be seen as a constraint on the

four-derivative interaction term from the five-point interaction. The second relation can be

seen as a constraint on the six-derivative interaction term from the four-point interaction,

because the pole terms are composed of two four-point vertices. The latter relation, which

involves cancellation of poles, is nontrivially satisfied, and we have shown this in detail

in the appendix. We will here show in some detail the validity of the first relation. By

expanding eq. (7.34) at the first order in the soft momentum k6, we get after some rewriting:

λ2A∂
4

6 (1, 2, 3, 4̄, 5, 6)
∣∣
O(k6)

= −20

v2

[
A4(1, 2, 3, 6) +A4(1, 2, 5, 6) +A4(1, 3, 5, 6)

+A4(2, 3, 5, 6) +
λ2

v4
(k1 + k2 + k3 + k5)2(k1 + k2 + k3 + k5)k6

]
=− 20

v2

[
A4(1, 2, 3, 6) +A4(1, 2, 5, 6) +A4(1, 3, 5, 6) +A4(2, 3, 5, 6)

]
(7.40)

where the second equality follows from the identity (k1+k2+k3+k5)2(k1+k2+k3+k5)k6 =

−2(k4k6)(k4k6) = 0 +O(k2
6).

On the other hand, the action of the subleading soft operator on the five point ampli-

tude can be seen to give:

kµ6
v

5∑
i 6=4

K̂ki,µA5(1, 2, 3, 4̄, 5, 6) = −16λ2

v6

[
k6(k1 + k2 + k3 + k5)(k4k6)

]
− 20

v2

[
A4(1, 2, 3, 6) +A4(1, 2, 5, 6) +A4(1, 3, 5, 6) +A4(2, 3, 5, 6)

]
=− 20

v2

[
A4(1, 2, 3, 6) +A4(1, 2, 5, 6) +A4(1, 3, 5, 6) +A4(2, 3, 5, 6)

]
+O(k2

6)

(7.41)

We observe that, as predicted, eq. (7.40) and eq. (7.41) are identical.

Moving on to the double-soft theorems, we here check the newly obtained relations

between the 6- and 4-point amplitudes. We fix k4 by momentum conservation in both

amplitudes, and take k5 and k6 to be soft momenta. We note that A∂
6

6 and Apole
6 (except

for Laurent terms) do not contribute to the soft limit k5, k6 → 0 of A6 nor ∂µ5,6A6, since

they contain in each term both momenta k5 and k6. The Laurent terms in Apole
6 are the

non-regular ones in the soft limit, and to order k5, k6, they read:

A6,Laurent =
3∑

m=1

A4(m,5,6,−[m56])A4(complement)

sm56
=−λ

4

v8

3∑
m=1

(kmk5)(kmk6)

km(k5+k6)
+O(k2

5,k
2
6)

(7.42)

where by the ‘complement’ we mean the other three momenta of the six-point amplitude

on the external legs of A4 and [m56] on the internal leg. These are the lowest order terms

in the soft expansion of Apole
6 , and correspond to the physical case where two soft dilatons

are emitted simultaneously from one hard external leg. As such they are trivial.
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Focusing on the nontrivial soft part of the six-point amplitude coming from A∂
4

6 it is

straightforward to check that

lim
k5,k6→0

A6,Taylor(1,2,3, 4̄,5,6) =λ2 lim
k5,k6→0

A∂
4

6 (1,2,3, 4̄,5,6)

=
20

v2
A4(1,2,3, 4̄)

=
1

v2

(
−1−

3∑
i=1

ki ·∂ki

)(
−

3∑
i=1

ki ·∂ki

)
A4(1,2,3, 4̄)

(7.43)

where the last line readily follows from eq. (7.36). It is likewise easy to check the second

double-soft identity.

lim
k5,k6→0

∂µ5,6A6,Taylor(1, 2, 3, 4̄, 5, 6) = λ2 lim
k5,k6→0

∂µ5,6A
∂4

6 (1, 2, 3, 4̄, 5, 6)

= −10λ2

v6
(s12 k

µ
3 + s13 k

µ
2 + s23 k

µ
1 )

=
1

v2

3∑
i=1

K̂µ
ki

(
−1−

3∑
i=1

ki · ∂ki

)
A4(1, 2, 3, 4̄)

(7.44)

where the last line follows immediately from eq. (7.36) and (7.37).

8 Conclusions

In this paper we have studied the Ward identities of spontaneously broken scale and special

conformal invariance, and from them derived the consequences for scattering amplitudes

describing the interaction between the dilaton (the Nambu-Goldstone boson of the spon-

taneously broken conformal symmetry) and other spinless particles.

We have shown that the Ward identities give rise to soft theorems for the dilaton,

which fix the behavior of scattering amplitudes involving soft dilatons, when scattering on

other spinless states. The results are straightforward to generalized to scattering on spin-

carrying states, namely one should simply include the spin-projection part in the analysis

of special conformal transformations and amputate correlation functions accordingly.

Our main new result is the derivation of a double-soft theorem for the dilaton, which

extends the single soft theorem found in ref. [17] to the case of double-soft scattering of

dilatons. It turns out that the amplitudes factorize in a soft and a hard part through linear

order in the soft dilaton momenta, be there one or two soft dilatons involved. The soft

part is given by operators related to the generators of the dilatation and special conformal

transformation acting on the hard part, which is just the amplitude involving only the

hard states. The new double-soft theorem turns out to be equivalent to performing two

single-soft limits one after the other, and we like to point out that this is different from

the case of double-soft scattering of pions. This observation allows us to propose that

multi-soft scattering of dilatons should behave in the same way.

The dilaton soft theorems, being consequences of symmetries, are independent of a

specific microscopic description and as such are universal. This means that any (quan-

tum) theory of spontaneously broken conformal symmetry must obey the soft theorems
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put forward in this work. Consequently, this puts constraints on any effective description,

for instance on the possible interactions and coupling in a low-energy effective action of

spontaneously broken conformal invariance. We have specifically demonstrated this by

checking explicitly the single- and double-soft theorems relating 4-, 5-, and 6-point ampli-

tudes in two models; one that is valid semiclassically in any number of dimensions, and

another that is fully valid in the quantum theory but only in four dimensions; namely the

Coulomb branch in N = 4 supersymmetric Yang-Mills theory, which we studied in the

strongly coupled regime. Both theories are frequently studied in the literature, and our

detailed checks may serve as new relations among amplitudes of the theories that were not

noticed before.

Note added. Shortly after our work, another preprint appeared [52], in which the soft

theorems here presented were also derived by similar methods. Additionally, the authors of

ref. [52] also consider the case of spontaneously broken translational invariance, and realize

cleverly the connection to string theories restricted on D-branes. The general formulas pre-

sented here are compatible also with this case and therefore one can straightforwardly from

our formulas derive the soft theorems presented in ref. [52]. A small technical difference in

our approach with respect to theirs lies in the comment we gave from eq. (4.9) to eq. (4.11).

This confirms our statement that the current algebra derivation can be performed by either

working with the broken, partially conserved current (our approach), or by defining new

conserved currents and working with those (as done in [52]).
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A Single-soft limit of A6 of section 7.2

In this appendix we show that eq. (7.39b) is fulfilled. Let us summarize the expressions

for the amplitudes in section 7.2:

A4(1, 2, 3, 4) =
λ2

4v4
[s12s34 + s13s24 + s14s23] (A.1)

A5(1, 2, 3, 4, 5) = −4

v

[
A4(1, 2, 3, 4) +A4(1, 2, 3, 5) +A4(1, 2, 4, 5)

+A4(1, 3, 4, 5) +A4(2, 3, 4, 5)
] (A.2)

A6 = λ2A∂
4

6 + λ4
(
A∂

6

6 +Apole
6

)
(A.3)

with

λ2A∂
4

6 =
20

v2

1,...6∑
cycl.perm

[
A4(1,2,3,4)+A4(1,2,3,5)+

1

2
A4(1,2,4,5)

]
(A.4)
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λ4A∂
6

6 =−3λ4

8v8

1,...6∑
cycl.perm

[
s14s25s36

6
+
s12s34s56

3
+
s14s23s56

2
+
s15s24s36

2
+s13s24s56

]
(A.5)

λ4Apole
6 =

∑
ineq. perm.

A4(1,2,3,−[123])A4([123],4,5,6)

s123
(A.6)

where the last sum over inequivalent permutations are given by the denominator structures:

{s123, s124, s125, s126, s134, s135, s136, s145, s146, s156} (A.7)

As explained in the main text, the soft limit k6 → 0 of A6 reproduces the correct

soft theorem, since A∂
6

6 and Apole
6 both vanish in this limit. At subleading order they do

not vanish, but should instead cancel each other, since they cannot contribute to the soft

theorem due to the coupling being λ4, while A5 has only terms with coupling λ2. This

cancellation can only occur if the denominators in Apole
6 cancel out at subleading order.

Let us first show this.

To show that the denominators of Apole
6 cancel out at subleading order, we first rewrite

all denominators explicitly in terms of k6:

→ {s456, s356, s346, s126, s256, s246, s136, s236, s146, s156}

k6→0→ {s45, s35, s34, s12, s25, s24, s13, s23, s14, s15}
(A.8)

Now consider the numerator corresponding to the first term above:

A4(1,2,3, [456])A4(−[456],4,5,6) =

(
λ2

4v4

)2

×[s12(s34+s35+s36)+s13(s24+s25+s26)+s23(s14+s15+s16)]

×[−(s45+s46)s56−(s45+s56)s46−(s46+s56)s45]

(A.9)

To linear order in k6 this expression reduces to:

A4(1,2,3, [456])A4(−[456],4,5,6) =−
(
λ2

4v4

)2

×[s12(s34+s35)+s13(s24+s25)+s23(s14+s15)]

×2[s46+s56]s45+O(k2
6)

(A.10)

We observe that s45 factorizes and exactly cancels the denominator, which is also equal to

s45. We may also observe that the second line is simply:

[s12(s34+s35)+s13(s24+s25)+s23(s14+s15)] =
4v4

λ2
(A4(1,2,3,4)+A4(1,2,3,5)) (A.11)

Summarizing, we have shown that:

A4(1,2,3, [456])A4(−[456],4,5,6)

s456
=−λ

2

v4
k6 ·(k4+k5)

[
A4(1,2,3,4)+A4(1,2,3,5)

]
+O(k2

6)

(A.12)
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By summing over all ten inequivalent permutation terms we find (for short we denote

A4(i, j, k, l) = Aijkl)

λ4Apole
6 =− λ2

v4
k6 · k1

[
A1234 +A1235 +A1245 +A1345 + 4A2345

]
− λ2

v4
k6 · k2

[
A1234 +A1235 +A1245 +A2345 + 4A1345

]
− λ2

v4
k6 · k3

[
A1234 +A1235 +A1345 +A2345 + 4A1245

]
− λ2

v4
k6 · k4

[
A1234 +A1245 +A1345 +A2345 + 4A1235

]
− λ2

v4
k6 · k5

[
A1235 +A1245 +A1345 +A2345 + 4A1234

]
+O(k2

6)

=− λ2

v4
k6 · (k1 + k2 + k3 + k4 + 4k5)A1234 + · · ·

=− λ2

v4
k6 · (3k5)A1234 + · · ·

(A.13)

where the · · · in the last and next to last line should be understood as the 5 other terms,

which are simply the 5 cyclic permutations of the indices 2345. To get the last expression

we used momentum conservation k1 + k2 + k3 + k4 = −k5 − k6 where k6 gives rise to a

higher order term and can be neglected. Notice that we are not fixing one momentum by

momentum conservation, rather we use it to simplify expressions. One may fix a momentum

in the end after all rewritings. Explicitly, we have found:

λ4Apole
6 = −3

λ2

v4

[
A1234 k5 +A1235 k4 +A1245 k3 +A1345 k4 +A2345 k1

]
· k6 +O(k2

6)

(A.14)

Let us now consider A∂
6

6 which is linear in k6 (in fact, in any momenta):

λ4A∂
6

6 =
3λ4

8v8

[
s14s25s36 + s12s34s56 + s23s45s61 + s14s23s56 + s25s34s16

+ s36s45s12 + s15s24s36 + s26s35s14 + s13s46s25 + s13s24s56

+ s24s35s61 + s35s46s12 + s46s51s23 + s51s62s34 + s62s13s45

] (A.15)

It is easy to see that by factorizing k6 in each term and collecting together the ki terms it

multiplies we get:

λ4A∂
6

6 =
3λ2

v4

[
A1234 k5 +A1235 k4 +A1245 k3 +A1345 k4 +A2345 k1

]
· k6 (A.16)

Comparing this expression with that in eq. (A.14), we observe that they are identical but

with opposite sign. Thus at linear order in k6 the terms proportional to λ4 in eq. (A.3)

do not contribute, which as explained is an expected consequence of the soft theorem at

subleading order in the soft momentum k6. This reversibly illustrates the strong constraints

that soft theorems put on effective field theories.
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