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Fabiana G. Barbosa, Camila Both, and Miguel B. Araújo (2017) Invasion of protected areas by non-native 
species is currently one of the main threats to global biodiversity. Using an ensemble of bioclimatic envelope 
models we quantify the degree of exposure of South American protected areas to invasion by two invasive 
amphibian species. We focus on protected areas that coincide with global biodiversity hotspots. The species 
modeled, Lithobates catesbeianus and Xenopus laevis, have been reported to threaten local faunas in several 
non-native areas that they invaded, including areas in Asia, Europe, North America, and South America. 
We show that 87.5% of the protected areas within the Atlantic Forest may be most at risk of invasion by L. 
catesbeianus and X. laevis under current climate conditions, followed by areas in the Cerrado (51.7), Tropical 
Andes (37.6%), Tumbes-Choco-Magdalena (22.5%), and Chilean Winter Rainfall and Valdivian Forests (20.5%). 
Conservation plans for these regions should, therefore, consider latent threats from multiple sources including 
invasion by highly competitive non-native species such as the ones modeled in our study.

Key words:	Biological invasions, Bioclimatic envelope models, Lithobates catesbeianus, Protected areas, 
Xenopus laevis.
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BACKGROUND

Protected areas (henceforth PAs) are one of 
the cornerstones of spatial conservation planning 
for biodiversity (Margules and Pressey 2000). While 
the total coverage of PAs has been increasing 
worldwide (Jenkins and Joppa 2009). PAs are 
facing increasing pressures such as unsustainable 
levels of tourism, financial shortfalls, poaching and 
other extractive activities, deforestation and habitat 
fragmentation, encroachment by urbanization and 
other human activities, and invasion by non-native 
invasive species (Ervin 2003).

I n v a s i o n s  b y  n o n - n a t i v e  a m p h i b i a n 
species have been reported in several parts 

of the world (Kraus 2009). In South America, 
two invasive amphibian species have received 
particular attention from researchers: Lithobates 
catesbeianus (Shaw 1802) and Xenopus laevis 
(Daudin 1802) (e.g., Lobos and Jaksic 2005; 
Laufer et al. 2008; Lobos et al. 2013). Lithobates 
catesbeianus, known as the American bullfrog, 
is native to eastern North America and its global 
distribution includes 41 countries (Ervin 2003; 
Frost 2013). In South America, L. catesbeianus 
is present in ten countries (Ervin 2003; Frost 
2013) with populations established in a variety 
of environments (e.g., Laufer et al. 2008; Lobos 
et al. 2013; Ferreira and Lima 2012), including 
PAs (Lucas and Fortes 2008; Schüttler and Karez 
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2008; Both et al. 2011; Madalozzo et al. 2016). 
Invasive populations of L. catesbeianus in new 
environments have caused substantial damage to 
native fauna through competition (e.g., Kupferberg 
1997; Pearl et al. 2004), predation (e.g., Silva et al. 
2011; Boelter et al. 2012), or acoustic interference 
(e.g., Both and Grant 2012). For these reasons, 
L. catesbeianus has been listed among the “100 
worst invasive species” by the International Union 
for Conservation of Nature (IUCN) (Lowe et al. 
2000). Xenopus laevis, known as the African 
clawed frog, is native to Mediterranean zone of 
the Cape Region of South Africa (see Lobos et al. 
2013 for details), but has invaded extensive areas 
on several continents (see Measey et al. 2012 for 
review). In South America, X. laevis is present in 
natural and disturbed environments in Chile (Lobos 
and Jaksic 2005; Lobos et al. 2013), but to our 
knowledge there are no records in PAs. Damage 
documented for X. laevis includes consumption of 
native prey (Lafferty and Page 1997) and reducing 
reproductive rates of native amphibians (Lillo et 
al. 2011). Lithobates catesbeianus and X. laevis 
are both recognized as vectors of the fungus 
Batrachochytrium dendrobatidis, which is lethal to 
many other amphibians and has been linked with 
amphibian declines (e.g., Garner et al. 2006; Solis 
et al. 2010).

Eradication of L. catesbeianus and X. laevis 
is difficult once populations are established in non-
native ranges (Fouquet and Measey 2006; Adams 
and Pearl 2007). Preventive action is therefore 
required to prevent or slow the rate of spread of 
these invasive species in PAs. Of particular interest 
is the identification of areas where both species 
are likely to invade, as these are areas where the 
effects of these two species could be additive.

In the last decades, bioclimatic envelope 
models (henceforth BEMs) have become one 
of the main tools for predicting the distribution 
of suitable climatic areas for the establishment 
of invasive species (Jiménez-Valverde et al. 
2011; Barbosa et al. 2012). Such models are 
built using modelling methods that establish 
correlations between the geographic distribution of 
a species and a set of predictor variables (typically 
climatic) to identify conditions that are suitable for 
maintaining viable populations (see Araújo and 
Peterson 2012 for review on BEMs). Currently, 
multiple methods are now available for modelling 
bioclimatic (see Peterson et al. 2011 for review). 
Many studies have demonstrated that different 
methods calibrated using the same dataset can 
provide different predictions (e.g., Elith et al. 

2006; Tsoar et al. 2007), raising the possibility 
that no single “best” method exists (Pearson et al. 
2006). To handle such algorithmic uncertainties, 
Araújo and New (2007) advocate the fitting of 
ensembles of BEMs. In some instances, BEMs 
used to predict the distribution of suitable climatic 
areas of invasive species were fitted using data 
from the native range of the invasive species (e.g., 
Giovanelli et al. 2008), implicitly assuming that the 
present distribution of the species is at equilibrium 
with the current climate (Araújo and Pearson 
2005). However, some models using data from 
the native ranges of invasive species have been 
able to accurately predict areas of introduction, 
but not necessarily the total area of invasion (e.g., 
Broennimann et al. 2007; Barbosa et al. 2013). 
This failure to predict the extent of invasions has 
been attributed to a low degree of equilibrium 
with climate in their native range (Peterson 2011). 
To reduce such biases in estimates of a species’ 
potential distribution it has been suggested that, 
whenever possible, data from the entire range 
(native and invaded) should be used when 
building models (Broennimann and Guisan 2008; 
Beaumont et al. 2009a). 

In this context, we quantified the degree 
of exposure of South American PAs to invasion 
by L. catesbeianus and X. laevis under current 
climate conditions. We focused specifically on PAs 
that coincide with biodiversity hotspots in South 
America (Atlantic Forest, Tropical Andes, Chilean 
Winter Rainfall and Valdivian Forests, and Tumbes-
Choco-Magdalena), as they are likely to be of 
greater importance for conservation. First, for each 
invasive species, we built an ensemble of BEMs 
using data from both its native and invaded ranges 
in order to estimate a broad range of climatically 
suitable areas for establishment of the species 
in South America. Second, we combined these 
predictions to build a map that shows the areas 
climatically suitable for the establishment of the 
two invasive species in South America. Third, we 
overlaid the PAs with the map of climatic suitability 
for the two invasive species modeled in order to 
assess the degree of exposure of PAs to invasion. 
Finally, we calculated the potential surface of each 
biodiversity hotspot in South America that may be 
most at risk of invasion by both species.
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MATERIALS AND METHODS

Species data and bioclimatic variables

We obtained worldwide native and invasive 
presence records for L. catesbeianus and X. laevis 
from the Global Biodiversity Information Facility 
online database (GBIF; http://data.gbif.org) and 
from other published sources (see Supplementary 
1). A total of 2,140 presence records were 
compiled for L. catesbeianus, 1,263 from within 
its native range (eastern North America) and 877 
from invaded areas in Asia, Europe, western North 
America, Central America and South America. For 
X. laevis, 175 records were obtained, 93 from its 
native range (Mediterranean zone of the Cape 
Region of South Africa) and 82 from invaded 
areas in Asia, Europe, North America, and South 
America.

We extracted 19 current bioclimatic variables 
from the WorldClim database (Hijmans et al. 2005; 
see http://www.worldclim.org for description of 
the variables) with a spatial resolution of 10 arc-
minutes. We then selected six bioclimatic variables: 
(i) mean temperature diurnal range (mean of the 
monthly difference of the maximum and minimum 
temperatures), (ii) temperature seasonality, (iii) 
mean temperature of wettest quarter, (iv) annual 
precipitation, (v) precipitation of driest month, and 
(vi) precipitation seasonality. These bioclimatic 
variables were selected based on the basis of 
studies carried with the two invasive species 
(Nori et al. 2011a; Loyola et al. 2012, Lobos et al. 
2013), excluding highly correlated variables (pair-
wise rPearson < 0.75; Braunish et al. 2013) to reduce 
multicollinearity and subsequent model over-fitting 
(Jiménez-Valverde et al. 2011).

We built two equal-area grids (0.16 × 0.16 
degrees of latitude/longitude). The first grid 
covered the study area for L. catesbeianus (the 
full extent of its native range in eastern North 
America and in invaded areas), and the second 
covered the study area for X. laevis (in its native 
range in Mediterranean zone of the Cape Region 
of South Africa as well as in invaded areas). We 
then mapped all the presence records of each 
species into its study area to generate a grid cell 
matrix. We also resampled the values of each 
bioclimatic variable in each grid cell. The grids 
were generated using the software Spatial Analysis 
in Macroecology (SAM v.4.0; Rangel et al. 2010). 
All analyses below were performed using the data 
obtained from these grid cell matrices.

Bioclimatic envelope modelling

For each species, we built an ensemble of the 
BEM (Araújo and New 2007) using four presence-
only methods. Models were fitted using the 
BIOENSEMBLES software for computer-intensive 
modelling of species potential distributions (Diniz-
Fi lho et al.  2009). BIOENSEMBLES, user-
friendly software, is an integrated framework for 
ensemble forecasting of species distributions that 
has modeling methods with different strategies 
of adjustment and type of input data (Terribile 
et al. 2012), such as presence-absence records 
methods (e.g. ,  Generalized Linear Model), 
presence-background methods (e.g., Maxent), 
presence-pseudoabsence methods (e.g., GARP), 
and presence-only methods (e.g., BIOCLIM) 
(Peterson et al. 2011). Herein, the methods used 
were BIOCLIM (e.g., Busby 1991), Euclidean 
Distance (e.g. ,  Farber and Kadmon 2003), 
Gower Distance (e.g., Carpenter et al. 1993), and 
Mahalanobis Distance (e.g., Farber and Kadmon 
2003). Presence-only methods were chosen 
because absence records do not always imply a 
lack of climatic suitability (see Bradley 2009 for 
more details).

We obtained BEMs as follows. First, for 
each method, BEMs were built using a calibration 
subset of 70% of all the presence records (i.e., 
native and invasive range) selected at random 
and then evaluated with the remaining 30%; 
this process was repeated 50 times. We use 
63 possible combinations (2n - 1, where “n” is 
the number of variables) of the six bioclimatic 
variables (Diniz-Filho et al. 2009; Collevatti et 
al. 2013). Thus, for each species and modeling 
method used, our modeling procedure yielded 
3150 BEMs (63 combinations of bioclimatic 
variables × 50 cross-validation). Then continuous 
predictions of the models were converted into 
a binary vector of 0/1, indicating forecasted 
presences and absences in each grid cell using a 
cut-off point. True Skill Statistics (TSS) (Allouche 
et al. 2006), varying between -1 and 1, was used 
to evaluate the performance of the models. Finally, 
all models outputs with TSS > 0.5 were combined 
(an average weighted by the TSS value of each 
model) to generate a map of the frequency of BEM 
supporting the occurrence of species in each grid 
cell (Diniz-Filho et al. 2009; Collevatti et al. 2013). 
Herein we use these frequencies of occurrence of 
a species as a proxy of climatic suitability for the 
establishment of the invasive species in each grid 
cell.
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We then built a map of climatic suitability 
for each species using the outputs of  the 
BEMs, interpreted as an index of the potential 
for establ ishment for the species in South 
America. We then overlaid the maps of species 
to obtain a combined estimate of the potential for 
establishment of the two invasive species in South 
America. All maps were built using the software 
ArcGIS 10 (ESRI 2010).

Protected areas

We identified PAs in South America that may 
be most at risk of invasion by L. catesbeianus 
and X. laevis under current climate conditions, 
focusing on PAs that coincide with global 
biodiversity hotspots. Firstly, we downloaded the 
polygons of the biodiversity hotspots in South 
America from Conservation International (http://
www.conservation.org/) as well as the polygons 
of the PAs from the World Database on Protected 
Areas (http://www.protectedplanet.net/). Second, 
we filtered the PAs to retain only those PAs 
that overlapped with biodiversity hotspots in 
South America. This resulted in 593 PAs within 
biodiversity hotspots in South America. Finally, 
we overlaid the PAs within biodiversity hotspots 
that coincided with the map of modeled climatic 
suitability for the two invasive species in order 
to assess the degree of exposure of PAs to risk 
of invasion. In addition, we also calculated the 
potential surface of each biodiversity hotspot in 
South America that may be most at risk of invasion 
by both species.

All spatial analyses were performed using 
the software ArcGIS 10. We only considered strict 
PAs (PA categories I – IV, International Union for 
Conservation of Nature (IUCN)) (UNEP-WCMC 

2012). We used five classes of risk of invasion 
according to the climatic suitability of the total area 
in the PA (0 to 20, 20 to 40, 40 to 60, 60 to 80, and 
80 to 100%), which we designate as presenting 
no, low, medium, high, and critical invasion risk, 
respectively. 

RESULTS

Current climatically suitable areas coincided 
strongly with areas in which the invasive species 
have already been recorded in South America (Fig. 
1a and 1b). Furthermore, low climatic suitability for 
L. catesbeianus was predicted in central eastern 
parts of Brazil, southeastern and northwestern 
portions of Argentina, northern Chile, southwestern 
Bolivia, the coast of Peru, the eastern portion of 
Colombia, and the southern and northern portions 
of Venezuela (Fig. 1a). For X. laevis, low climatic 
suitability was predicted in major portions of the 
northern and central eastern parts of the continent, 
southwest Bolivia, a southern portion of Peru, the 
northern and southern portions of Chile, and the 
northwest, southern and central western portions 
of Argentina (Fig. 1b). In parallel the combination 
of the current climatically suitable areas of both 
species (Fig. 1a and 1b) showed a large overlap in 
the potential distribution of L. catesbeianus and X. 
laevis in South America (Fig. 1c).

According to the models, up to 87.5% of the 
PAs within the Atlantic Forest may be at risk of 
invasion by L. catesbeianus and X. laevis under 
current climate conditions, followed by the Cerrado 
(51.7%), Tropical Andes (37.6%), Tumbes-
Choco-Magdalena (22.4%), and Chilean Winter 
Rainfall and Valdivian Forests (20.5%) (Table 1). 
Additionally, 74.72% of the surface of the Atlantic 

Table 1.  Percentage of Protected Areas suitable (i.e., Percentage by number of Protected Areas suitable) 
within each biodiversity hotspot in South America that may be most at each class of risk from invasions 
of both non-native invasive species (Lithobates catesbeianus and Xenopus laevis) under current climate 
conditions

Class of risk

Biodiversity hotspot Critically
1 - 0.8

High
0.8 - 0.6

Medium
0.6 - 0.4

Low
0.4 -0.2

None
0.2 - 0

Atlantic Forest 87.5 0.0 0.0 0.0 12.5
Cerrado 51.7 0.0 2.5 0.0 45.8
Chilean Winter Rainfall and Valdivian Forests 20.5 0.0 2.6 10.2 66.7
Tropical Andes 37.6 1.5 3.8 0.7 30.8
Tumbes-Choco-Magdalena 22.5 0.0 2.8 15.4 59.3
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Fig. 1.  Map of climatic suitability for the establishment of Lithobates catesbeianus (a), Xenopus laevis (b), and of both species (c) in 
South America. Back dots indicate presence records of the species and blue are Protected Areas within biodiversity hotspots in South 
America.

(a)

(c)

(b)
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Forest was projected as a suitable climatic area 
for the establishment of both non-native invasive 
amphibian species, followed by the Cerrado 
(28.04%), Tropical Andes (21.23%), Chilean Winter 
Rainfall and Valdivian Forests (15.15%), and 
Tumbes-Choco-Magdalena (1.64%) (Fig. 2).

DISCUSSION

Pred i c t i on  i n  t he  ea r l y  s tages ,  w i th 
subsequent prevention, is the most effective 
management strategy for invasive species, and 
is often the most efficient too (Richardson and 
Thuiller 2007). Bioclimatic envelope models are 
one potentially useful tool to predict climatically 
suitable areas for the establishment of invasive 
species in non-native areas (Jiménez-Valverde et 
al. 2011), as well as in PAs (e.g., Beaumont et al. 
2009b; Vicente et al. 2013). For instance, in the 
case of L. catesbeianus, two studies modeled the 
potential distribution of the species in PAs in South 
America. Nori et al. (2011b) modeled the potential 
distribution of L. catesbeianus in PAs (six IUCN 
categories) in South America, concluding that over 
30% of the surface of all the IUCN PAs in South 
America are climatically suitable for establishment 
of the species under current conditions. On the 
other hand, Loyola et al. (2012) modeled the 
potential distribution of L. catesbeianus in PAs 

(IUCN categories I - IV with PAs > 5000 hectares) 
in the Brazilian Atlantic Forest and showed that 
several PAs are suitable for establishment of the 
species under current conditions. In contrast, to 
our knowledge no studies have quantified the 
degree of exposure of PAs to invasion by X. laevis 
in South America using BEMs. Here, we quantified, 
for the first time, the percentage of suitable 
PAs within each biodiversity hotspot in South 
America that may be most at risk of invasion by L. 
catesbeianus and X. laevis (Fig. 2a) under current 
climate conditions. Our results show that several 
PAs within biodiversity hotspots in South America 
may be at risk of invasion by L. catesbeianus and 
X. laevis under current climate conditions (Table 1). 
Although there were differences in the percentage 
of suitable PAs among biodiversity hotspots, 
our results indicate that all biodiversity hotspots 
in South America have PAs that may be at risk 
of invasion by both species (Fig. 2) (also see 
Supplementary - figure A1, which provides results 
for each invasive species).

The biodiversity of amphibian species peaks 
in tropical regions, especially in biodiversity 
hotspots in South America (Myers et al. 2000), 
making this a crit ical region for amphibian 
conservation. However, a large amount of the 
native habitat in biodiversity hotspots in South 
America has been transformed into numerous 
smaller isolated patches (e.g., Silva and Bates 
2002; Armenteras et al. 2003; Ribeiro et al. 2009; 
Sarkar et al. 2009) and, consequently, many 
current PAs are increasingly isolated, especially 
PAs within the Atlantic Forest and the Cerrado 
(e.g., Silva and Bates 2002; Ribeiro et al. 2009), 
which in turn make the PAs more susceptible to 
invasion. Additionally, amphibians are thought 
to be the most threatened vertebrate group and 
many authors consider that they are declining 
globally (e.g., Stuart et al. 2004). Invasive species 
have been suggested as a possible extrinsic 
cause of amphibian decline (Kats and Ferrer 
2003) together with climate change, changes 
in land use and disease (Hof et al. 2011). In 
invaded areas, L. catesbeianus and X. laevis 
have caused substantial ecological damage to 
native organisms, especially to native species of 
amphibian (e.g., Kraus 2009; Lillo et al. 2011). In 
the case of L. catesbeianus, the decline of some 
native amphibian species has been associated 
with its establishment worldwide (e.g., Kupferberg 
1997); but see also Pearl et al. 2004 and Kats 
and Ferrer 2003), although evidence that the 
species is negatively affecting local amphibian 

Fig. 2.  Percentage of suitable surface within each biodiversity 
hotspot in South America that may be most at risk from 
invasions of both non-native invasive species (Lithobates 
catesbeianus and Xenopus laevis) under current climate 
conditions. AF = Atlantic Forest, TA = Tropical Andes, CWRVF = 
Chilean Winter Rainfall and Valdivian Forests, TCM = Tumbes-
Choco-Magdalena.
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communities in South America is still lacking (Both 
et al. 2014). In addition, L. catesbeianus and X. 
laevis are recognized as vectors of the fungus 
Batrachochytrium dendrobatidis (e.g., Solis et al. 
2010; Schloegel et al. 2010), the agent responsible 
for chytridiomycosis, a disease considered one 
of the main causes of decline and extinction in 
amphibian populations worldwide (Daszak et 
al. 2003; Skerratt et al. 2007). Therefore, the 
presence of L. catesbeianus and X. laevis in South 
American PAs is dangerous.

A range of preventive measures for L. 
catesbeianus and X. laevis in South America has 
been recommended in previous studies (Giovanelli 
et al. 2008; Nori et al. 2011a, b; Urbina-Cardona 
et al. 2011; Loyola et al. 2012; Lobos et al. 2013). 
We agree with these studies and reinforce the 
urgency in implementing effective prevention 
programs in South American PAs. Another issue 
to consider is that L. catesbeianus and X. laevis 
have already established populations in some 
South American hotspots (Both et al. 2011; 
Sanabria et al. 2011), including PAs in the case of 
L. catesbeianus (Lucas and Fortes 2008; Schüttler 
and Karez 2008; Both et al. 2011). Populations 
of L. catesbeianus and X. laevis are difficult to 
eradicate once established (Fouquet and Measey 
2006; Adams and Pearl 2007) and, according 
to Leung et al. (2002), eradication programs are 
less cost-effective than prevention programs. 
However, several methods have been proposed 
to eradicate and/or control L. catesbeianus in 
North America (see Louette et al. 2012 for some 
proposed methods). Additionally, for both invasive 
species, authors have recommended interventions 
to reduce the permanency of lentic systems, 
as an eradication and/or control measure (e.g., 
Fuller et al. 2011; Lobos et al. 2013; Peterson et 
al. 2013). Water permanency is an environmental 
gradient well known to structure lentic communities 
(see Wellborn et al. 1996). Thus, such measures 
should be carefully and particularly considered, 
since they can have more negative impacts upon 
native fauna than the invasive species itself. 
Therefore, in parallel with prevention programs, 
we also recommend strict control of activities that 
represent high-risk pathways for accidental and/or 
intentional introduction of these species in natural 
environments (e.g., frog farms and the pet trade).

CONCLUSIONS

In summary, our study is the first to quantify 
the degree of exposure of South American PAs 
to invasion by L. catesbeianus and X. laevis, and 
such information provides a valuable baseline for 
implementing management programs. Moreover, 
our results showed a large overlap in the potential 
distribution of L. catesbeianus and X. laevis in 
South America (Fig. 1c). Therefore, we suggest 
that future studies should assess the potential 
impact of co-occurrence of these invasive species 
upon native fauna (e.g., Araújo et al. 2011). 
Knowledge about the effects of interactions among 
competing species could provide additional support 
to decision making on eradication and/or control 
and prevention priorities.
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