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Abstract 29 

Background and purpose: Small conductance Ca
2+

-activated K
+
 (KCa2) channels 30 

represent a promising atrial-selective target for treatment of atrial fibrillation (AF). 31 

Here, we establish the mechanism of KCa2 inhibition by the new compound AP14145. 32 

Experimental approach: Using site directed mutagenesis binding determinants for 33 

AP14145 inhibition were explored. AP14145 selectivity and mechanism of action were 34 

investigated by patch clamp recordings of heterologously expressed KCa2 channels. The 35 

biological efficacy of AP14145 was assessed by measuring atrial effective refractory 36 

period (AERP) prolongation in anaesthetised rats and a beam walk test was performed 37 

in mice to determine acute CNS related effects of the drug. 38 

Key results: AP14145 was found to be an equipotent negative allosteric modulator of 39 

KCa2.2 and KCa2.3 channels (IC50 = 1.1 ± 0.3 µM L
-1

). The presence of AP14145 (10 40 

µM L
-1

) increased the EC50 of Ca
2+

 on KCa2.3 from 0.36 ± 0.02 µM L
-1

 to 1.2 ± 0.1 µM 41 

L
-1

. The inhibitory effect strongly depended on two amino acids, S508 and A533. 42 

AP14145 concentration-dependently prolonged AERP in rats. Moreover, AP14145 (10 43 

mg kg
-1

) did not trigger any apparent CNS effects in mice. 44 

Conclusion and implications: AP14145 is a negative allosteric modulator of KCa2.2 45 

and KCa2.3 that shifts the calcium dependence of channel activation, an effect strongly 46 

dependent on two identified amino acids. AP14145 prolongs AERP in rats and does not 47 

trigger any acute CNS effects in mice. The understanding of how KCa2 inhibition is 48 

accomplished at the molecular level will help future development of drugs targeting 49 

KCa2 channels. 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 



Introduction 58 

Small conductance calcium-activated potassium channels (KCa2.1, KCa2.2 and KCa2.3 59 

channels) are widely distributed in humans (Chen et al., 2004), where they serve 60 

important roles such as contributing to the afterhyperpolarization in neurons (Pedarzani 61 

et al., 2005),  the endothelium-derived hyperpolarization (Milkau et al., 2010) or the late 62 

repolarization phase in cardiomyocytes (Li et al., 2009). These channels are 63 

constitutively associated to calmodulin, which binds intracellular calcium and activates 64 

KCa2 (Adelman, 2016). Since cloning of the channels 20 years ago (Köhler et al., 1996), 65 

they have piqued the interest of pharmacologists in different therapeutic areas. Although 66 

at the beginning most of the efforts were focused on the CNS and the treatment of 67 

neurodegenerative and psychiatric diseases (Lam et al., 2013), the therapeutic potential 68 

of KCa2 channels rapidly spread to other areas (Wulff et al., 2007). Currently, one of the 69 

most promising therapeutic opportunities for KCa2 channel modulation seems to be in 70 

cardiovascular diseases, more specifically in atrial fibrillation (AF).  71 

AF is the most common type of cardiac arrhythmia and it is considered one of the 72 

largest public health problems in developed countries (Zoni-Berisso et al., 2014). The 73 

disease is characterized by rapid uncoordinated activation of the atria, resulting in 74 

reduced ventricular filling and blood stasis in atria, which predisposes to heart failure 75 

and thromboembolic stroke (Nattel, 2002). Unfortunately, current rhythm therapy is 76 

only moderately effective and may trigger serious non cardiac as well as ventricular 77 

adverse effects (Waks and Zimetbaum, 2017). 78 

KCa2 channels are considered a promising new target for AF treatment for several 79 

reasons. First, the functional role of KCa2.2 and KCa2.3 channels appears to be greater in 80 

the atria as compared to ventricles which may help avoiding undesired ventricular 81 

adverse effects (Diness et al., 2015). Second, KCa2 channel inhibition prolongs the atrial 82 

effective refractory period (AERP, Diness et al., 2010), a pharmacological strategy that 83 

has successfully been used in the development of other class III antiarrhythmic drugs 84 

(Schmitt et al., 2014). Furthermore, common variants of the genes that encode KCa2.2 85 

and KCa2.3 have been associated with atrial fibrillation (Ellinor et al., 2010; 86 

Christophersen et al., 2017). 87 

The first described negative allosteric modulator was NS8593 (Fig 1), a chiral 2-88 

aminobenzimidazole derivative able to inhibit KCa2 channels at nanomolar 89 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=381
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=382
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=383
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2318


concentrations with no subtype selectivity (Strøbæk et al., 2006; Sørensen et al., 2008). 90 

The negative modulation of NS8593 relies in the compound’s ability to increase Ca
2+

 91 

EC50 for KCa2 activation and its binding site has been found to be in the inner pore 92 

vestibule of the channel (Jenkins et al., 2011).  93 

KCa2 channels are widely expressed in the CNS (Stocker and Pedarzani, 2000) and 94 

therefore one of the challenges encountered during the development of compounds 95 

targeting peripheral KCa2 is potential CNS mediated adverse effects (Habermann, 1984). 96 

It is thus important to develop compounds with reduced blood brain barrier penetrance 97 

in order to avoid possible adverse effects. In this work, we present a novel KCa2 98 

negative allosteric modulator, AP14145 (Fig 1), a structurally close analogue of 99 

NS8593 designed to inhibit specifically peripheral KCa2 channels by preventing its entry 100 

in the CNS. In contrast to NS8593, it does not appear to have any immediate CNS 101 

effects when dosed to rodents and therefore represents a new and improved tool 102 

compound for studying KCa2 channel inhibition in rodents in vivo. 103 

 104 

Methods 105 

Molecular biology 106 

rKCa2.3 WT (wild type) and rKCa2.3 S508T A533V were inserted in pXOON plasmids. 107 

The rKCa2.3 NS8593 insensitive mutant was obtained by introducing the double point 108 

mutation to the WT rKCa2.3 with the oligonucleotides 109 

CCATAGCCAATggtAAGGAACGTGATG for S508T and 110 

CATCATGGGTgtaGGCTGCACTGCCCTC for A533V, using PfuUltra II Fusion 111 

polymerase (Agilent, USA) and T4 ligase (New England Biolabs, USA). Note that S508 112 

and A533 on the rKCa2.3 are the equivalent positions of S507 and A532 on the hKCa2.3 113 

channel. Competent E. coli were transformed using an aliquot of the mutagenesis 114 

product by thermic shock and the plasmid DNA was purified using standard methods. 115 

The hKCa3.1 T250S V275A mutant was kindly donated by Dorte Strøbæk. All 116 

constructs were verified by sequencing. 117 

Cell culture and cell preparation 118 

To study the effect of AP14145 on the hKCa1.1 and hKCa2.x channels we used four 119 

different stable HEK293 cell lines expressing hKCa1.1, hKCa2.1, hKCa2.2 or hKCa2.3 120 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=384
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=380


channels obtained from NeuroSearch A/S (Ballerup, Denmark). The cell lines were 121 

established as described in Strøbæk et al., 2004. For the identification of the binding 122 

determinants of AP14145, wild-type HEK293 cells were transiently co-transfected with 123 

rKCa2.3 WT, rKCa2.3 S508T A533V, hKCa3.1 WT or hKCa3.1 T250S V275A and 0.1 µg 124 

of eGFP plasmid DNA using standard Lipofectamine™ (Thermo Fisher, USA) 125 

protocols. Between one or two days after the transfection, patch clamp experiments 126 

were conducted. The cells were cultured in Dulbecco’s modified Eagle’s medium 127 

(DMEM1965, Thermo Fisher, USA) supplemented with 26.2 mM L
-1

 NaHCO3, 25 mM 128 

L
-1

 HEPES, 10 ml L
-1

 Glutamax (Gibco, USA), 10 % foetal bovine serum (Biowest, 129 

France) and 100 U ml
-1

 of penicillin/streptomycin (Sigma, Germany). In the case of the 130 

stable cell lines, 100 µg ml
-1

 geneticin (Gibco, USA) were added to the medium. On the 131 

day of the experiment, cells were detached from the flask using 1 ml of Detachin™ 132 

(Amsbio, United Kingdom). After being washed with free calcium and magnesium PBS 133 

the cells were plated on 0.5 mm Ø coverslips. In the case of inside-out patch clamp, the 134 

coverslips were treated overnight at 37ºC with 50 mg ml
-1

 poly-L-lysine (Sigma, 135 

Germany) to get firmer cell attachment.  136 

Solutions and drugs 137 

KCa2 and KCa3.1 patch-clamp experiments were conducted using symmetrical K
+
 138 

solutions. The extracellular solution contained 0.1 mM L
-1

 CaCl2, 3 mM L
-1

 MgCl2, 154 139 

mM L
-1

 KCl, 10 mM L
-1

 HEPES and 10 mM L
-1

 glucose (pH = 7.4 and 285 - 295 140 

mOsm). The intracellular solution contained 8.106 mM L
-1

 CaCl2 (final free Ca
2+

 141 

concentration of 400 nM L
-1

), 1.167 mM L
-1

 MgCl2, 10 mM L
-1

 EGTA, 154 mM L
-1

 142 

KCl, 10 mM L
-1

 HEPES, 31.25/10 mM L
-1

 KOH/EGTA and 15 mM L
-1

 KOH (pH = 143 

7.2). In addition, to study the activation of the channel with or without the presence of 144 

AP14145 we used a range of intracellular solutions containing different free Ca
2+

 145 

concentrations (0.01 - 30 µM L
-1

). The composition of these intracellular solutions was 146 

determined as described in Strobaek et al., 2006.  147 

For KCa1.1 the extracellular solution contained 2 mM L
-1 

CaCl2, 1 mM L
-1

 MgCl2, 145 148 

mM L
-1

 NaCl, 4 mM L
-1

 KCl, 10 mM L
-1

 HEPES and 10 mM L
-1

 glucose (pH = 7.4 and 149 

285 - 295 mOsm). The intracellular solution contained 5.374 mM L
-1

 CaCl2 (final free 150 

Ca
2+

 concentration of 100 nM L
-1

), 1.75 mM L
-1

 MgCl2, 120 mM L
-1

 KCl, 10 mM L
-1

 151 

HEPES, 31.25/10 mM L
-1

 KOH/EGTA (pH = 7.2). 152 



The osmolarity of the intracellular solutions was adjusted using sucrose (Sigma, 153 

Germany) to match the extracellular solutions. 154 

AP14145 (N-(2-{[(1R)
-1

-[3-(trifluoromethyl)phenyl]ethyl]amino}
-1

H
-1

,3-benzodiazol-4-155 

yl)acetamide) was synthetized by Syngene (India) as described in WO 2013104577 A1. 156 

For in vitro experiments, AP14145 was solubilized in pure DMSO (Sigma-Aldrich, 157 

Germany) at 10 mM L
-1

 stock solutions. These stock solutions were stored at -20°C and 158 

aliquots were solubilized at the desired concentration on the day of the experiment. For 159 

in vivo experiments, 5 mg ml
-1

 AP14145 were dissolved in a vehicle consisting of 50% 160 

polyethylene glycol (PEG) 400 (Merck, Germany) and 50% sterile saline (PanReac 161 

AppliChem, Germany) for infusion and the solution was sterile filtered (Nalgene, Rapid 162 

flow 90 mM L
-1

 filter unit, Thermo Scientific, USA) before use. The KCa1.1 selective 163 

inhibitor paxilline was purchased from Sigma-Aldrich (Germany). 164 

Electrophysiology 165 

Patch clamp recordings were made using a HEKA EPC9 amplifier and the Patchmaster 166 

software (HEKA Elektronik, Germany) at room temperature. Patch pipettes were pulled 167 

using a horizontal DMZ Universal Puller (Zeitz, Germany) with resistances of 2.5 ± 0.1 168 

MΩ for whole-cell patch clamp and 2.2 ± 0.6 MΩ for inside-out patch clamp. KCa2 and 169 

KCa3.1 currents were elicited every 2 seconds using a 200 ms voltage ramps ranging -80 170 

mV to +80 mV from a holding potential of 0 mV. KCa1.1 currents were elicited every 2 171 

seconds using a 200 ms voltage ramps ranging -80 mV to +50 mV from a holding 172 

potential of 0 mV. Data were sampled at 10 kHz. Series resistance values were 5.4 ± 0.6 173 

MΩ with 80% of compensation. Two Bessel filters of 10 kHz and 2.9 kHz were used to 174 

avoid background noise.  175 

Plasma Protein Binding 176 

Plasma protein binding (PPB) was experimentally determined by Syngene International 177 

(India) in rat plasma using rapid equilibrium dialysis. 178 

Ex vivo experiments 179 

Ex vivo and in vivo experiments were performed under a license from the Danish 180 

Ministry of justice (license No 2013
-1

5-2934/00964) and in accordance with the Danish 181 

guidelines for animal experiments according to the European Commission Directive 182 

86/609/EEC. The animals were housed in groups of 2-4 in high-top cages with bedding 183 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2309


(wood shavings) and under constant climatic conditions (22°C) at the Department of 184 

Experimental Medicine, University of Copenhagen. The animals were kept at a 12 hour 185 

light-dark cycle with ad libitum access to clean water and standard laboratory rodent 186 

diet. 187 

Isolated perfused heart preparation 188 

Rats express KCa2 channels in the atria, and have previously been used to study the 189 

effect of KCa2 inhibition on atrial refractoriness. Male Sprague-Dawley rats (250 - 350 190 

g, 1-3 months old, Janvier Labs, France) were anaesthetized with fentanyl‐midazolam 191 

mixture, 5 mg ml
-1

 dose 0.3 mL/100 g BW, s.c. A tracheotomy was performed in the 192 

ventilated rat. The aorta was cannulated and the heart was excised, and connected to a 193 

Langendorff retrograde perfusion setup (Hugo Sachs Elektronik, Harvard Apparatus 194 

GmbH, Germany). The heart was retrogradely perfused with Krebs–Henseleit buffer (in 195 

mM L
-1

: NaCl 120.0, NaHCO3 25.0, KCl 4.0, MgSO4 0.6, NaH2PO4 0.6, CaCl2 2.5, 196 

Glucose 11.0, saturated with 95% O2 and 5% CO2, 37°C, pH 7.4) at a constant 197 

perfusion pressure of 80 mmHg. The electrical activity of the heart was measured by 198 

volume conducted electrocardiograms (ECGs) and the atrial epicardial monophasic 199 

action potentials by an electrode on the right atrium. The signal was sampled at 1 kHz 200 

(PowerLab systems, ADInstruments, UK) and monitored by using LabChart 7 software 201 

(ADInstruments, UK). The hearts were immersed into a temperature‐controlled and 202 

carbonated bath containing Krebs–Henseleit buffer. A bipolar pacing electrode was 203 

placed on the right atria in order to stimulate the heart and measure the AERP, which 204 

was defined as the longest S1-S2 interval failing to elicit an action potential. The AERP 205 

was measured every five minutes by applying electrical stimulation (2 times rheobase) 206 

with a fixed interval of 133 ms (S1 stimulation) and for every 10
th

 beat an extra stimulus 207 

(S2 stimulation) was applied with 1 ms increments.  208 

Baseline recordings were made for at least 20 minutes and continued until the ECG 209 

morphology and AERP recording were stable. After the baseline recording, four 20-210 

minute episodes followed in which, the heart, was perfused with: 1) 1 µM L
-1

 paxilline 211 

2) 3 µM L
-1

 paxilline 3) washout 4) 10 µM L
-1

 AP14145 and AERP measurements were 212 

performed every fifth minute. Measurements after 20 minutes of drug perfusion or 213 

washout were used for statistical analysis.  214 

In vivo experiments 215 



Closed chest recording of atrial refractoriness in rats 216 

A total of 18 1-3 months old male Sprague-Dawley rats (Janvier, France) weighing 400-217 

550 g were anesthetized and randomly divided in three groups: one group receiving 218 

AP14145 as bolus injections (n=6), a time matched control group receiving vehicle as 219 

bolus injections (n=6), and a group receiving AP14145 as a constant-rate infusion 220 

(n=6). The rats were anaesthetized with 3 % isofluran/oxygen and an intravenous 221 

catheter was placed in the femoral vein for drug injection. Needle ECG electrodes were 222 

placed in each limb for ECG recordings (ADinstruments, UK). The temperature of the 223 

rats was monitored and kept stable during the experiment with a heating lamp (37 
o
C). 224 

A catheter with eight electrodes (Millar Inc., US) was placed in the right atrium of an 225 

anaesthetized rat via the jugular vein. Two of the electrodes were used to pace the 226 

atrium and six electrodes were used to measure the electrical activity in the atrium. This 227 

combination allows measurements of the AERP and the changes in AERP as a 228 

consequence of injection of the test compound. Once the experiment was completed, 229 

rats were euthanized by a mixture of 200 mg ml
-1

 pentobarbital and 20 mg ml
-1 230 

lidocaine hydrochloride (Glostrup Apotek, Denmark) i.v. injection. Since the risk of 231 

placebo effect and subjective interpretation of the results was inexistent or minimal, no 232 

blinding was used. 233 

Measurement of AERP  234 

Each experiment lasted for at least 60 minutes and was divided into three 20-minutes 235 

episodes. During the entire experiment the ECG was monitored. The AERP was 236 

measured by applying electrical stimulation (5 times rheobase) with a fixed interval of 237 

120 ms (S1 stimulation) and for every 10th beat an extra stimulus (S2 stimulation) was 238 

applied with 1 ms increments. The AERP was defined as the longest S1-S2 interval 239 

failing to elicit an action potential. Between the AERP recordings, the heart remained 240 

unpaced. Baseline AERP recordings with no compound present were made every 5th 241 

minute for 20 minutes before adding test compound. 242 

Increasing bolus dosing 243 

After the baseline recording, two 20-minute episodes followed in which two groups of 244 

rats (n=6 each) were injected with increasing doses of AP14145 (2.5 mg kg
-1

 and 5.0 245 

mg kg
-1

) or equivalent volumes of vehicle (50% PEG-400 and 50% saline). The 246 



injection time was 30 seconds. AERP was measured 1, 5, 10 and 15 minutes after the 247 

start of each injection. 248 

Constant rate infusion of AP14145 249 

After the baseline recording, a third group of rats received a constant rate infusion of 40 250 

mg kg
-1

 h
-1

 AP14145 over 20 minutes followed by a 20-minute post-infusion period. In 251 

these animals the AERP was measured every 2 minutes during and after infusion. 252 

Beam walk test - assessment of motor balance and coordination in mice 253 

A beam walk test was performed in mice in order to assess CNS exposure of KCa2 254 

inhibitors in vivo.  The mouse beam walk test is a validated test for addressing motor 255 

function (Brooks and Dunnett, 2009). Three groups of 1-2 months old male NMRI mice 256 

(Taconic Biosciences, USA) weighing 23-49 g were used. The mice were randomly 257 

assigned to either the vehicle control group, a 10 mg kg
-1 

NS8593 or a 10 mg kg
-1

 258 

AP14145 group. The mice were placed on a 1 meter wooden beam (ø 12 mm) and 259 

briefly trained in crossing the beam. After training, a 1 minute baseline recording was 260 

initiated and the number of falls and slips were noted. Hereafter the mice were 261 

randomly assigned to receive KCa2 inhibitors or vehicle (50% PEG-400 and 50% saline) 262 

by i.v. bolus injection in the tail vein. The mouse was observed immediately after 263 

injection for any behavioural changes. If any adverse effects occurred, the mouse was 264 

euthanized. Otherwise the mice were observed for behavioural changes and challenged 265 

with the beam walk 12 minutes post injection. All experiments were documented by 266 

video recordings. 267 

Data analysis  268 

Data was extracted from PatchMaster and analysed using GraphPad Prism 7.  269 

To calculate the IC50 value of AP14145, the measured currents were first normalized. 270 

Recorded currents without the presence of the drug were used as baseline and currents 271 

recorded at the highest tested concentration of AP14145 (30 µM L
-1

) were used as total 272 

inhibition of the channel. Individual IC50 values for each experiment were calculated 273 

using the equation: 274 

       
           

             
 



where X is the log of dose of AP14145 and Y is the normalized measured current. In all 275 

cases a Hill slope of -1.0 was considered. Individual IC50 values were later used to 276 

obtain the final x  ± SEM. IC50. The individual IC50 values were then used in student’s t-277 

tests to determine subtype selectivity.  278 

To calculate the EC50 of calcium, the values were normalized using the currents 279 

recorded at the lowest calcium concentration (0.01 µM L
-1

) for total inactivation and at 280 

the highest calcium concentration (30 µM L
-1

) for maximum activation of the channel. 281 

Individual EC50 values for each experiment were calculated using the equation: 282 

       
           

                         
 

where X is the log of dose of calcium and Y is the normalized measured current with 283 

variable Hill slope. Individual EC50 values were used to determine the final x  ± SEM 284 

EC50. 285 

Currents were also normalized to assess and compare the inhibitory effect of 10 µM L
-1 286 

AP14145 on HEK cells expressing KCa1.1, KCa2.1, KCa2.2, KCa2.3, KCa2.3 S508T 287 

A532V, KCa3.1 or KCa3.1 T250S V275A. For each individual cell, 0% current was 288 

defined as 0 nA and 100% current was defined as the current recorded in the absence of 289 

the compound.  he final results are summarized as x     EM of the individual values  290 

To quantify and compare the activation and inhibition effects of 10 µM L
-1 

NS309 and 291 

10 µM L
-1 

AP14145 on the KCa2.3 channel, values were normalized for each individual 292 

cell. In this case, 0 was defined as 0 nA and currents recorded in the absence of both 293 

compounds were defined as 1.  hese individual values were used to calculate the final x  294 

± SEM. 295 

The last ten data points obtained after the application of a new compound or solution 296 

and corresponding to the steady state were used to create every single value.  297 

Student’s t-test was performed to assess statistical significance of the effect of 298 

AP14145. P values < 0.05 were considered significant.  299 

Physicochemical properties of AP14145 and NS8593 were calculated using the Instant 300 

JChem (ChemAxon) software. 301 

Perfused rat heart data and closed chest continuous data are summarized using the x  ± 302 

SEM. A one-way ANOVA with  ukey’s comparison post-test was used to compare the 303 



effect of paxilline and AP14145 on the isolated rat heart. Multiple t tests with Holm-304 

 idak’s correction for multiple comparisons were used to compare AERP differences 305 

between the group of rats that received AP14145 as increasing bolus doses and the time 306 

matched control group at matching time points.  Multiple t tests with Holm- idak’s 307 

correction for multiple comparisons were used to compare each AERP-value during and 308 

after infusion to the mean baseline AERP values. P values < 0.05 were considered 309 

significant. 310 

Nomenclature of Targets and Ligands  311 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 312 

http://www.guidetopharmacology.org, the common portal for data from the 313 

IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are 314 

permanently archived in the Concise Guide to PHARMACOLOGY 2015/16 (Alexander 315 

et al., 2015). 316 

 317 

Results 318 

AP14145 inhibits both hKCa2.2 and hKCa2.3 currents with equal potency 319 

Using inside-out manual patch clamp we tested AP14145 on both the hKCa2.2 and 320 

hKCa2.3 channels. Once the patch was excised, the channels were exposed to the bath’s 321 

intracellular solution, containing 400 nM L
-1

 free [Ca
2+

]. In symmetrical intra- and 322 

extra-cellular K
+
 solutions, hKCa2.3 currents displayed a characteristic inwardly 323 

rectifying current-voltage relationship (Fig 2a). Currents were elicited using voltage 324 

ramps from -80 mV to +80 mV applied every 2 seconds. Once the hKCa2 current was 325 

stable, up to 8 increasing concentrations of AP14145 between 0.01 - 30 µM L
-1

 were 326 

applied and perfused by gravity flow on the patch (Fig 2b). For each concentration the 327 

drug was applied until steady state was reached.  328 

AP14145 was able to inhibit both hKCa2.2 and hKCa2.3 in a concentration-dependent 329 

fashion (Fig 2b, data not shown for hKCa2.2). The effect started at nanomolar 330 

concentrations and total inhibition was reached at 30 µM L
-1

 (Fig 2b). Calculated IC50 331 

for AP14145 on both the hKCa2.2 and hKCa2.3 was 1.1 ± 0.3 µM L
-1

 (n = 7 each, Fig 332 

2c), with a fixed Hill slope of -1.0. The drug consequently did not display any subtype 333 

selectivity between hKCa2.2 and hKCa2.3.  334 



Additionally, the inhibitory effect of AP14145 was also tested on the hKCa1.1, hKCa2.1 335 

and hKCa3.1 channels using whole cell patch clamp for further selectivity assessment 336 

(Fig 3). The application of 10 µM L
-1 

AP14145 inhibited 50 ± 10% of the hKCa1.1 337 

current (n = 6) and 90 ± 4% of the hKCa2.1 current (n = 7). In contrast, hKCa3.1 currents 338 

were not significantly affected by the application of 10 µM L
-1 

AP14145 (n = 8). 339 

AP14145 modifies hKCa2.3 calcium sensitivity 340 

To establish how AP14145 inhibits the channel, we performed inside out patch clamp 341 

recordings to assess the effect of the drug on the calcium sensitivity of the hKCa2.3 342 

channel. Patches were excised from HEK cells stably expressing the hKCa2.3 channel 343 

and currents elicited using voltage ramps. We exposed the patches to eight different free 344 

Ca
2+

 concentrations and calculated the EC50 for calcium activation of the channel in the 345 

absence and presence of 10 µM L
-1

 AP14145 (Fig 4a and b). Free calcium 346 

concentrations ranged from 0.01 - 30 µM L
-1

 and were perfused using gravity flow. 347 

Solutions were applied until steady state was reached.  348 

In the absence of AP14145, hKCa2.3 channels were fully activated at 3 µM L
-1

 of 349 

intracellular Ca
2+

 (Fig 4a), but in the presence of 10 µM L
-1

 AP14145, up to 10 µM L
-1

 350 

were needed to reach total activation of the channel (Fig 4b). At a 10 µM L
-1

 351 

concentration, the drug shifted the calcium-activation curve of the KCa2.3 channel to the 352 

right (Fig 4c), so higher calcium concentrations were needed to activate the channels. 353 

This was also shown by the significantly increased EC50 of Ca
2+

 from 0.36 ± 0.02 µM L
-

354 

1
 (n = 9) to 1.3 ± 0.2 µM L

-1
 (n = 7). Most prominently, the Hill coefficients were also 355 

significantly modified by the presence of AP14145 from 5.2 ± 0.3 to 1.2 ± 0.1 (absence 356 

of AP14145 vs. 10 µM L
-1

 AP14145). 357 

AP14145 reverses the effect of the positive KCa2 gating modulator NS309 358 

The inhibitory effect of AP14145 was also studied in the presence of a high 359 

concentration of the KCa2 positive gating modulator NS309. Patches excised from HEK 360 

cells stably expressing the hKCa2.3 channel were exposed to 400 nM L
-1

 free [Ca
2+

] 361 

intracellular solution. After stabilisation of the baseline, 10 µM L
-1

 NS309 were applied 362 

on the patch, further activating the channel and  increasing hKCa2.3 current by 4 ± 1 fold 363 

(n = 7, Fig 5). When steady state was reached, 10 µM L
-1

 AP14145 were added to the 364 

bath, in the continued presence of NS309. The application of AP14145 reduced hKCa2.3 365 

current to values close to the control baseline, reversing the positive gating effect of 366 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2317


NS309 (Figure 5). Furthermore, in the presence of 10 µM L
-1

 NS309, total current 367 

inhibition by 10 µM L
-1

 AP14145 was significantly diminished from 80 ± 3% (n = 7) to 368 

61 ± 4% (n = 7, Fig 5). 369 

AP14145 inhibition strongly depends on two amino acids, S508 and A533, located in 370 

the inner pore of the channel 371 

To establish possible molecular determinants of rKCa2.3 inhibition by AP14145 we 372 

mutated two amino acids, S508 and A533 (corresponding to S507 and A532 in 373 

hKCa2.3), located in the inner pore of the channel and known to confer sensitivity to the 374 

negative allosteric modulator of KCa2 channels, NS8593 (Jenkins et al., 2011).  375 

Whole-cell patch clamp experiments were conducted on transiently transfected HEK 376 

cells with either the WT rKCa2.3 channel or the rKCa2.3 S508T A533V mutant. The 377 

channels were activated by 400 nM L
-1

 free [Ca
2+

] intracellular solution and currents 378 

were elicited using voltage ramps. Again, in symmetrical intra- and extra-cellular K
+
 379 

solutions, WT rKCa2.3 currents displayed a characteristic inwardly rectifying current-380 

voltage relationship (Fig 6a). In contrast to the WT rKCa2.3 channel, the maximum 381 

current normalized to cell capacitance of the mutant rKCa2.3 was significantly reduced 382 

(WT: 650 ± 96 pA/pF vs. mutant: 87 ± 23 pA/pF, n = 7 each, Fig 6b). Rectification, 383 

determined as the ratio of the current amplitude at – 80 and + 80 mV, was also changed 384 

by the mutation, from 9 ± 1 I-80/I+80 in the WT to 2.9 ± 0.4 I-80/I+80 in the mutant. These 385 

observations are in agreement with what was previously described by Jenkins et al., 386 

2011. After current stabilisation, 10 µM L
-1

 of AP14145 were applied on the cell 387 

transfected with the WT or the mutant protein for 1 - 2 min or until a steady state drug 388 

effect was reached (Fig 6a and b).  389 

The experiments showed that, while rKCa2.3 currents recorded from cells transfected 390 

with the WT channel were strongly inhibited by application of 10 µM L
-1

 AP14145 (Fig 391 

6a), currents recorded from cells transfected with the mutant rKCa.2.3 were only 392 

partially affected by the presence of the compound (Fig 6b). The inhibitory effect of 393 

AP14145 was statistically different between the WT and the mutant when analysed as 394 

the relative current inhibition after application of AP14145 (95 ± 1 % and 22 ± 6 % 395 

inhibition, WT rKCa2.3 vs rKCa2.3 S508T A533V, n = 7 each, Fig 6e). 396 

To ensure that S508 and A533 are important for AP14145 sensitivity, we introduced 397 

these amino acids in their homologous positions in the AP14145 insensitive KCa3.1 398 



channel, T250 and V275, respectively. The KCa3.1 T250S V275A mutant was tested 399 

using whole cell patch clamp to determine its sensitivity to AP14145. After activation 400 

of the channel with 400 nM L
-1

 free [Ca
2+

] intracellular solution and current 401 

stabilization, 10 µM L
-1

 AP14145 was applied on the cell. In contrast to the KCa3.1 WT 402 

channel (Fig 6c), the mutant KCa3.1 current was inhibited by 92 ± 1 % (n =7, Fig 6d), 403 

comparable to the inhibitory effect observed on rKCa2.3.  404 

AP14145 increases the duration of the atrial effective refractory period in isolated 405 

perfused rat hearts 406 

Excised rat hearts were connected to a retrograde perfusion Langendorff setup to 407 

measure the effect of AP14145 on the AERP and discard any KCa1.1 mediated effects. 408 

Once a stable baseline was achieved, the hearts were perfused first with 1 µM L
-1

 of the 409 

KCa1.1 inhibitor paxilline. Twenty minutes later, the dose of paxilline was increased to 3 410 

µM L
-1

 for 20 more minutes. Finally, after a 20 minute wash period, 10 µM L
-1

 of 411 

AP14145 were perfused into the heart.  412 

Paxilline did not affect the AERP in any of the tested doses, but AP14145 was able to 413 

prolong the AERP significantly, from 19 ± 3 ms to 57 ± 12 ms (n = 5, Fig. 7).  414 

AP14145 increases the duration of the atrial effective refractory period in rats 415 

To investigate the in vivo effects of AP14145, 6 male rats received AP14145 in 416 

increasing doses (2.5 mg kg
-1

 and 5 mg kg
-1

) and 6 time matched control rats received 417 

corresponding volumes of vehicle (0.5 ml kg
-1

 and 1 ml kg
-1

, respectively).  418 

One minute after injection of 2.5 mg kg
-1

 AP14145 the AERP was significantly 419 

increased from 37 ± 2 ms in the time matched control group to 53 ± 6 ms (Fig. 8a). The 420 

AERP returned towards baseline values, and five minutes after the injection of 2.5 mg 421 

kg
-1

 the AERP was no longer significantly different from that of the time matched 422 

controls. One minute after injection of 5 mg kg
-1

 AP14145 the AERP was significantly 423 

increased from 31 ± 2 ms in the time matched control group to 58 ± 8 ms (Fig. 8a). 424 

Again, the AERP returned towards baseline values, and ten minutes after the injection 425 

of 5 mg kg
-1

 the AERP was no longer significantly different from that of the time 426 

matched controls. 427 

A third group of rats (n = 6) received a constant rate infusion of 40 mg kg
-1

 h
-1

 over 20 428 

minutes and were monitored for an additional 20 minutes after infusion (Fig 8b). In 429 



these rats the AERP was significantly increased compared to baseline values from 4 430 

minutes after the infusion started (i.e. after a cumulative dose of 2.7 mg kg
-1

). The 431 

AERP continued to increase during the rest of the infusion and returned towards 432 

baseline values after infusion. 433 

AP14145 does not impair motor coordination in mice 434 

A beam walk test was performed in mice in order to assess CNS exposure of KCa2 435 

inhibitors in vivo. Three groups of male NMRI mice were used, a vehicle control group 436 

(30.5 ± 0.3 g, n = 6), a 10 mg kg
-1 

NS8593 (26 ± 1 g, n = 3) and a 10 mg kg
-1

 AP14145 437 

group (36 ± 5 g, n = 6).  438 

Shortly after the injection of 10 mg kg 
-1

 NS8593, all mice showed severe convulsions 439 

making them unable to walk on the beam (Fig 9). Therefore, the mice were euthanized 440 

by cervical dislocation and the experiment was terminated. 441 

In contrast, when mice were injected with AP14145, no acute effects were observed and 442 

the beam walk test was performed 12 minutes after dosing. The mice did not slip or fall 443 

from the beam in either of the two tests and no behavioural changes were observed. 444 

These observations were not different to the ones from the vehicle control group (Fig 9). 445 

 446 

Discussion 447 

KCa2 channels are inwardly rectifying potassium channels (Köhler et al., 1996) widely 448 

distributed in humans, both in the CNS and peripheral tissues (Chen et al., 2004). In the 449 

heart, they play an important role in the late repolarization phase of the atria (Li et al., 450 

2009). Moreover, it has been demonstrated that inhibition of KCa2 channels prolongs the 451 

AERP  (Diness et al., 2010; Skibsbye et al., 2011; Qi et al., 2014; Haugaard et al., 452 

2015). Therefore, the KCa2 channel is considered a promising new target to treat AF. 453 

Here we present a new KCa2 inhibitor, AP14145, which could constitute an important 454 

tool in rodents, to target and study the inhibition of peripheral KCa2.x channels in vivo.  455 

In initial experiments it was established that AP14145 inhibits hKCa2.2 and hKCa2.3 in 456 

an equipotent manner with IC50 values of 1.1 ± 0.3 µM L
-1

. To determine the 457 

mechanism of inhibition of AP14145, we conducted inside-out patch clamp 458 

experiments. Patches were excised from HEK 293 cells stably expressing the hKCa2.3 459 

channel and exposed to a range of intracellular solutions with different free calcium 460 



concentrations. Calcium activation was assessed in the absence and presence of 461 

AP14145. The compound significantly increased the EC50 of Ca
2+

 from 0.36 ± 0.02 µM 462 

L
-1

 to 1.3 ± 0.2 µM L
-1

, thereby shifting the Ca
2+

 activation curve of KCa2 channel 463 

activation to higher values. The Hill coefficients were also modified by the presence of 464 

AP14145 from 5.2 ± 0.3 to 1.2 ± 0.1 (absence of AP14145 vs. 10 µM L
-1

 AP14145). 465 

These results suggest that the drug modifies the channel’s calcium sensitivity and acts 466 

as a negative allosteric modulator, very similar to the previously reported NS8593. The 467 

change of the Hill coefficient may also indicate a loss of calcium cooperativity which 468 

may impede calcium binding. Moreover, the inhibitory effect of AP14145 was studied 469 

in the presence of the KCa2.x  positive allosteric modulator NS309, which is known to 470 

increase the  calcium sensitivity of the channel (Strøbæk et al., 2004). In these 471 

experiments, AP14145 was able to reverse NS309-mediated KCa2.3 channel activation, 472 

suggesting a functional competition between the two compounds and further supporting 473 

the negative allosteric mechanism of AP14145.    474 

In the study by Jenkins et al. in 2011, the binding site of NS8593, another KCa2 negative 475 

allosteric modulator, was found to be located at the inner pore of the channel. This was 476 

an interesting finding since the drug had previously been found to decrease calcium 477 

sensitivity of the channel and could be speculated to locate the binding site at the C-478 

terminal domain, close to the calmodulin binding domain. Instead, binding interacts 479 

with two specific amino acids S507 and A532, located on helixes S5 and S6, 480 

respectively. When these two amino acids were mutated to the corresponding residues 481 

found on the closely related KCa3.1 channel, which is not inhibited by NS8593, they 482 

obtained a KCa2.3 mutant resistant to the effect of the drug, with preserved channel 483 

confirmation and calcium sensitivity. In order to find out if AP14145 and NS8593 484 

shared the same binding site, we conducted whole cell patch clamp experiments on 485 

transiently transfected HEK cells with rKCa2.3 WT or rKCa2.3 S508T A533V, 486 

corresponding to S507 and A532 in the hKCa2.3 channel. While the WT current was 487 

strongly inhibited using 10 µM L
-1

 AP14145, the NS8593 resistant mutant was only 488 

partially affected by the presence of the drug, suggesting that S508 and A533 are 489 

important also for AP14145 inhibition. The loss of AP14145 sensitivity in rKCa2.3 490 

S508T A533V cannot be explained by differences in calcium-activation or channel 491 

conformation as these characteristics are preserved in the mutant (Jenkins et al., 2011). 492 

AP14145 and NS8593 are structurally close analogues (Fig 1) and these experiments 493 



demonstrate that AP14145 and NS8593 appear to share the same inhibition mechanism 494 

as well as some of their binding determinants. Finally, to confirm that S507 and A532 495 

are important for the inhibitory effect of AP14145 on KCa2.3 we introduced these amino 496 

acids in their homologous positions on the insensitive KCa3.1 channel. With the addition 497 

of these two amino acids, AP14145 sensitivity was fully restored in the KCa3.1 channel 498 

(Fig 6), further demonstrating that S507 and A532 are important for AP14145 499 

inhibition. KCa2 channels are widely expressed in the brain, including the cerebellum 500 

(Stocker and Pedarzani, 2000), where they contribute to the action potential 501 

afterhyperpolarization (Hosy et al., 2011). It has further been demonstrated that 502 

inhibition of KCa2.2 channels in cerebellum disturbs the motor output which is revealed 503 

as ataxia or convulsion like phenotype especially apparent in the hind legs (Alvina and 504 

Khodakhah, 2010). As an indication of CNS exposure and inhibition of central KCa2 505 

channels a beam walk test was performed. The test is designed to assess impaired motor 506 

coordination and balance in mice. 507 

Mice injected intravenously with 10 mg kg
-1

 NS8593 immediately showed acute CNS 508 

effects in the form of convulsions, and consequently were euthanized. In contrast i.v. 509 

injection of 10 mg kg
-1

 AP14145 had no apparent CNS effects, and the mice were able 510 

to cross the beam without slipping or falling from the beam, similarly to the vehicle 511 

control mice. Importantly, NS8593 plasma protein binding is higher than AP14145 512 

(95.38% vs. 91.35% bound, respectively, Table 1), meaning that a higher amount of 513 

AP14145 is freely available in plasma compared to NS8593 when the same dose of both 514 

compounds is injected. Moreover, we found that i.v. injection of 2.5 mg kg
-1

 AP14145 515 

significantly increases the atrial refractoriness in rats within 1 min of injection, 516 

suggesting that 10 mg kg
-1

 is sufficient to peripheral KCa2 target engagement.  517 

A possible explanation for the apparent difference in CNS penetration of the two 518 

compounds lies in their structure (Fig 1) and physicochemical properties (Table 1). In 519 

particular, AP14145 contains a carboxamide moiety on the bicyclic benzimidazole ring, 520 

a chemical moiety that adds polarity to the molecule and is known to be a common 521 

substrate for P-glycoprotein transporter mediated efflux. The calculated polar surface 522 

area (PSA) of AP14145 is 70, which is significantly higher than NS8593 (Table 1), 523 

indicating a lower likelihood of penetrating the blood-brain barrier. It can thus be 524 

hypothesised that the structural features in AP14145 make the compound less likely to 525 

penetrate to induce CNS mediated convulsions when compared to NS8593. Although 526 



this difference in profile could in principle be caused by differences in the 527 

pharmacokinetic profile of the two compounds, this seems an unlikely explanation, 528 

since, as has been shown in Diness et al. (2010), 5 mg kg
-1

 of NS8593 cause similar 529 

increases of the AERP in rats when compared to the effect of 5 mg kg
-1

 of AP14145 530 

(Fig 8a).  531 

High concentrations of AP14145 (10 µM L-1) significantly inhibited the KCa1.1 532 

channel. However, as paxilline, which is a well-known specific inhibitor of KCa1.1 533 

channels (Nardi and Olesen, 2008), did not have any effect on the atrial refractoriness of 534 

isolated perfused rat hearts, we conclude that the inhibition of KCa1.1 by AP14145 does 535 

not contribute to the AERP prolonging effects of AP14145. This is in accordance with 536 

studies demonstrating the lack of KCa1.1 channels and currents in the plasma membrane 537 

of cardiomyocytes (Bautista et al., 2009; Singh et al., 2013).  538 

The apparent reduced CNS exposure of the drug makes AP14145 a unique and useful 539 

new tool compound that allows the study of peripheral KCa2 inhibition without 540 

apparently interfering with CNS function in awake rodents. This might help further 541 

development and understanding of the cardiac and endothelial role of KCa2 in a number 542 

of physiological and pathological settings.  543 

 544 

Conclusions 545 

In this work we present the novel KCa2 negative gating modulator AP14145. This new 546 

drug inhibits both the hKCa2.2 and hKCa2.3 with equal potency (IC50 = 1.1 ± 0.3 μM L
-1

 547 

with 400 nM L
-1

 intracellular Ca
2+

) by decreasing the calcium sensitivity of the channel. 548 

The inhibitory effect of AP14145 effect is strongly dependent on two amino acids, S508 549 

and A533 in the rKCa2.3, located in the inner pore of the channel. In vivo, AP14145 550 

significantly increases the atrial refractoriness in rats shortly after a 2.5 mg kg
-1

 or 5.0 551 

mg kg
-1

 bolus injection. In contrast to NS8593, a dose of 10 mg kg
-1

 of AP14145 did not 552 

trigger any apparent acute CNS mediated effects in mice, suggesting that the compound 553 

does not penetrate the blood brain barrier to the same degree as NS8593 in rodents. This 554 

key difference could for the first time allow for the use of a KCa2 negative modulator in 555 

vivo without interfering with CNS function. We expect this feature might help further 556 

development and understanding of the cardiac and endothelial role of KCa2 channels. 557 
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Figures and figure legends 691 

 692 

Fig. 1. Chemical structures of AP14145 (left) and NS8593 (right).  693 



 694 

Fig. 2. a) Representative current-voltage recordings of the inhibition of hKCa2.3 by 695 

increasing concentrations of the drug AP14145 and b) its current-time plot obtained by 696 

inside-out patch clamp on HEK cells stably expressing the channel. c) Inhibition curves 697 

of AP14145 on both the hKCa2.2 (n = 7) and hKCa2.3 ( n = 7) channel. 698 

 699 

 700 



 701 

Fig. 3. Inhibitory effect of 10 µM L
-1

 AP14145 on KCa1.1, KCa2.1, KCa2.2, KCa2.3 and 702 

KCa3.1 channels. All measurements were obtained by whole cell patch clamp except 703 

KCa2.2, which were obtained by inside-out patch clamp.  704 

 705 

Fig. 4. Representative current-voltage plots (left) and their corresponding current-time 706 

plots (right) of hKCa2.3 calcium activation a) in the absence of AP14145 and b) in the 707 

presence of 10 µM L
-1

 AP14145. c) Calcium activation curves for the hKCa2.3 channel 708 

in the absence of AP14145 (red curve, n = 9) and in the presence of 10 µM L
-1

 709 

AP14145 (black curve, n = 7).  710 



 711 

Fig. 5. Representative current-voltage plot (left) and its corresponding current-time plot 712 

(centre) of the effect of 10 µM L
-1

 NS309 in the absence and in the presence of 10 µM 713 

L
-1

 AP14145 on excised hKCa2.3 patches. On the right, bar graph comparing the effects 714 

of 10 µM L
-1

 AP14145 (n = 7), 10 µM L
-1

 NS309 (n = 7), and 10 µM L
-1

 AP14145 + 10 715 

µM L
-1

 NS309 (n = 7) on excised hKCa2.3 patches. 716 



 717 

Fig. 6. Representative current-voltage plots (left) and current-time plots (right) 718 

depicting the effect of AP14145 10 µM L
-1

 on HEK cells transiently transfected with a) 719 

rKCa2.3 WT, b) rKCa2.3 S508T A533V, c) hKCa3.1 WT and d) hKCa3.1 T250S V275A 720 

recorded using whole cell patch clamp. e) Bar graph comparing the inhibitory effect of 721 

10 µM L
-1

 AP14145 on rKCa2.3 WT (n = 7), rKCa2.3 S508T A533V (n = 7), hKCa3.1 722 

WT channel (n = 8) and hKCa3.1 T250S V275A (n = 7). 723 



 724 

Fig 7. Effect of 1 µM L
-1

 and 3 µM L
-1 

of the KCa1.1 inhibitor paxilline and 10 µM L
-1

 725 

AP14145 on the AERP of isolated perfused rat hearts (n = 5). 726 

 727 

Fig. 8. Effects on AERP in closed chest in vivo rats: a) Bolus doses of 2.5 mg kg
-1

 and 5 728 

mg kg
-1

 AP14145 significantly increased the AERP compared to time matched controls 729 

receiving corresponding volumes of vehicle. b) AP14145 given as a constant rate 730 

infusion of 40 mg kg
-1 

h
-1

 over 20 minutes increased AERP compared to the baseline 731 

average and returned towards baseline values post-infusion. 732 



 733 

Fig. 9. Bar graph depicting the amount of convulsions triggered by the administration of 734 

the vehicle, 10 mg kg 
-1

 AP14145 and 10 mg kg 
-1

 NS8593. 735 

 736 

Table 1. Calculated physicochemical properties and plasma protein binding (PPB) of 737 

NS8593 and AP14145. 738 

 739 

 740 

 741 

 log D (pH 7.4) log P PSA (Å²) PPB (% bound) 

NS8593 4.0 4.1 41 95.38 

AP14145 3.6 3.7 70 91.35 


