
u n i ve r s i t y o f co pe n h ag e n

Passive and partially active fault tolerance for massively parallel stream processing
engines

Su, Li; Zhou, Yongluan

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI:
10.1109/TKDE.2017.2720602

Publication date:
2019

Citation for published version (APA):
Su, L., & Zhou, Y. (2019). Passive and partially active fault tolerance for massively parallel stream processing
engines. IEEE Transactions on Knowledge and Data Engineering, 31(1), 32-45.
https://doi.org/10.1109/TKDE.2017.2720602

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269293654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TKDE.2017.2720602
https://curis.ku.dk/portal/da/persons/yongluan-zhou(1df964e4-bf9e-48a1-a965-d33c6515c0bb).html
https://curis.ku.dk/portal/da/publications/passive-and-partially-active-fault-tolerance-for-massively-parallel-stream-processing-engines(9487dd48-09d4-42c7-9b50-42f0ee0eea27).html
https://curis.ku.dk/portal/da/publications/passive-and-partially-active-fault-tolerance-for-massively-parallel-stream-processing-engines(9487dd48-09d4-42c7-9b50-42f0ee0eea27).html
https://doi.org/10.1109/TKDE.2017.2720602

1

Passive and Partially Active Fault Tolerance for
Massively Parallel Stream Processing Engines

Li Su, Yongluan Zhou

Abstract—Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches.
However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE). The passive
approach incurs a long recovery latency especially when a number of correlated nodes fail simultaneously, while the active approach
requires extra replication resources. In this paper, we propose a new fault-tolerance framework, which is Passive and Partially Active
(PPA). In a PPA scheme, the passive approach is applied to all tasks while only a selected set of tasks will be actively replicated. The
number of actively replicated tasks depends on the available resources. If tasks without active replicas fail, tentative outputs will be
generated before the completion of the recovery process. We also propose effective and efficient algorithms to optimize a partially
active replication plan to maximize the quality of tentative outputs. We implemented PPA on top of Storm, an open-source MPSPE and
conducted extensive experiments using both real and synthetic datasets to verify the effectiveness of our approach.

Index Terms—Distributed Stream Processing, Fault Tolerance.

F

1 INTRODUCTION
There is a recently emerging interest in building Massively
Parallel Stream Processing Engines (MPSPE), such as Storm
[26], and Spark Streaming[28], which make use of large-
scale computing clusters to process continuous queries over
fast data streams. Such continuous queries often run for a
very long time and would unavoidably experience various
system failures, especially in a large-scale cluster. As it is
critical to provide continuous query results without signif-
icant downtime in many data stream applications, fault-
tolerance techniques in Stream Processing Engines (SPEs)
[3], [5], [28] have attracted a lot of attention.

Existing fault-tolerance techniques for SPEs can be gen-
erally categorized as passive and active approaches [13].
In a typical passive approach, the runtime states of tasks
will be periodically extracted as checkpoints and stored at
different locations. Upon failure, the state of a failed task
can be restored from its latest checkpoint. While one can in
general tune the checkpoint frequency to achieve trade-offs
between the cost of checkpoint and the recovery latency,
the checkpoint frequency should be limited to avoid high
checkpoint overhead, which affects the system performance.
Hence recovery latency is usually significant in a passive
approach. When one wants to minimize the recovery latency
as much as possible, it is often more efficient to use an active
approach, which typically uses one backup node to replicate
the tasks running on each processing node. When a node
fails, its backup can quickly take over with minimal latency.

Even though there are abundant fault-tolerance tech-
niques in SPEs, developing an MPSPE [26] poses great chal-
lenges to the problem. First of all, in a large cluster, there are

• Li Su is with the Department of Mathematics and Computer Science,
University of Southern Denmark, E-mail: lsu@imada.sdu.dk

• Yongluan Zhou is with the Department of Computer Science, University
of Copenhagen, E-mail: zhou@di.ku.dk

often two different types of failures: independent failure and
correlated failure [10], [20]. Previous studies mostly focused
on independent failure that happens at a single node. Cor-
related failures are usually caused by failures of switches,
routers and power facilities, and will involve a number of
nodes failing simultaneously. With such failures, one has
to recover a large number of failed tasks and temporarily
run them on an additional set of standby nodes before the
failed ones are recovered. Using a passive fault tolerance
approach, one has to keep the standby nodes running even
their utilization is low most of the time in order to avoid the
unacceptable overhead of starting them at recovery time.
Furthermore, as checkpoints of different nodes are often
created asynchronously, massive synchronizations have to
be performed during recovery. Therefore it could be difficult
to meet the user requirements on recovery latency even with
a relatively high checkpoint frequency.

On the other hand, while an active fault-tolerance ap-
proach can achieve a lower recovery latency, it could be too
costly for a large-scale computation. Consider a large-scale
stream computation that is parallelized onto 100 nodes, one
may not be able to afford another 100 backup nodes for
active replication.

Another challenge is that there exist some time-critical
applications which prefer query outputs being generated
in good time even if the outputs are computed based
on incomplete inputs. This kind of applications usually
require continuous query output for real-time opportune
decision-making or visualization. Consider a community-
based navigation service, which collects and aggregates
user-contributed traffic data in a real-time fashion and then
continuously provides navigation suggestions to the users.
Failure of some processing nodes could result in losing
some user-contributed data. The system, while waiting for
the failed nodes to recover, can continue to help drivers
plan their routes based on the incomplete inputs. Other
examples of such applications are like intrusion detections,

2

online visualization of real-time data streams etc. Alerts of
events matching the intrusion attack patterns or infograph-
ics generated over incomplete inputs are still meaningful
to the users and should be generated without any major
delay. Consider the long recovery latency for a large-scale
correlated failure, the lack of trade-offs between recovery
latency and result quality would not be able to fulfill the
requirements of these applications.

To address the aforementioned challenges, we propose
a new fault-tolerance scheme for MPSPEs, which is Passive
and Partially Active (PPA). In a PPA scheme, a number of
standby nodes will be used to prepare for recoveries from
both independent and correlated failures. Checkpoints of
the processing nodes will be stored at the standby nodes
periodically. Rather than keeping them mostly idled as in a
purely passive approach, we opportunistically employ them
for active replications for a selected subset of the running
tasks. In this way, we can provide very fast recovery for
the tasks with active replicas. Furthermore, when the failed
tasks contain those without active replicas, PPA provides
tentative outputs with quality as high as possible. The results
can then be rectified after the passive recovery process has
been finished using similar techniques proposed in [3]. In
general, PPA is more flexible in utilizing the available re-
sources than a purely active approach, and in the meantime
can provide tentative outputs with a higher quality than a
purely passive one.

In this paper, we focus on optimizing utilizing available
resources for active replication in PPA, i.e. deciding which
tasks should be included for active replication. In summary,
we have made the following contributions in this paper:

(1) We present PPA, a passive but partially active fault-
tolerance scheme for a MPSPE.

(2) As existing MPSPEs often involve user defined func-
tions whose semantics are not easily available to the system,
we propose a simple yet effective metric, referred to as out-
put fidelity, to estimate the quality of the tentative outputs.

(3) We propose a structure-aware algorithm to determine
which tasks to actively replicate for single-query topology.
Furthermore, we extend our solution to support the opti-
mization for multi-query topology.

(4) For the passively replicated tasks in a PPA plan, we
propose incremental recovery to schedule their recoveries to
optimize the quality of tentative outputs.

(5) We implement our approach in an open-source MP-
SPE, namely Storm [26] and perform an extensive experi-
mental study on an Amazon EC2 cluster using both real and
synthetic datasets. The results suggest that by adopting PPA,
the accuracy of tentative outputs are significantly improved
with limited amount of replication resources.

This paper is an extended version of [25]. The extension
includes new techniques to incorporate multi-query topolo-
gies and incremental recovery.

2 SYSTEM MODEL

2.1 Data and Query Model
As in existing MPSPEs [26], we assume that a data item is
modeled as a key-value pair. Without loss of generality, the
key of a data item is assumed to be a string and the value is
a blob in an arbitrary form that is opaque to the system.

t21

t31

t22

t11

t12
t32

t33

t34

t41

t42

(a)

Source

(b)

Fig. 1. (a): A query plan that consists of 4 operators (O1, O2, O3, O4)
with different numbers of tasks. (b): An example multi-query topology
that consists of 6 queries with operator sharing.

A query execution plan in MPSPEs typically consists of
multiple operators, each being parallelized onto multiple
processing nodes based on the key of input data. Each
operator is assumed to be a user-defined function. We model
such query plan as a topology of the parallel tasks of all
the operators. By modeling each task as a vertex and the
data flow between each pair of tasks as a directed edge, the
topology can be represented as a Directed Acyclic Graph
(DAG). Figure 1(a) shows an example of topology. Each task
represents the workload of an operator that is assigned to a
processing node in the cluster and all the tasks that belong
to the same operator will conduct the same computation.

An operator can subscribe to the outputs from multiple
operators except for itself. The output stream of every
task is partitioned into a set of substreams using a par-
ticular partitioning function, which divides the keys of a
stream into multiple key partitions and splits the stream
into substreams based on these key partitions. For each
task, the input substreams received from the tasks within
an upstream neighboring operator will constitute an input
stream. Therefore, the number of input streams of a task is
up to the number of its upstream neighboring operators.

Similar to [30], we consider the following four common
partitioning situations between two neighboring operators
in a MPSPE. In the following descriptions, we consider an
upstream operator containing N1 tasks and a downstream
operator containing N2 tasks.
• One-to-one: each upstream task only sends data to a

single downstream task and a downstream task only
receives data from a single upstream task.

• Split: each upstream task sends data to M2, 2 ≤ M2 <
N2, downstream tasks and each downstream task only
receives data from a single upstream task.

• Merge: each upstream task sends data to only one
downstream task and each downstream task receives
data from M1, 2 ≤M1 < N1, upstream tasks.

• Full: each upstream task sends data to all N2 down-
stream tasks.

2.2 Multi-Query Topology Model
It is common that the stream application running on MP-
SPEs consists of multiple queries, which could share the
computation results of operators with each other. There-
fore, we extend the single query topology model in [25]
to support multiple queries being executed concurrently.
Figure 1(b) depicts an example of multi-query topology
which consists of 6 queries, where the outputs of operators
can be used by multiple queries. For query Qi, a user-
specified priority prti is assigned, which is a nonnegative

3

integer.

2.3 PPA Replication Plan
Given a topology T and its whole set of tasks M, a PPA
replication plan for T consists of two parts: a passive repli-
cation plan that covers all the tasks in M and a partially
active replication plan which covers a subset ofM, denoted
as P. With the passive replication plan, checkpoints will
be periodically created for all the tasks and stored at the
standby nodes. For a task ti, its checkpoint consists of ti’s
computation state and output buffer. After a checkpoint is
extracted from ti, its upstream neighboring tasks will be
notified to prune the unnecessary data from their output
buffers. The buffer trimming should guarantee that, if ti
fails, its computation state can be recovered by loading its
latest checkpoint and replaying the output buffers in its
upstream tasks. On the other hand, for each ti ∈ P, an
active replica will be created, which will receive the same
input and perform the same processing as ti’s primary copy.

Upon failures, the actively replicated tasks will be recov-
ered immediately using their active replicas, meanwhile the
tasks that are only passively replicated will be restored from
their latest checkpoints. When there are some failed tasks
belonging toM−P, tentative outputs will be produced be-
fore they are fully recovered. Such tentative outputs have a
degraded quality due to the loss of input data that otherwise
should be processed by the failed tasks belonging toM−P.

In the next section, firstly we present how to estimate the
quality of tentative outputs of queries. Then we propose the
formal problem statement on optimizing the partially active
replication plan to maximize the quality of tentative outputs
in multi-query topology.

3 PROBLEM FORMULATION
3.1 Quality of Tentative Outputs
Previous works on load shedding [2], [16] have studied
how to evaluate the quality of query outputs in case of lost
of input data. Their models assume full knowledge of the
semantics of individual operators and hence can estimate
the output quality in a relatively precise way. However, in
existing MPSPEs, such as Storm, operators are often opaque
to the system and may contain complex user-defined func-
tions written in imperative programming languages. The
existing models therefore cannot be easily applied. In our
first attempt, we have tried to derive output accuracy mod-
els composed by some generic functions, which should be
chosen or provided by the users according to the semantics
of the operators. We found that this approach is not very
user friendly and it may be very difficult for a user to
provide such functions for a complicated operator.

Therefore, we strive to design a model that requires
users to provide minimum information of an operator’s
semantic, but yet is effective in estimating the quality of
tentative outputs. More specifically, we propose a metric,
called Output Fidelity (OF), which is roughly equal to the
ratio of the source input that can contribute to tentative
outputs of each query. This is based on the assumption
that the accuracy of query’s tentative outputs increases with
more complete input and a PPA plan with a higher OF value
would incur more accurate tentative outputs.

In the rest of this section, we first present the details

of estimating OF for each single query in the topology,
after that we present the formal problem formulation on
optimizing the PPA plan for the entire multi-query topology.

3.1.1 Operator Output Loss Model
Upon task failures, we need to propagate the information
losses incurred by any failed task to the output of the sink
operator. Suppose task t22 in Figure 2 is failed, we need
to transform the input loss of t31 into its output loss. In
this subsection, we propose the operator output loss model,
which estimates the information loss of an operator’s output
based on the information loss of its input. In the next
subsection, we present the precise definition of OF.

In following descriptions, the set of input streams of task
ti are denoted as

{
Sini,1, S

in
i,2, ..., S

in
i,p

}
, where the rate of Sini,j

is represented as λini,j and its information loss is referred
to as ILini,j . The rate of ti’s output stream, Souti , is referred
to as λouti , and its information loss is denoted as ILouti . If
ti is failed, its output will be lost and ILouti will be set as
1. Otherwise, we calculate ILouti based on the information
losses of ti’s input streams.

As described in the query model, an input stream of a
task may consist of multiple substreams, which are sourced
from tasks belonging to the same upstream neighboring
operator. Suppose that Sini,j consists of a set of substreams
U ini,j . For each substream sk, sk ∈ U ini,j , denoting its rate as
λsk and its information loss as ILsk , then the information
loss of Sini,j is calculated as:

ILini,j =

∑sk∈Uin
i,j

sk
λsk · ILsk∑sk∈Uin
i,j

sk λsk

(1)

Meanwhile, the output stream of task ti, Souti , can be
split into a set of substreams, denoted as Dout

i . For each
substream sk belonging to Dout

i , its information loss is
estimated to be equal to Souti , i.e. ILsk = ILouti .

Figure 2 depicts an example query plan as well as the
rate of each output stream. ILout31 represents the information
loss of output stream Sout31 caused by the failure of task
t22. We distinguish two situations and use this example
to illustrate the calculation of information loss of a task’s
output stream.

t21

t31

t22

t11

t12

Fig. 2. An illustrating query plan with task failure, where λin31,1 = λout11 +

λout12 and λin31,2 = λout21 + λout22 .

Correlated-Input Operator. Ot performs computations
over the join results of its input streams. For example,
suppose O3 in Figure 2 is a join operator. Without further
semantic information of O3, we consider the effective in-
put of t31 as the Cartesian product of its input streams,
whose rate is equal to

(
λin31,1 · λin31,2

)
and its information

loss can be computed as
[
1−

(
1− ILin31,1

)
·
(
1− ILin31,2

)]
.

By assuming that the information loss of t31’s output should
be equal to that of its input stream, we can get ILout31 = 2

5 .

4

In summary, the information loss of ti’s output stream can
be calculated as:

ILouti = 1−
p∏
j=1

(
1− ILini,j

)
(2)

Independent-Input Operator. Ot does not compute
joins over input streams. IfO3 in Figure 2 is an independent-
input operator, the effective input of t31 is considered
as the union of its input streams, whose rate is equal
to
(
λin31,1 + λin31,2

)
and its input loss can be calculated as

λin
31,1·IL

in
31,1+λin

31,2·IL
in
31,2

λin
31,1+λin

31,2

. Similar to the correlated-input oper-
ator, we also assume that the information loss of t31’s output
should be equal to that of its input stream. Then we have,
in this example, ILout31 = 1

4 . In general, the information loss
of ti’s output stream can be calculated as follows:

ILouti =

∑p
j=1 λ

in
i,j · ILini,j∑p

k=1 λ
in
i,k

(3)

Recall that one of the design principles is to request as
little information of the operators’ semantics as possible.
We distinguish the aforementioned two types of operators
simply because the characteristics of their effective inputs
are very different. With such distinction, the OF metric can
be estimated much more precisely.

3.1.2 Output Fidelity
With the operator output loss model, the output information
losses of tasks in the sink operator can be calculated by
conducting a depth-first traversal of the query plan, which
starts from the tasks in the source operators and ends at the
tasks in the sink operator.

By denoting the sink operator of query plan Qi in
topology T as Osink, and the set of tasks belonging to Osink
as {t1, t2, ..., tMi}, The output fidelity of query planQi,OFi,
is defined as:

OFi = 1−
∑Mi

j=1 λ
out
j · ILoutj∑Mi

k=1 λ
out
k

(4)

With equation 4, the output fidelity of the query in
Figure 2 could be calculated asOF = 1−λ

out
31 ·IL

out
31

λout
31

. Suppose
that O3 in this example is an independent-input operator
and ILout31 = 1

4 , we have OF = 3
4 .

3.2 Problem Statement
Before presenting the problem definition, we introduce a
concept: Minimal Complete Tree, which is also referred to as
MC-Tree for simplicity in the following sections.

Definition 1. MINIMAL COMPLETE TREE (MC-TREE): A
minimal complete tree is a tree-structured subgraph of the query
plan. The source vertices of this subgraph correspond to tasks from
the source operators of the query and its sink vertex is a task from
an output operator of this query.

A minimal complete tree can continuously contribute
to final query outputs if and only if all its tasks are alive.
Taking the query plan in Figure 1(a) for instance,O4 must be
an independent-input operator as it has only one upstream
neighboring operator. Each task in O4 has 4 input streams,
these is no correlation among these input streams asO4 is an

independent-input operator. If O3 is an independent-input
operator, tasks in {t11, t31, t41} can constitute an MC-Tree
and there are 16 MC-Trees in the query plan. However, if O3

is a correlated-input operator, t31 cannot produce any out-
put if either t11 or t21 fails. Hence tasks in {t11, t21, t31, t41}
can constitute an MC-Tree and there are in total 8 MC-Trees
in the query plan.

Based on Definition 1, if failures of tasks in an MC-Tree
occur, it will only continue propagating data to the sink
operator if and only if all of its failed tasks are actively
replicated. Suppose topology T consists of a set of queries
Q1, Q2, ..., QN and the available resources can be used to
actively replicate R tasks (R ≤ |M|, where M is all the
tasks of T), then the problem of optimizing a partially active
replication plan is defined as follows:

Definition 2. OPTIMIZING PPA PLAN: Given a topology T ,
denoting the priority of query Qi as prti, the output fidelity
of query Qi in the partial topology composed by the actively
replicated MC-Trees in T is denoted as OFi. Actively replicate
a set of tasks under the resource constraint R such that the value
of
∑N
i=1 prti ·OFi is maximized.

This problem is NP-hard, as it can be reduced from the
Set-Union Knapsack Problem [8] in polynomial time, which
is NP-hard.

4 ACTIVE REPLICATION OPTIMIZATION
The dynamic programming (DP) algorithm presented in [25]
searches for the optimal PPA plan by selecting a subset
of MC-Trees for replication under the resource constraint
to maximize OF. Due to the high time complexity of DP,
we introduce two heuristic algorithms designed for single-
query topology. Then we present how to handle multi-query
topology as an extension to the work in [25].

Inspired by the DP algorithm [25], we design a structure-
aware algorithm that, at each step, rather than enumer-
ates all the possible expansions of a candidate plan, only
expands it with an MC-Tree that can incur the greatest
increase in OF per resource unit. Unfortunately, even such
a greedy approach may fall short under the following sit-
uation. Consider a topology T that consists of a sequence
of k operators and all the operators use Full partitioning,
the number of MC-Trees within T is equal to

∏k
i=1Mi,

where Mi is the number of tasks of operator Oi. In such a
topology, the number of MC-Trees will grow very fast with
increasing number of operators. Therefore, even a greedy
search among the possible combinations of MC-Trees would
not perform well.

To solve this problem, we decompose a general topology
into two types of topologies, namely full topologies and
structured topologies whose definitions are as follows, and
then optimize them separately.
• Structured topology is defined as a topology where

only the operators, that produce outputs of this topol-
ogy, can have a Full partitioning function and the others
have other types of partitioning functions.

• Full topology is defined as a topology that all of its
operators have a Full partitioning function.

The rest of this subsection is organized as follows: firstly,
we present the algorithms generating PPA plans for struc-
tured topologies and full topologies, respectively. Then we

5

Algorithm 1: PLANSTRUCTUREDTOPOLOGY(P, R, T)
Input: An initial plan P; The amount of available resources R; Topology

T ;
Output: Replication plan P;

1 usage = 0; Su ← Set of the units split from topology T ;
2 foreach Unit Ui ∈ Su do
3 Build segment set Gi;
4 while usage ≤ R do
5 Candidates← ∅ ;
6 foreach Unit Ui ∈ Su do
7 foreach non-replicated segment gi ∈ Ui do
8 CGi ← {gi};
9 if OFP = OFP∪CGi

then
10 Conduct a BFS from Ui to traverse all the units:
11 foreach visited unit Uj during the BFS do
12 Segment gj ← max of (Uj) ;

/* max_of (Uj) returns the segment in
Uj, which is connected with
segment in CGi and has the
maximal OF with Uj treated as an
independent topology; */

13 if Cost(CGi) + Cost(gj) ≤ usage then
14 CGi = CGi ∪ gj ;
15 else Stop the BFS ;
16 Candidates← Candidates ∪ CGi;
17 Find CGopt from Candidates such that the following value is

maximized: (OFP∪CGopt −OFP)/Cost(CGopt);
18 P← P ∪ CGopt; usage← usage+ Cost(CGopt);
19 if CGopt 6= ∅ then return P;
20 Remove the completely replicated units from Su;
21 Return P;

explain the structure-aware algorithm, which generates PPA
plan for a general topology by decomposing it into several
sub-topologies, each being either a structured topology or a
full topology.

4.1 Algorithm for Structured Topology
Although we define structured topology such that Full
partitioning only exists in the output operators, the number
of MC-Trees in a structured topology could still be very
large. Consider the situation that a task ti receives Nin input
streams and produce Nout output streams, there will be at
least Nin ∗ Nout MC-Trees containing ti. In addition, if ti
joins Nk substreams from operator Ok with Nj substreams
from operator Oj , the number of MC-Trees containing ti
will at least be equal to Nk ·Nj . To avoid bad performance
due to the large number of MC-Trees, we split a structured
topology into multiple units such that, within a unit, the
number of MC-Trees is equal to the maximal number of
input substreams among the operators within this unit. We
refer to an MC-Tree in a unit as segment to differentiate it
from a complete MC-Tree in the topology.

O1: Merge

t11

t12 t21

t22t13

t14

O2: Split

O3

t31

t32

t33

t34

(a)

O1: Merget11

t12

t21

t31

t32
t13

t14

O2: Split

O3

(b)
Fig. 3. Split structured topologies into units. O3 in Figure 3(b) is a join
operator. The dashed line denotes the unit boundary.

The situation of multiple input streams and multiple
output streams occurs on the task who has an input stream
partitioned with Merge and an output stream partitioned
with Split, a unit boundary will be set between this oper-
ator and its upstream neighboring operator using Merge
partitioning. For instance, a unit boundary is set between

O1 and O2 in the topology in Figure 3(a), such that there
are 4 MC-Trees in both unit {O1} and unit {O2, O3}. The
situation that a task joins multiple input substreams from
one operator with substreams from other operators happens
on the tasks of join operators that have at least one input
stream partitioned with Merge. As illustrated in Figure 3(b),
a unit boundary is set between O1 and O3 and the splitting
generates 2 units, which are unit {O1} that has 4 MC-trees
and and unit {O2, O3} that consists of 2 MC-Trees. Note
that, within a structured topology, replicating a segment is
beneficial only if all the other segments within the same
complete MC-Tree are also replicated. In other words, we
should avoid enumerating plans that replicate a set of
disconnected segments.

The details of the algorithm for structured topology are
presented in Algorithm 1. The algorithm searches through
the units generated from input topology. Within unit Ui, if
the set of non-replicated segments is not empty, we check
whether replicating these segments will increase the final
output accuracy (line 9). Note that this will only be true if
this segment can form a complete MC-Tree with the other
replicated segments within the current plan. Each of such
segments will be put into a candidate pool (line 16). If the
segment gi does not enhance the plan’s OF, we conduct a
BFS (Breadth-first search) starting from Ui and traversing
through all the units in Topology T. The BFS is terminated
until usage is less then the non-replicated tasks in CGi.
Finally, every unit visited during the BFS contributes a
segment to CGi and the segments from neighboring units
are connected (lines 10 − 15). Then we put such a set of
segments as one candidate in the candidate pool.

After finishing the scanning of all units, we get a candi-
date pool consisting of a number of segment sets, each con-
taining one or more segments. We use a profit density func-
tion to rank the candidates. The profit density of a candi-
date CGk is calculated as (OFP∪CGk

−OFP)/Cost(CGk) ,
where OFP is the OF value of plan P , OFP∪CGk

is the OF
value after expanding P by replicating segment in CGk.
Cost(CGk) is the resource consumption of non-replicated
tasks within CGk. The plan in the candidate pool with the
maximum profit density will be merged with the input plan
P and returned. The complexity of Algorithm 1 is equal
to O(R · N ·M2 · E), where R is the amount of available
replication resources, N is the number of operators, M
represents the average degree of parallelization of operators
in T , and E is the number of neighboring unit pairs.

4.2 Algorithm for Full Topology
Each task within a full topology will send input data to
all the tasks that belong to its downstream neighboring
operators. We propose an algorithm for full topology as
illustrated in Algorithm 2. The basic idea of this algorithm is
that, within any operator, we always prefer to replicate the
task that will bring the maximum increase of OF under the
assumption that all the other tasks that belong to the same
operator are failed and the tasks that belong to other oper-
ators are alive. We denote the increase of OF by replicating
task tij as δij . If the input plan P is empty, we first select
one task from each operator that has the largest δij among
all the tasks in this operator and put it into P (lines 5 − 6).
If P is not empty, we iterate and select R tasks that have

6

Algorithm 2: PLANFULLTOPOLOGY(P, R, T)
Input: Initial replication plan P; Amount of available resources R;

Topology T ;
Output: Replication Plan P

1 Initialize: usage← 0;
2 Sort the set of tasks Si of each operator Oi based on the OF increase, δij ,

of tasks;
3 if P = ∅ then
4 foreach Oi do
5 Let pik be the node in Si that has the largest OF increase δik ;
6 P← P ∪ {pik}; Si ← Si − {pik};
7 return P
8 if usage < R then
9 Candidates← ∅;

10 foreach Oi do
11 Let pik be the node in Si that has the largest OF increase δik

with a cost smaller than R− usage;
12 Candidates← Candidates ∪ P ∪ {pik};
13 Pj ← max accuracy plan(Candidates);
14 Sj ← Sj − {pjk}; P← Pj ; usage← usage+ Cost(pjk);
15 Return P;

Algorithm 3: STRUCTUREAWARE(R,T)
Input: The amount of available resources R; Topology T ;
Output: Partial replication plan P;

1 Initialize: decompose the complete topology T into sub-topologies:
TS1, TS2, ... ;

2 P← ∅, SA ← ∅, usage← 0;
3 foreach Sub-Topology TSi do
4 Pi ← PlanSubTopology (∅, R, TSi); P← P ∪ Pi;
5 P ′i ← PlanSubTopology (Pi, Ri, TSi);

6 Ci ← Cost(P ′i)− Cost(Pi); ∆i ←
OF

P ′
i
−OFPi

Ci
;

7 Put ∆i into SA in descending order;
8 usage← usage+ Cost(Pi);
9 while usage < R do

10 LastUsage← usage; j ← 1;
11 while j ≤ |SA| do
12 ∆i ← jth value in SA; j + +;
13 if Ci + usage ≤ R then
14 Use P ′i to replace Pi in P;
15 Calculate new Ci, ∆i. Insert ∆i into SA in descending

order; break;
16 if usage← lastUsage then break;
17 Return P;

Function: PlanSubTopology(P, R, T)
18 if T is a full topology then
19 P← PLANFULLTOPOLOGY(P, R, T);
20 else P← PLANSTRUCTUREDTOPOLOGY(P, R, T);

larger OF increases, i.e. δik , than other tasks in the topology
and put them into P (lines 10− 13). The complexity of this
algorithm is O(N ·M), where the notations are defined in
Section 4.1.

4.3 Solution for General Topology

O1

O2

O3 O5

O4

O6
Merge

Merge

Full
Merge

Split

Fig. 4. Example of splitting a topology into sub topologies.

With the above algorithms, we divide a general topology
into several sub-topologies and then use the corresponding
algorithms according to the type of each sub-topology to
generate the replication plans. We require that at least one
partitioning function between any two neighboring sub-
topologies is Full and the amount of sub-topologies is min-
imized. The reason behind this requirement is to make the
selection of the replication segments in the sub-topologies
independent from each other.

The split algorithm explores the topology using multi-

ple depth-first searches (DFS). At the beginning, only the
sink operator of the given topology is in the start point
set SP . At each iteration, we will pick an operator, Os,
from SP and build a sub-topology by performing a DFS
starting from Os. If the DFS arrives at an operator Oi
whose partitioning function is incompatible with the type
of the current sub-topology, it will not further traverse Oi’s
downstream operators and Oi will not be added to the
current sub-topology but instead be put into SP . Finally the
algorithm will terminate if SP is empty. Figure 4 presents
an example general topology, which is decomposed into two
sub-topologies: {O1, O2, O3} and {O4, O5, O6}.

We present details of the correlated-failure optimization
algorithm for a general topology in Algorithm 3, which is
referred to as the Structure Aware algorithm. The algorithm
first decomposes the topology into sub-topologies which
are either full topologies or structured topologies. Then the
algorithm runs in multiple iterations. Within each iteration,
it will try to get a replication plan from each sub-topology
and select the one with the maximum profit density (lines
11− 17). The loop will be terminated when there is no more
resource to replicate a complete MC-Tree. The algorithm’s
complexity is equal to O(R ·N ·M2 ·E), where the notations
are defined in Section 4.1.

4.4 Optimization for Multi-Query Topology
In this section, we present how to adapt the Structure Aware
(SA) algorithm to handle multi-query topologies. Our first
exploration is to change the optimization objective of the
single-query SA from maximizing the OF of the single
query to the weighted sum of the OF of every query
in the topology, which is

∑N
i=1 prti · OFi as described in

Definition 2. Then we can directly use the single-query SA
with the new optimization objective to generate PPA plan
for multi-query topology. However, the deficiency of this
approach is that, the search of failed MC-Trees in the single-
query SA is conducted within the set of MC-Trees of the
global topology. As the MC-Trees of different queries in the
global topology could be of various sizes and structures,the
confining of search space in the single-query SA would
damage the efficiency of resource utilization when applying
it on a multi-query topology.

For instance, there are in total 4 MC-Trees of the global
topology depicted in Figure 5(a). If the priority ofQ1 andQ2

are higher than that of Q3, comparing to replicating an MC-
Tree of the global topology, replicating an MC-Tree from Q1

(e.g. 〈t11〉) or Q2 (e.g. 〈t11, t12, t21〉) could bring higher OF
increment with less resource consumption. Therefore, only
consider MC-Trees of the global topology is suboptimal.

To solve this problem, we covert a multi-query topology
T into a single-query topology T ′ by adding a virtual
operator such that the MC-Trees of each query are also
MC-Trees in the converted topology. In detail, we add a
virtual independent-input operator Ov into T . The virtual
operator Ov consists of only one virtual task and subscribes
to the output streams of all the queries’ sink operators in
T . Figure 5(b) depicts the converted form of the topology in
Figure 5(a). After the conversion, each MC-Tree (e.g. 〈t11〉)
of Q1, Q2 and Q3 in the raw topology is transformed into
an MC-Tree (e.g. 〈t11, tv〉) in the converted one.

The resource consumption of the virtual task tv is set

7

as 0. Denoting the converted topology as as T ′ and the
set of tasks in the sink operator of query Qi as SKi =
{t1, t2, ..., tMi

}. In T ′ the rate of each virtual stream between
the task tj in SKi and the single virtual task in Ov is
calculated as: λ′tj = prti ·

λtj∑
tk∈SKi

λtk

, where λtk represents

the rate of the non-virtual output stream of task tk ∈ SKi.
The advantage of the topology conversion is that, the output
fidelity of the virtual operator Ov in T ′ is equal to the
weighted sum of the output fidelities of queries, which is
just our optimization objective, in the raw topology T ,

t13t12t11 t14

t22t21

t31

(a) Before Conversion

t13t12t11

tv

t14

t22t21

t31

(b) After Conversion

Fig. 5. An example of adding virtual operator Ov to the raw multi-query
topology which consists of query Q1, Q2 and Q3. The directed edges
depicted in dashed line denote the virtual sub-streams.

We perform sub-topology decomposition for each query
(including the virtual sink operator) independently, which
starts from the virtual sink operator and ends at the query’s
source operators. Note that sub-topologies from different
queries may share operators. The operations after the de-
composition are similar with the Structure Aware algorithm
for single query topology. By incrementing the amount
of available resource gradually, a local recovery plan is
generated for each sub-topology, among which the one that
brings the highest increment in the global OF per unit of
resource is selected for active replication. Assuming that the
number of queries is bounded by the number of operators
in the topology, the time complexity of multi-query SA is
O(R · N2 · M2 · E), where the notations are defined in
Section 4.1.

5 INCREMENTAL RECOVERY FOR PASSIVELY-
REPLICATED TASKS

Correlated failures would usually incur the unavailability
of a large amount of resources. Furthermore, it is unrealistic
to assume an instant acquisition or recovery of sufficient
resources to restore all the failed tasks. For instance, re-
solving correlated failure on a local cluster may involve
solving the software or hardware problems, restarting the
failed nodes, and adding them back to the DSPE. Even if
the DSPE is running on a cloud environment and virtual
resources can be easily allocated to replace the failed nodes,
negotiating and acquiring a large amount of new resources
would still incur a non-negligible latency for streaming data
applications. In our experiences, while attaching new nodes
to a deployed Storm cluster on Amazon EC2, the time
interval between the arrivals of the first available node and
the last one ranges from several minutes to tens of minutes,
incrementing with the number of the newly attached nodes.

Even with a PPA plan, postponing the recovery of
the passively replicated tasks until the arrival of all the
necessary resources would incur a significant latency to a
streaming data applications. We propose incremental re-
covery as an integral part of PPA to solve this problem.
With incremental recovery, the recovery of the passively

replicated tasks would be gradually scheduled based on
the current availability of resources, such that the OF of
the tentative outputs can be maximized as fast as possible.
While the acquisition of new resources is ongoing, PPA
generates an incremental recovery plan under the constraint
of the amount of currently available resources. This plan
enables the recovery of a subset of the failed MC-Trees.
Once the arrivals of new resources are detected, another
incremental recovery plan will be generated and executed.
This process is repeated until all the passively replicated
tasks involved in the failure are recovered.

5.1 Problem Definition
The process of incremental recovery spans for a period of
time. Therefore, instead of acquiring the highest increment
in OF for each incremental recovery plan when new re-
source arrives, we would like to maximize the average OF
of the tentative outputs generated during the entire process
of recovery, as the latter could represent the overall quality
of tentative outputs. Before presenting our solution, we
define the problem of optimizing incremental recovery for
passively replicated tasks as follows:

Definition 3. Denoting the instant when the failure is detected
as ts and the moment when the recovery is completed as te, the

objective of incremental recovery is to maximize

∫ te

ts
OFt·dt

te−ts , where
OFt is the output fidelity of the tentative outputs at timestamp t.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

O
ut
pu

t	F
id
el
ity

	

Resource	Arriving	Ra6o	

Incremental	
Plan	1	

(a) Incremental Plan : P1

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

O
ut
pu

t	F
id
el
ity

	

Resource	Arriving	Ra6o	

Incremental	
Plan	2	

(b) Incremental Plan : P2

Fig. 6. Examples illustrating the effects of incremental recovery plans.

A straightforward strategy is to gradually recover the
failed tasks in a topological order, which prioritizes the
recoveries of tasks whose upstream tasks have not failed
or have already been recovered. However, this approach
ignores the fact that MC-Trees can contribute to the final
outputs if and only if all of their tasks are alive, thus it
fails to maximize the average OF of the tentative outputs.
The SA algorithm presented in Section 4 aims to maximize
the OF of the PPA plan under a static resource constraint,
which therefore cannot be readily applied to incremental
recovery. Note the optimization of incremental recovery is
not to maximize the OF at a given instant, but rather the
average OF of the tentative outputs throughout the recovery.
Figure 6 presents the OF values over recovery period under
two possible incremental recovery plans. Although the OF
of plan P1 increases faster than P2 in the early phase of
the recovery, we prefer plan P2 as it has a larger shadowed
area. This example also infers that, while generating an
incremental plan, maximizing the current OF should not be
the only objective, and we should also take into account
its effect on the subsequent recovery process. For instance,
while generating local incremental plan, besides the OF
increment and the resource consumption, the number of
failed queries that share the recovered operators in each
candidate plan also influences its recovery priority.

8

Algorithm 4: INCREMENTALRECOVERY(R, T , F)
Input: Recovery resources R; Topology T ; Set of failed tasks: F ;
Output: Incremental Plan ∆P;

1 Initialize: Decompose T into sub-topologies: ST1, ST2, ... ;
2 ∆P← ∅; S1 ← ∅; S2 ← ∅; usage← 0;
3 foreach Sub-topology STi do
4 ∆Pi ← IncrementSubTP(R,STi, F);
5 if There is no complete MC-Tree in STi then
6 S1 ← ∆Pi;
7 else
8 S2 ← ∆Pi;
9 if S1 6= ∅ then

10 Traverse S1 in topological order and put the visited ∆Pi into ∆P
while the resource is enough; Update S1 and usage ;

11 Sort local incremental plans in S2 in the descending order of OD(∆Pi);
12 while usage < R do
13 LastUsage← usage; j ← 1;
14 while j ≤ |S2| do
15 ∆Pi ← jth value in S2; j + +;
16 if Cost(∆Pi) + usage ≤ R then
17 ∆P← ∆P ∪∆Pi;
18 ∆Pi ← IncrementSubTP(R,STi, F);
19 Insert ∆Pi into S2 in the descending order of OD(∆Pi);
20 usage← usage+ Cost(∆Pi);
21 break;
22 if usage = lastUsage then break;
23 Return ∆P;

5.2 Optimizing Incremental Recovery
The algorithm that generates incremental recovery plan for
global topology is presented in Algorithm 4. This algorithm
starts by decomposing the global topology into a set of sub-
topologies (line 1). For each sub-topology STi, the algorithm
IncrementSubTP (Algorithm 5) is called to return a local
incremental plan ∆Pi that recovers a subset of failed MC-
Trees in STi (line 4). The topology is disconnected if there
exists sub-topology that has no MC-Trees executing nor-
mally. To ensure that the global topology can be connected,
we store the local incremental plans returned for these
disconnected sub-topologies in set S1 and traverse S1 in
topological order to add them into the global incremental
plan (lines 5 − 6, 9 − 10). Then the partial incremental
plans generated for the other sub-topologies are sorted
with the metric OD(∆Pi), which is defined as ∆OFi

Cost(∆Pi)
,

where ∆OFi denotes the OF increment by adding the
local incremental plan ∆Pi into the global plan ∆P and
Cost(∆Pi) returns the resource consumption of ∆Pi. In
the next while loop (line 12), we gradually increase the
amount of available resource. The global incremental plan
is expanded by adding the local incremental plan DeltaPi
which has the largest OD(∆Pi) with affordable amount of
resource consumption. (lines 14−17). The local incremental
plan for sub-topology STi will be updated and added back
to the plan pool S2 (line 18− 19).

IncrementSubTP (Algorithm 5) consists of two functions:
IncrementStructuredTP(R,ST, F) for structured topologies
and IncrementFullTP(R,ST, F) for full topologies. The idea
of IncrementStructuredTP(R,ST, F) is to expand the failed
segments in a greedy approach to generate a set of can-
didate plans that consists of failed MC-Trees within the
sub-topology. Details of the expansion are explained in
Section 4.1. Considering that failed segments can be shared
by multiple failed MC-Trees whose recoveries consume
different amount of resources and bring different OF in-
crements, we use a new metric to denote the recovery
priorities of the candidate plans. This metric is calculated as
∆OF ′i/

∑gi∈CGj Cost(gi)
fi

, where ∆OF ′i represents the local

Algorithm 5: INCREMENTSUBTP(R,ST, F)
Input: Recovery resources R; Topology T ; Set of failed tasks: F ;
Output: Incremental plan ∆P;

1 Initialize: usage← 0;
2 if ST is a Structured sub-topology then
3 IncrementStructuredTP (R,ST, F)
4 if ST is a Full sub-topology then
5 IncrementFullTP (R,ST, F)

Function: IncrementStructuredTP(R,ST, F)
6 Su ← Set of the units split from ST ;
7 foreach Unit Ui ∈ Su do
8 Gi ← Set of segments containing failed task;
9 foreach segment gi ∈ Gi do

10 fi ← the frequency that gi is shared by MC-Trees in Su;
11 while usage ≤ R do
12 Candidates← ∅ ;
13 foreach Unit Ui ∈ Su do
14 foreach failed segment gi ∈ Gi do
15 Based on gi, find a set of segments CGi to build a

complete MC-Tree in ST ;
16 Candidates← Candidates ∪ CGi;
17 Find CGopt ∈ Candidates that maximizes:

∆OF ′/
∑gj∈CGopt Cost(gj)

fj
;

18 ∆P← ∆P ∪ CGopt;
19 usage← usage+ Cost (CGopt);
20 Update fi for all the failed segments not included in CGopt;
21 Return ∆P;

Function: IncrementFullTP(R,ST, F)
22 SO ← Set of operators in ST where all of their tasks are failed;
23 while usage < R do
24 Candidates← ∅;
25 if SO 6= ∅ then
26 foreach Oi ∈ SO do
27 fik ← number of failed Mc-Trees that contain tik ;

Candidates← Candidates ∪ {tik};

28 ∆P ← ∆P ∪ {tik}, where tik has the amximized
∆OF ′

ik
·fik

Cost(tik)
in Candidates; Remove Oi from SO;

29 usage = usage+ Cost (tik) Continue;
30 foreach Oi do
31 tik ← the failed task of Oi whose recovery maximizes

∆OF ′
ik
·fik

Cost(tik)
;

32 Candidates← Candidates ∪ {tik};
33 ∆P ← ∆P ∪ {tik}, where tik has the largest profit density in

Candidates;
34 Return ∆P;

OF increment in the sub-topology ST by recovering CGj , gi
is a failed segment inCGj with its cost denoted asCost (gi).
The frequency that gi is shared by the failed MC-Trees in
ST is denoted as fi. The candidate plan with the highest
recovery priority is returned.

As for a Full sub-topology ST , by denoting the number
of the failed MC-Trees that share a failed task tjk ∈ Oj as
fik, fik can be calculated as

(∏Oi∈ST pi −
∏Oi∈ST ei

)
/ej ,

where pi is the degree of parallelization of Oi and ei
denotes the number of the failed tasks in Oi. Simi-
lar to IncrementStructuredTP(R,ST, F), we use the metric
∆OF ′ik·fik
Cost(tik) to generate the recovery order of the failed tasks

in a Full sub-topology. The reason that the sharing frequency
fik is incorporated in the above two metrics is that we prefer
the recovery of a MC-Tree in the current incremental plan to
benefit more failed MC-Trees in the subsequent recoveries.

6 SYSTEM IMPLEMENTATION
6.1 Framework
We implemented our system on top of Storm. In compar-
ing to Spark Streaming, which processes data in a micro-
batching approach, Storm will process an input tuple once it
arrives and thus can achieve sub-second end-to-end process-
ing latency. As shown in Figure 7, the nimbus in the Storm

9

Fig. 7. System Framework

master node assigns tasks to the Storm worker nodes and
monitoring the failures. On receiving a job, the nimbus will
transfer the query topology to the PPA plan manager, which
will generate a PPA recovery plan under the constraint of
resource usage of active replication. The PPA recovery plan
consists of two parts: a completely passive standby plan
and a partially active replication plan. Based on the PPA
recovery plan, the replication manager in the worker nodes
will create checkpoints to passively replicate the whole
query topology. Checkpoints will be stored onto a set of
standby nodes. The replication manager will create active
replicas for the tasks that are included in the partially active
replication plan. The active replicas can support fast failure
recovery and will also be deployed onto the standby nodes.

Once a failure is detected by the nimbus, The recovery
manager in the Storm master node will decide how to re-
cover the failed tasks based on the PPA replication plan. For
the tasks that are actively replicated, the recovery manager
will notify the nimbus to recover them using their active
replicas such that the tentative results could be produced
as soon as possible. The failed tasks that are passively
replicated will be recovered with their latest checkpoints.

6.2 PPA Fault Tolerance
Passive Replication. In PPA, checkpoints of the tasks are
periodically created and stored at the standby nodes. We
adopted the batch processing approach [28] to guarantee
the processing ordering during recovery is identical to that
before the failure. With this approach, input tuples are
divided into a consecutive set of batches. A task will start
processing a batch after it receives all its input tuples belong-
ing the current batch. This is ensured by waiting a batch-
over punctuation from each of its upstream neighboring
tasks. Tuples within a batch are processed in a predefined
round-robin order. The effect of batch size on the system
performance has been researched in previous work [6].

A single point failure can be recovered by restarting the
failed task, loading its latest checkpoint and replaying its
upstream tasks’ buffered data. The downstream tasks will
skip the duplicated output from the recovering task until
the end of the recovery phase. While recovering a correlated
failure, if a task and its upstream neighboring task are failed
simultaneously and its checkpoint is made later than its
upstream peers’, the recovery of the downstream task can
only be started after its upstream peer has caught up with
the processing progress. In other words, synchronizations
have to be carried out among the neighboring tasks.

Active Replication. If task t has an active replica t′, the
output buffer of t′ will store the output tuples produced
by processing the same input in the same sequence as t
does. The downstream tasks of t will subscribe the outputs
from both t and t′. By default, the output of t′ is turned
off. To reduce the buffer size on t′, its primary, t, will

periodically notify t′ about the latest output progress and
the latter can then trim its output buffer. If t is failed,
t′ will start sending data to the downstream tasks of t.
The downstream tasks will eliminate the duplicated tuples
from t′ by recognizing their sequence numbers. The batch
processing strategy can guarantee an identical processing
order between the primary and active replica of a task.

Tentative Outputs. As checkpoint-based recovery re-
quires replaying the buffered data and synchronizations
among the connected tasks and hence incurs significant
recovery latency, PPA has the option to continue produc-
ing tentative results once the actively replicated tasks are
recovered. Recall that during normal processing, a task will
only start processing a batch after receiving the batch-over
punctuations from all of its upstream neighboring tasks. If
any of its upstream neighboring tasks fails, the recovery
manager in the Storm master node will generate the nec-
essary batch-over punctuations for those failed tasks, such
that a batch could be processed without the inputs from the
failed tasks and tentative outputs will be generated with an
incomplete batch. After the failed tasks are recovered, the re-
covery manager will stop sending the batch-over messages
for them such that the downstream tasks will wait for the
batch contents from the recovered tasks before processing a
batch. After all the failed tasks are recovered, the topology
will start generating accurate outputs. In this paper, we
assume the adoption of similar techniques proposed in [3]
to reconcile the computation state and correct the tentative
outputs and leave the implementation of these techniques
as our future work.

Statistics Collecting. To conduct incremental recovery,
we added a statistic collector in recovery manager which
periodically collects workload statistics of each task and
nodes. A timer thread running in the statistics collector
periodically sends the requests for workload statistics to the
processing tasks, which will then send its own CPU usage
during the last statistics period to the statistics collector.
The CPU usages of the tasks and nodes are denoted as a
percentage between 0 and 100%. The collected statistics are
stored in ZooKeeper.

7 EVALUATION

The experiments are run over the Amazon EC2 platform.
We build a cluster consisting of 36 instances, of which 35
m1.medium instances are used as the processing nodes and
one c1.xlarge instance is set as the Storm master node.
Heartbeats are used to detect node failures in a 5-second
interval. The recovery latency is calculated as the time
interval between the moment that the failure is detected and
the instant when the failed task is recovered to its processing
progress before failure. The processing progress of a task is
defined as a vector. Each field of the progress vector contains
the sequence number of the latest processed tuple from a
specific input stream of the task. A failed task is marked
as recovered if the values of all the fields in its current
progress vector are larger than or equal to the values of the
corresponding fields of the progress vector before failure.
Additional information of the experiment configuration will
be presented in the following sections.

10

 0

 10

 20

 30

 40

 50

win:10s,
 rate:1000tp/s

win:10s,
 rate:2000 tp/s

win:30s,
 rate:1000tp/s

win:30s,
 rate:2000tp/s

R
ec

o
v
er

y
 L

at
en

cy
(s

)

Active-5s
Active-30s

CKP-5s
CKP-15s
CKP-30s

Storm

Fig. 8. Single failure.

 0

 10

 20

 30

 40

 50

 60

 70

 80

win:10s,
 rate:1000tp/s

win:10s,
 rate:2000 tp/s

win:30s,
 rate:1000tp/s

win:30s,
 rate:2000tp/s

R
ec

o
v
er

y
 L

at
en

cy
(s

)

Active-5s
Active-30s

CKP-5s
CKP-15s
CKP-30s

Storm

Fig. 9. Correlated failure.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 5 15 30

C
P

U
 U

sa
g
e

Checkpoint Interval (s)

1000_tuples/s
2000_tuples/s

Fig. 10. Checkpointing cost.

Merge

One-to-one Merge

Merge

Source O1 O2 O3 O4

Fig. 11. Topology used in the experi-
ments of recovery efficiency.

7.1 Recovery Efficiency
Firstly, we study the recovery efficiencies of different fault-
tolerance techniques, including checkpoint, which is used in
Spark Streaming, source replay, which is the default fault-
tolerance technique in Storm, and active replication.

We implement a topology that consists of 1 source opera-
tor and 4 synthetic operators. The structure of this topology
is depicted in Figure 11. The source operator consists of
totally 16 tasks deployed on 4 nodes. All of the source tasks
produce input tuples in a specified rate (1000 tuples/s or
2000 tuples/s). The degree of parallelization of operators
O1, O2, O3 and O4 are set as 8, 4, 2 and 1 respectively.
Each task in O1 receives inputs from two source tasks and
each task in O2, O3 and O4 receives inputs from two up-
stream neighboring tasks. The 15 synthetic tasks are evenly
distributed among 15 nodes. In addition, there are another
15 nodes used as the backup nodes to store the checkpoints
and to run the active replicas. Each of the four synthetic
operators maintains a sliding window whose sliding step
is set as 1 second and the window interval varies from 10
seconds to 30 seconds. The state of each task of a synthetic
operator is composed by the input data within the current
window interval. The largest state size of a task is equal to
the multiplication of the input rate and the window interval.
The selectivity of each synthetic operator is set as 0.5.

In Figure 8 and Figure 9, Active-Xs denotes the case that
output trimming for an active replica is conducted every
X seconds. CKP-Xs represents the case that the checkpoint
interval is set as X seconds.

Single Node Failure. Figure 8 presents the recovery
latencies of single node failures. For active replication, we
vary the frequency of synchronizing the replica with its
primary task. One can see that the active approach has much
lower recovery latency than the passive approaches and
the changes of window intervals and input rates have little
influence. On the other hand, the recovery latencies with
both Checkpoint and Storm increase proportionally with the
input rate, as a higher input rate results in more tuples to be
replayed during recovery for both approaches. Furthermore,
the recovery latency with Checkpoint increases with the
checkpoint interval. This is because the number of tuples
that need be reprocessed to recover the task state increases
with the checkpoint interval.

As Storm will have to replay more source data with
longer window intervals, one can see that the recovery la-
tency of Storm with 30-second window is higher than those
with 10-second window. Another factor that influences the
recovery latency of Storm is the location of the failed task in
the topology, because the replayed tuples will be processed
by all the tasks located between the tasks of the source
operator and the failed tasks. Thus the recovery latency of

Storm is higher than that of Checkpoint in most of the cases
in this experiment. Here, we record the recovery latencies of
tasks in different locations within the topology in Storm and
report their average values.

Correlated Failure. We inject a correlated failure by
killing all the nodes on which the primary replicas of
the tasks are deployed. In Figure 9, one can see that the
recovery latency of active replication is much lower than
the passive approaches and stays stable with various the
window sizes and input rates. Furthermore, active replica-
tion with a shorter synchronization period leads to faster
failure recovery. On the other hand, the recovery latency of
Checkpoint and Storm grows rapidly with the increment in
window size and the input rate.

By comparing the results presented in Figure 8 and
Figure 9, it can be seen that the recovery latency with
active replication is lower than the passive approaches and
is relatively stable under the scenarios of various input rates
and window intervals. Moreover, the benefits of using active
replication are larger in the case of correlated failure than
that in the case of single node failure.

The latency of failure recovery with checkpoint can be
reduced by setting a short checkpoint interval. However,
the resource usage of maintaining checkpoints varies with
different checkpoint intervals. Figure 10 presents the ratio of
the CPU usage of maintaining checkpoint to that of normal
computation within a task. We can see that the CPU usage
of maintaining checkpoints increases quickly with shorter
checkpoint intervals and making checkpoint with very short
intervals such as one second is prohibitively expensive.
Although active replication consumes more recourses than
the passive approach, the low-latency recovery of active
replication makes it meaningful in the context of MPSPEs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 15 30

R
ec

o
v
er

y
 L

at
en

cy
(s

)

Checkpoint Interval(s)

PPA-1.0
PPA-0.5-active

PPA-0.5
PPA-0

(a) rate:1000 tuples / sec

 0

 10

 20

 30

 40

 50

 60

5 15 30

R
ec

o
v
er

y
 L

at
en

cy
(s

)

Checkpoint Interval(s)

PPA-1.0
PPA-0.5-active

PPA-0.5
PPA-0

(b) rate:2000 tuples / sec
Fig. 12. Recovery latency of a correlated failure with PPA, window length
: 30 seconds. PPA-0.5-active indicates the recovery latency of actively
replicated tasks in plan PPA-0.5.

Recovery with PPA. We conducted experiments to study
the performance of PPA with three active replication plans
denoted as PPA-1.0, PPA-0.5 and PPA-0 respectively. These
PPA plans consume various amount of resources for active
replication. In PPA-1.0, all the tasks in the topology are
actively replicated. PPA-0.5 is a hybrid replication plan
where only half of the tasks have active replica. PPA-0 is

11

a purely passive replication plan where all the tasks are
only replicated with checkpoint. The results are presented
in Figure 12. As the failed tasks with active replicas are
recovered faster than those using checkpoints, the overall
recovery latency of PPA-0.5 is higher than that of PPA-1.0
but lower than that of PPA-0. Note that with PPA-0.5, the
recovery latencies of tasks with active replicas (denoted as
PPA-0.5-active in Figure 12) are much lower than that of
recovering all the failed tasks (denoted as PPA-0.5 in Fig-
ure 12). The recoveries of PPA-0.5-active consume slightly
less time than PPA-1.0, this is because the number of actively
replicated tasks recovered in PPA-0.5-active is only the half
of that in PPA-1.0. This set of experiments illustrate that the
purely active replication plan outperforms the hybrid and
purely passive plan regarding the recovery latency. With a
hybrid plan, as the recoveries of actively replicated tasks
finish earlier than that of the passively replicated ones, PPA
can generate tentative outputs without waiting for the slow
recoveries of passively replicated tasks.

7.2 Tentative Output Quality

O1 O2

O3

O4

One-to-one

Merge

O1

Merge

O2

Merge

O3

Merge

Q1: Top-k Aggregate Q2: Incident Detection

#task: 20

 #task: 4

 #task: 1

#task: 20 #task: 5

#task: 5

#task: 1

Fig. 13. Top-k aggregate query(Q1) and incident detection query(Q2).

In both this section and Section 7.3, the resource con-
sumption of a PPA plan denotes the ratio of the amount
of resources for active replication to the total resource con-
sumption of the topology without active replication.

Q1 is a sliding-window query that calculates the top-100
hottest entries of the official website of World Cup 1998.
The input dataset consists of in total 73, 291, 868 access
records. In the experiments, we replay the raw input stream
in a rate which is 48 times faster than the original data
rate. We implement this query as a topology that conducts
hierarchical aggregates, which is a common computation in
data stream applications. The structure of this topology is
depicted in Figure 13. Tasks in O1 split the input stream
into a set of consecutive slices, each consisting of 100 tuples,
and calculate their aggregate results. For every 100 input
tuples, tasks in O2 will conduct a merge computation and
send the results to the single task in O3, which periodically
updates the globally top-100 entries.

Q2 is a sliding-window query detecting incidents that
incur traffic jams. The window interval is 5 minutes and
the sliding step is 10 seconds. As relevant datasets for this
query are not publicly available due to privacy consider-
ations, we generate a synthetic dataset in a community-
based navigation application. There are two streams in this
dataset: the user-location stream and the incident stream.
The rate of the user-location stream is set as 20,000 location
records per second. The incident stream is composed of
user-reported incident events and the time interval between
two consecutive incidents is set as 2 seconds. We distribute
100,000 users among 1000 virtual road segments following

the Zipfian distribution (with parameter s = 0.5). The prob-
ability of incident within a segment is set to be proportional
to the number of users located on it. The topology of Q2 is
presented in Figure 13. Tasks in O1 receive the user-location
records and calculate the average speed of each segment
per second. Tasks in O2 combine the user-reported incident
events into distinct incident events. O3 joins the segment-
speed stream from O1 and the distinct-incident stream from
O2. The outputs of tasks in O3 are the incidents that incur
traffic jams. O4 aggregates the outputs of O3.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.2 0.4 0.6 0.8

O
F

 /
 I

C

Resource Consumption

OF
OF-SA-Accuracy

IC
IC-SA-Accuracy

(a) Query: Q1.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8

O
F

 /
 I

C

Resource Consumption

OF
OF-SA-Accuracy

IC
IC-SA-Accuracy

(b) Query: Q2.
Fig. 14. Comparing the values of OF/IC and the query accuracy. OF-SA-
Accuracy (or IC-SA-Accuracy) denotes the actual query accuracies of
the PPA plans generated using the structure-aware(SA) algorithm with
OF (or IC) as the optimization metric.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8

O
F

 /
 A

cc
u

ra
cy

Resource Consumption

DP-OF
SA-OF

Greedy-OF
DP-Accuracy
SA-Accuracy

Greedy-Accuracy

(a) Query: Q1.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8

O
F

 /
 A

cc
u

ra
cy

Resource Consumption

DP-OF
SA-OF

Greedy-OF
DP-Accuracy
SA-Accuracy

Greedy-Accuracy

(b) Query: Q2.
Fig. 15. Comparing the values of OF and the actual query accuracies of
the PPA plans which are generated by DP, SA and Greedy.

Validation of the OF metric. In this set of experiments,
we compare OF with the Internal Completeness (IC) metric
proposed in [4], which measures the fraction of the tuples
that are expected to be processed by all the tasks in case
of failures compared to the case without failures. A funda-
mental difference between OF and IC is that, OF takes the
correlations of task’s input streams into account.

By denoting the tentative outputs as ST and the accurate
outputs of Q1 as SA, we define the query accuracy of Q1 as:
|ST

⋂
SA|

|SA| . Figure 14(a) shows the OF (or IC) values and the
actual query accuracies of the PPA plans generated using
the OF (or IC) metric. The results show that both OF and
IC provide good predictions of the accuracy of typical top-k
queries. This is because both OF and IC provide accurate
estimations of the completeness of the inputs for aggregate
queries, such as top-k, and such queries’ output accuracies
highly depend on the completeness of their inputs. The ac-

curacy function of Q2 is defined as
|IT
⋂
IA|

|IA| , where IT is the
set of tentative incidents generated with correlated failure
and IA is the set of accurate incidents generated without
failure. As shown in Figure 14(b), the accuracy values are
generally quite close to the values of OF. On the other hand,
with more available resources, we can generate PPA plans
with higher IC values. However, such plans do not have
higher query accuracies. This is because IC fails to consider
the correlation of tasks’ input streams and hence cannot
provide a good accuracy prediction for queries with joins.
This result clearly indicates the importance of distinguishing
join operators in predicting output accuracies.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
u
tp

u
t

F
id

el
it

y

Resource Consumption

SA-zipf
SA-uniform
Greedy-zipf

Greedy-uniform

(a) Workload Skewness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
u
tp

u
t

F
id

el
it

y

Resource Consumption

SA-para:10~20
SA-para:1~10

Greedy-para:10~20
Greedy-para:1~10

(b) Parallelization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
u
tp

u
t

F
id

el
it

y

Resource Consumption

SA-Structure
SA-Full

Greedy-Structure
Greedy-Full

(c) Full Partitioning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
u
tp

u
t

F
id

el
it

y

Resource Consumption

SA-NoJoin
SA-Join-50%

Greefy-NoJoin
Greedy-Join-50%

(d) Join
Fig. 16. Comparing OF of SA and Greedy algorithm with random single-query topologies of various specifications, the number of operators is a
random integer between 5 and 10. (a): The workloads of tasks within an operator are distributed in uniform or Zipfian distribution (with parameter
s = 0.1). (b): The degree of operator parallelization is a random number between different ranges. (c): Topologies are either structured topology or
full topology. (d): The fraction of join operators in the topologies is set as 0 or 50%.

Comparing Various Algorithms. To study the perfor-
mance of the structure aware algorithm(SA), we also pro-
pose a Greedy algorithm that generates PPA plan based
on the heuristic that tasks whose failures incur higher OF
damages to the tentative outputs than the others should be
assigned of higher priorities for recovery. More details of
this algorithm are presented in [25]. In this set of exper-
iments, we generate PPA plans for Q1 and Q2 using the
dynamic programing algorithm(DP), the structure-aware
algorithm(SA) and the Greedy algorithm respectively and
compare their performances. Results presented in Figure 15
show that SA is quite close to DP, which generates the
optimal PPA plan, in both OF and the actual query accuracy.
Greedy has the worst performance in the results of both
queries. This is because Greedy fails to consider that only
complete MC-Trees can contribute to the query outputs.

7.3 Random synthetic topology
To conduct a comprehensive performance study of PPA al-
gorithms with various types of topologies, we implemented
a random topology generator which can generate topologies
with different specifications including the number of opera-
tors, the degree of operator parallelization, the distribution
of operator partitioning methods, the fraction of join op-
erators in the topology and workload distribution of tasks
within an operator. The generation of topology starts from
the creation of a sink operator, from which the topology
grows according to the user-specified parameters. For each
set of topology specifications, we generate 100 synthetic
topologies and use them as the inputs of SA algorithm
and the Greedy algorithm to compare their performances
in terms of OF. Due to the prohibitive complexity of the
dynamic programing algorithm, we cannot complete it for
this set of experiments within a reasonable time so we do not
include it here. Query accuracies are not compared in this
set of experiments, as we cannot derive the actual output
accuracies for these randomized synthetic topologies.

Single-Query Topology. In Figure 16, all the topology
consists of one query. We vary the topology specifications,
such as workload skewness, parallelization degrees of oper-
ators, topology structure and the ratio of join operators, to
compare the performances of SA and the Greedy algorithm.
One can see that, SA outperforms the Greedy algorithm in
all the combinations of topology specifications and active
replication ratios. This is because the Greedy algorithm does
not consider whether the actively replicated tasks in the
generated PPA plan can compose complete MC-Trees.

Multi-Query Topology. Figure 17 presents the experi-
mental results with synthetic multi-query topologies. As
Greedy is agnostic to the topology structure, it falls behind
the multi-query SA in all the experimental settings. Among

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8

O
u

to
u
t

F
id

el
it

y

Positive Correlation

PPA

Greedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8

Resource Consumption

Uniform

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8

Inverse Correlation

Fig. 17. Comparing OF of SA and Greedy. The number of operators
is a random integer between 10 and 20, and the number of queries
is a random integer between 2 and 10. The workloads of tasks within
an operator follows a uniform distribution. From left to right, the figures
depicts the cases that the priorities of queries are set as positively cor-
related to their resource consumptions, uniformly distributed or inversely
correlated to their resource consumptions.

the three cases, multi-query SA has the greatest performance
advantage over Greedy when the query priority is set as
positively correlated with its resource consumption. As in
this case, recovering MC-Trees with larger size results in
a higher increment in OF, while Greedy falls short in con-
structing such MC-Trees in its plan. Compared to the case of
positive correlation, the performance advantage of SA over
Greedy decrements in the case of uniform distribution and
shrinks even further in the case of inverse correlation. This
is because Greedy tends to fully recover the smaller MC-
Trees, which contribute more to the OF of tentative outputs
in the last two cases.

 1

 10

 100

 1000

 10000

0.2 0.4 0.6 0.8

R
u
n
ri

m
e

(m
s)

Resource Consumption

SA
Greedy

DP

(a) Query: Q1

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

10 20 30 40 50

R
u
n
ri

m
e

(m
s)

Number of Operators

SA
Greedy

(b) Synthetic Topology
Fig. 18. Comparing the runtime of the PPA algorithms.

7.4 Runtime of Plan Generation
This set of experiments study the runtime of the three algo-
rithms proposed for PPA. All the experiments are repeated
for 100 times and the average runtime is plotted in Figure 18.
Figure 18(a) presents the runtime results with Query Q1 as
the input topology, which shows that the runtime of the
dynamic programming(DP) algorithm is up to two order
of magnitude higher than that of SA and Greedy even
with a small topology that consists of 20 MC-Trees. We
also compared the runtime of SA and Greedy with larger
synthetic topologies, where the number of operators ranges
from 10 to 50. The degree of parallelization of operator is
set as a random integer between 10 and 20. The resource
consumption is set as 0.8. As one can see in Figure 18(b),
both SA and Greedy can finish plan generation within half
a second. Greedy has a shorter runtime as its search space

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

F
id

el
it

y

Resource Arriving Ratio

INC-zipf
INC-uniform

TO-zipf
TO-uniform

(a) Workload Skewness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

F
id

el
it

y

Resource Arriving Ratio

INC-para:10~20
INC-para:1~10
TO-para:10~20
TO-para:1~10

(b) Parallelization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

F
id

el
it

y

Resource Arriving Ratio

INC-Structure

INC-Full

TO-Structure

TO-Full

(c) Full Partitioning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t

F
id

el
it

y

Resource Arriving Ratio

INC-NoJoin

INC-Join-50%

TO-NoJoin

TO-Join-50%

(d) Join
Fig. 19. Comparing OF of the INC and TO algorithms with random single-query topologies of various specifications, the number of operators is a
random integer between 5 and 10. (a): The workloads of tasks within an operator are distributed in uniform or Zipfian distribution (with parameter
s = 0.1). (b): The degree of operator parallelization is a random number between different ranges. (c): Topologies are either structured topology or
full topology. (d): The fraction of join operators in the topologies is set as 0 or 50%.

is much smaller then PPA. From this set of experiments, we
can conclude that SA is fast enough as the foundation for
conducting dynamic plan adaptation.

7.5 Incremental Recovery
To study the performance of the incremental recovery algo-
rithm (INC), we compare it with a baseline algorithm, which
is referred to as TO. TO schedules the recoveries of the failed
tasks following a topological order, it starts by adding the
failed tasks of the source operators into a task pool. While
gradually increasing the amount of available resources, it
selects the task in the task pool whose independent failure
causes the greatest damage to the OF of the tentative out-
puts. A non-source task is added into the task pool if all of
its failed upstream neighbors are recovered. In this set of
experiments, we use the random synthetic queries and the
two real queries described in Section 7.2.

Figure 19 presents the experimental results with the
synthetic topologies. In each run, we generate 100 synthetic
topologies. The results are collected in the situation that all
the tasks are failed in the correlated failure and the arriving
of new resources follows a uniform distribution. One can see
that, INC largely outperforms TO in all the experimental set-
tings, especially in the phase of the recovery. This is because
TO schedules the recovery following the topological order,
which results in that only very few MC-Trees are recovered
while the amount of available resources is small. Results
presented in Figure 19(c) shows that the incremental plans
that INC generates for structured topology have higher OF
then those that INC generates for full topology. This is
because the failure of any task in a full topology incurs
output lost for all of its upstream neighboring tasks and
damages the input quality of all the tasks in its downstream
neighboring operators.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
F

/
A

cc
u
ra

cy

Resource Arriving Ratio

INC-OF
INC-Accuracy

TO-OF
TO-Accuracy

(a) Query: Q1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
F

 /
 A

cc
u
ra

cy

Resource Arriving Ratio

INC-OF
INC-Accuracy

TO-OF
TO-Accuracy

(b) Query: Q2.
Fig. 20. Comparing the OF and the actual query accuracies of the
incremental recovery plans generated by INC and TO algorithms, re-
spectively. Query Q1 and Q2 are presented in Figure 13.

Figure 20 presents results of the two real queries using
the crawled tweets as inputs, which show that INC gener-
ates incremental plans with better OF performance than that
of TO. Furthermore, one can see that the actual accuracy of
tentative results generated with the incremental plans are
very similar to their OF for both INC and TO, which exhibits

the validity of output fidelity as a suitable accuracy metric
during incremental recovery.

8 RELATED WORK
Fault-tolerance in SPE. Traditional fault-tolerance tech-
niques for SPEs could be categorized as passive [13], [27],
[17] and active approaches [13], [3], [12]. The technique of
delta checkpoint [14] is used to reduce the size of check-
points. The authors in [9] proposed techniques to reduce
the checkpoint overhead by minimizing the sizes of queues
between operators, which are part of the checkpoints. [19]
proposed to utilize the idle period of the processing nodes
for active replication. Such optimizations are compatible to
our PPA scheme and can be employed in our system.

Spark Streaming [28] uses Resilient Distributed Dataset
(RDD) to store the states of processing tasks. In case of fail-
ure, RDDs can be restored from checkpoints or rebuilt based
on its lineage. In other words, it adopts both the checkpoint-
based and replay-based approaches. The works in [7], [22]
explore optimistic recovery for fixpoint algorithms used in
data mining. After failure, optimistic recovery utilizes a
user-defined compensate function to create a consistent state
to resume the execution. To reduce recovery latency, authors
in [5], [28] proposed to use parallel recovery. With parallel
recovery, multiple tasks can be launched to recover a failed
task and each of them is recovering a partition of the failed
one to shorten the process of passive recovery. However,
with a correlated failure, a large number of failed tasks need
to be recovered simultaneously. Then the degrees of parallel
recovery would be constrained.

Hybrid fault-tolerance approaches are studied in [27],
[11]. In [27], the objective is to minimize the total cost by
choosing a passive fault-tolerance strategy, including up-
stream buffering, local checkpoint and remote checkpoint.
[11] uses either active replication or checkpoint as the fault-
tolerance approach for an operator. The work in [29] con-
siders task overloading, referred to as “transient” failure,
caused by temporary workload spikes. Upon a transient
failure of a task, its active replica will be used to generate
low-latency output. Different from these approaches, the
trade-off of our work is between resource consumption and
result accuracy facing correlated failures.

Tentative Outputs. Borealis [3] uses active replication
for fault tolerance and allows users to trade result latency
for accuracy. Compared with Borealis, PPA explores more
on optimizing the accuracy of tentative results. Previous
work [4] attempts to dynamically assign computation re-
sources between primary computation and active replicas
to achieve trade-offs between system throughput and fault-
tolerance guarantee. Their accuracy model, IC, does not
consider the correlation of processing tasks’ inputs streams,

14

which is shown to be inadequate in our experiments.
A fault injection-based approach is presented in [15] to

evaluate the importance of the computation units to the
output accuracy, which only considers independent fail-
ures. Zen [21] optimizes operator placement within clusters
under a correlated failure model. As operator placement
is orthogonal to the planning of active replications, their
techniques can also be employed as a supplement to PPA.

Incremental Recovery DSPEs, such as Flink [1] and
Storm [26], adopt a blocking recovery approach in the sense
that the recovery would be blocked until sufficient new re-
sources are acquired. However, with such an approach, the
resources which arrive earlier than the other would be idled
before the recovery is started. There exist DSPEs [5], [18],
[24] that support expanding the scope of recovery following
the pace of arriving resources. However, the optimization of
incremental recovery plan is not considered in [5], [18]. The
work in [24] optimizes the recovery schedule of the failed
queries. Different from PPA that optimizes the quality of
tentative outputs, [24] only considers completely recovering
each individual query, hence it is unsuitable for stream
applications that prefer tentative outputs.

Failure in Clusters. Previous studies found that fail-
ure rates vary among different clusters and the number
of failures is in general proportional to the size of the
cluster [23]. Correlated failures do exist and their scopes
could be quite large [10], [20]. Hence considering correlated
failure is inevitable for a MPSPE that supports low-latency
and nonstop computations.

9 CONCLUSION
We present a passive and partially active (PPA) fault-
tolerance scheme for MPSPEs. In PPA, a partially active
replication plan is optimized to maximize the accuracy of
tentative outputs after failure. We also propose incremental
recovery to schedule the recoveries of passively replicated
tasks to optimize the average output accuracy during failure
recovery. The experimental results indicate that, upon a
correlated failure, PPA can start producing tentative outputs
up to 10 times faster than the completion of recovering
all the failed tasks. Hence PPA is suitable for applications
that prefer tentative outputs with minimum delay. The
experiments also show that our structure-aware algorithms
can achieve up to one order of magnitude improvements on
the qualities of tentative outputs in comparing the greedy
algorithm that is agnostic to query topology structures.
Therefore, to optimize PPA, it is critical to take advantage
of the knowledge of the query topology’s structure.

REFERENCES
[1] http://flink.apache.org/.
[2] B. Babcock, M. Datar, et al. Load shedding for aggregation queries

over data streams. ICDE’04.
[3] M. Balazinska, H. Balakrishnan, et al. Fault-tolerance in the bo-

realis distributed stream processing system. ACM Trans. Database
Syst, 2008.

[4] P. Bellavista, A. Corradi, et al. Adaptive fault-tolerance for
dynamic resource provisioning in distributed stream processing
systems. In EDBT’14.

[5] F. Castro, M. Raul, et al. Integrating scale out and fault tolerance in
stream processing using operator state management. SIGMOD’13.

[6] T. Das, Y. Zhong, et al. Adaptive stream processing using dynamic
batch sizing. SOCC ’14.

[7] S. Dudoladov, C. Xu, et al. Optimistic recovery for iterative
dataflows in action. SIGMOD ’15.

[8] O. Goldschmidt, D. Nehme, and G. Yu. Note: On the set-union
knapsack problem. Naval Research Logistics (NRL), 41(6):833–842,
1994.

[9] Y. Gu, Z. Zhang, et al. An empirical study of high availability in
stream processing systems. Middleware’09.

[10] T. Heath, R. P. Martin, et al. Improving cluster availability using
workstation validation. SIGMETRICS’02.

[11] T. Heinze, M. Zia, et al. An adaptive replication scheme for elastic
data stream processing systems. DEBS ’15.

[12] J.-H. Hwang, U. Cetintemel, and others. Fast and highly-available
stream processing over wide area networks. ICDE’08.

[13] J.-H. Hwang et al. High-availability algorithms for distributed
stream processing. ICDE’05.

[14] J.-H. Hwang, Y. Xing, et al. A cooperative, self-configuring high-
availability solution for stream processing. ICDE’07.

[15] G. Jacques-Silva, B. Gedik, et al. Fault injection-based assess-
ment of partial fault tolerance in stream processing applications.
DEBS’11.

[16] J. Kang, J. F. Naughton, et al. Evaluating window joins over
unbounded streams. ICDE’03.

[17] Y. Kwon, M. Balazinska, et al. Fault-tolerant stream processing
using a distributed, replicated file system. VLDB ’08.

[18] A. Martin, A. Brito, and C. Fetzer. Scalable and elastic realtime
click stream analysis using streammine3g. DEBS ’2014.

[19] A. Martin, C. Fetzer, and A. Brito. Active replication at (almost)
no cost. SRDS’11.

[20] S. Nath, H. Yu, Gibbons, et al. Subtleties in tolerating correlated
failures in wide-area storage systems. NSDI’06.

[21] B. Nikhil, B. Ranjita, et al. Towards optimal resource allocation in
partial-fault tolerant applications. In INFOCOM’08.

[22] S. Schelter, S. Ewen, et al. ”all roads lead to rome”: Optimistic
recovery for distributed iterative data processing. CIKM ’13.

[23] B. Schroeder and G. A. Gibson. A large-scale study of failures in
high-performance computing systems. DSN’06.

[24] L. Su and Y. Zhou. Progressive recovery of correlated failures in
distributed stream processing engines. EDBT ’17.

[25] L. Su and Y. Zhou. Tolerating correlated failures in massively
parallel stream processing engines. In ICDE’16.

[26] A. Toshniwal, S. Taneja, et al. Storm@twitter. SIGMOD ’14.
[27] P. Upadhyaya, Y. Kwon, et al. A latency and fault-tolerance

optimizer for online parallel query plans. SIGMOD’11.
[28] M. Zaharia et al. Discretized streams: Fault-tolerant streaming

computation at scale. SOSP ’13.
[29] Z. Zhang, Y. Gu, et al. A hybrid approach to high availability in

stream processing systems. ICDCS ’10.
[30] J. Zhou et al. Advanced partitioning techniques for massively

distributed computation. SIGMOD’12.

Li Su is a Postdoctoral Researcher in the De-
partment of Mathematics and Computer Sci-
ence, University of Southern Denmark. He ob-
tained his PhD in Computer Science at the Uni-
versity of Southern Denmark, in 2016. His re-
search interests include distributed stream pro-
cessing and large-scale data management.

Yongluan Zhou is an Associate Professor in the
Department of Computer Science at the Univer-
sity of Copenhagen. Before that, he had worked
at the University of Southern Denmark and cole
Polytechnique Fdrale de Lausanne. He obtained
his PhD in Computer Science at the National
University of Singapore. His research interests
include stream processing, query processing,
query optimization, and distributed systems.

