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In the big data era, much real-world data can be naturally represented as graphs. Consequently, many
application domains can be modeled as graph processing. Graph processing, especially the processing of
the large scale graphs with the number of vertices and edges in the order of billions or even hundreds of
billions, has attracted much attention in both industry and academia. It still remains a great challenge to
process such large scale graphs. Researchers have been seeking for new possible solutions. Because of the
massive degree of parallelism and the high memory access bandwidth in GPU, utilizing GPU to accelerate
graph processing proves to be a promising solution. This paper surveys the key issues of graph processing on
GPUs, including data layout, memory access pattern, workload mapping and specific GPU programming. In
this paper, we summarize the state-of-the-art research on GPU-based graph processing, analyze the existing
challenges in details, and explore the research opportunities in future.

CCS Concepts: •Computer systems organization→ Single instruction, multiple data; •Computing
methodologies → Massively parallel algorithms; •Mathematics of computing → Graph algo-
rithms; •Theory of computation→ Parallel computing models;

Additional Key Words and Phrases: Graph Processing, GPU, Graph Datasets, Parallelism, BSP Model, GAS
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1. INTRODUCTION
A graph is a mathematical structure that consists of a set of vertices and edges con-
necting certain pairs of them [Bondy and Murty 1976]. Much real-world data can be
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naturally represented as graphs and therefore the concept of graphs has been applied
to various applications, where the relationships among objects play an important role.
Below are some examples of real-world graph applications:

— In chemistry, graphs are widely used to model the molecule structures, where the
vertices and the edges represent atoms and the chemical bonds between them. Such
graph representation of the molecular structures forms the basis of building the soft-
ware for searching molecules.

— In physics, graph theory is widely used in the study of three-dimensional struc-
tures of atoms, where each vertex stands for an atom and an edge connects a pair
of atoms if there is interaction between them. The edges are weighted by the in-
teraction strength between two vertices. Such a graph model provides an intuitive
representation that facilitates the research of atomic structures.

— In computational neuroscience, graphs are used to represent the functional connec-
tions between brain areas that interact with each other in various cognitive pro-
cesses. In such graph models, the vertices and edges represent different brain areas
and their connections, respectively.

— In social sciences, graphs are also widely used, for example, for the social network
analysis. The relationship among people can be naturally modeled as graphs, where
an edge between two persons means they know each other and the edge weight in-
dicates the influence of their relationship or the frequency of their interactions. Re-
searchers can then extract interesting information from such graphs, such as mea-
suring the actors’ prestige [Polites and Watson 2008], exploring the way of rumor
spreading [Azad et al. 2015], and so on.

— In the study of World Wide Web, researchers use directed graphs to represent the
linked structure of web pages in the whole web, where a vertex represents a web
page and a directed edge stands for the referencing relation between two web pages.

— In computational linguistics, it has been proved that graph models are particularly
useful in natural language processing (NLP), information retrieval, web link pre-
dictions, and many other applications. For instance, syntax and compositional se-
mantics are often represented as tree-based structures, which greatly facilitate the
formulation of the analysis tasks and is hence widely used in many natural language
processing systems, such as CoreNLP [Manning et al. 2014], TextGraphs [Hahn and
Reimer 1984], WordNet [Miller 1995] and so on.

— In addition, graphs are also used to abstract and represent various structures in com-
puter systems, such as computation flows, data organizations, etc[WU et al. 2015].
For example, in compiler optimization, graphs are often used to express the code
structures, where vertices and edges represent functions (or classes) and function
call relationships, respectively.

Given the wide applicability of graph models, developing graph analytic algorithms
to explore and discover the underlying knowledge within graphs has been of great
interest for a very long time [Lee and Messerschmitt 1987; Hall et al. 2009; Jordan
and Mitchell 2015]. However, the rapidly growing sizes of real-world graphs calls for
new technologies to support the analysis of very large scale graphs. For example, there
are 342 millions of active users on Twitter 1, and the Word Wide Web graph contains
more than 4.75 billions of pages and 1 trillions of URLs 2. To address the challenge
of scalability, the researchers have been making extensive efforts in developing scal-
able graph traversal algorithms, such as BFS [Liu and Huang 2015; Liu et al. 2016],
and iterative graph analysis algorithms, such as PageRank [Mitliagkas et al. 2015;

1http://www.statisticbrain.com/twitter-statistics/
2http://www.worldwidewebsize.com/
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Richardson and Domingos 2001]. To facilitate the development of arbitrary large-scale
graph analysis applications, researchers have also developed generic graph program-
ming frameworks both in the context of a single machine such as GraphChi [Kyrola
et al. 2012], X-Stream [Roy et al. 2013], GridGraph [Zhu et al. 2015], and in a cluster,
such as Pregel [Malewicz et al. 2010], PowerGraph [Gonzalez et al. 2012].

Recently, the technical advance of the General-Purpose Graphics Processing Units
(GPGPU) [Owens et al. 2007], especially the features of massive parallelism and high
memory access bandwidth, has attracted a lot of researchers to investigate how to ap-
ply GPGPUs to accelerate computations in various applications including graph pro-
cessing [Merrill et al. 2012; He et al. 2010; Li and Becchi 2013; Ashari et al. 2014].
More recently, efforts have been devoted to building general graph processing systems
on GPUs, such as TOTEM [Gharaibeh et al. 2012], CuSha [Khorasani et al. 2014],
GunRock [Wang et al. 2016], and Frog [Shi et al. 2015].

GPU adopts a SIMD-based (Single Instruction Multiple Data) architecture, which
gains high performance through massive parallelism. In GPU, most of the die area
is used by the Arithmetic Logic Units (ALU), while a small proportion of the area
is contributed to the control units and caches. Furthermore, GPU usually has a very
high memory access bandwidth, but a limited memory space. This architecture enables
GPU to perform regular computations in very large degree of parallelism [Colic et al.
2010][Lu et al. 2010].

On the contrary, modern multi-core CPUs adopt the MIMD (Multiple Instruction
Multiple Data) architecture and the control units and caches take up most of the die
area, with less remaining for ALUs. Comparing to GPUs, CPUs are better at perform-
ing tasks that demand short latency, which requires the support of complicated control
units and large cache.

Table I: Optimization Aspects on Graph Processing on GPUs.

Aspects Challenge Related Work

Data Layout
regularity

CuSha [Khorasani et al. 2014],
GStream [Seo et al. 2015],
GTS [Kim et al. 2016]

memory bandwidth
MapGraph [Fu et al. 2014],
SPMV [Ashari et al. 2014],
Frog [Shi et al. 2015]

data-dependent parallelism
TOTEM [Gharaibeh et al. 2012],
ExContract [Merrill et al. 2012],
SBI [Brunie et al. 2012]

Memory
Access
Pattern

irregular memory access

In-Cache Query [He et al. 2014],
TOTEM [Gharaibeh et al. 2012],
Hybrid System [Abdullah et al. 2014],
ExContract [Merrill et al. 2012],
Enterprise [Liu and Huang 2015],

non-coalesced memory access

In-Cache Query [He et al. 2014],
Medusa [Zhong and He 2014],
SPMV [Ashari et al. 2014],
DWS [Meng et al. 2010],
CuSha [Khorasani et al. 2014],
MapGraph [Fu et al. 2014],
GunRock [Wang et al. 2016],
iBFS [Liu et al. 2016],
Frog [Shi et al. 2015]

bank conflict
DWS [Meng et al. 2010],
Push-Relabel [Azad et al. 2015],
WLP [Baghsorkhi et al. 2010]

Continued on next page
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Table I – continued from previous page
Aspects Concerns Related Work

out-of-core processing

Warm-Up [Guha et al. 2015],
GTS [Kim et al. 2016],
Enterprise [Liu and Huang 2015],
Green-Marl [Hong et al. 2012],
PDOM [Fung et al. 2007],
Frog [Shi et al. 2015]

memory dependent parallelism GBTL-CUDA [Zhang et al. 2016],

memory bandwidth
TOTEM [Gharaibeh et al. 2012],
GTS [Kim et al. 2016],
PDOM [Fung et al. 2007]

Workload Mapping warp divergence

CuSha [Khorasani et al. 2014],
DWS [Meng et al. 2010],
iBFS [Liu et al. 2016],
Virtual Warp [Hong et al. 2011a],
PDOM [Fung et al. 2007],
Two-Level Warp Scheduling
[Narasiman et al. 2011]

task scheduling

FinePar [Zhang et al. 2017],
MapGraph [Fu et al. 2014],
GunRock [Wang et al. 2016],
TOTEM [Gharaibeh et al. 2012],
Hybrid System [Abdullah et al. 2014],
ExContract [Merrill et al. 2012],
Enterprise [Liu and Huang 2015],
SBI [Brunie et al. 2012]

Miscellaneous
branch divergence

DWS [Meng et al. 2010],
Medusa [Zhong and He 2014],
Virtual Warp [Hong et al. 2011a],
PDOM [Fung et al. 2007],
Two-Level Warp Scheduling
[Narasiman et al. 2011],
WLP [Baghsorkhi et al. 2010],
SBI [Brunie et al. 2012]

GPU specific programming
GunRock [Wang et al. 2016],
Green-Marl [Hong et al. 2012],
Medusa [Zhong and He 2014]

other aspects
G2 [Zhong and He 2013],
Mars [He et al. 2008; Fang et al. 2011],
Morph [Nasre et al. 2013]

Although GPUs can offer high degree of parallelism, their restrictions mean that it
is a non-trivial task to use GPU to accelerate large-scale graph computations. Graph
computations often exhibit irregular data access patterns, due to which the applica-
tions may not reach the peak performance in GPU. Furthermore, due to the fact that
the memory size of GPU is very limited compared with CPU memory and moving data
from the host memory to the GPU memory causes the extra overhead, the GPU mem-
ory may become a potential bottleneck. In addition, the condition branches (e.g., the
if-else statement) in graph computations do not fully exploit the high degree of par-
allelism offered by the SIMD executions in GPU, which leads to the so-called branch
divergence and may dramatically degrade the performance. In this paper, we attempt
to write a comprehensive survey of the existing efforts in addressing these challenges,
and at the same time discuss the main opportunities in graph processing on GPU.

In order to cover the challenges of graph processing in GPU, we surveyed about 100
papers published in recent years, as summarized in Table I. The problems addressed in

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: ????.
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the existing research on graph processing in GPU can be categorized into the following
aspects:

— Data Layout. In conventional CPU-based graph processing algorithms and systems,
it is important to design data layout to achieve contiguous memory access to enhance
TLB and cache hit rates. But in a GPU, there is a global memory shared by all GPU
processors, and for each memory access, it is beneficial to feed data to more than one
SIMD threads. Threads in a GPU are executed in groups (a group is called a warp
in CUDA. The accesses to the global memory by the threads of a warp (or half a
warp in older devices) will be coalesced into a single memory access if the consecu-
tive threads are accessing the contiguous memory addresses. By doing so, the mem-
ory access overhead can be minimized. A GPU can reach its peak memory access
bandwidth only when the algorithm has a regular memory access pattern, i.e., the
data accessed by the consecutive threads of a warp occupies the contiguous memory
segment. However, graph data structures and graph algorithms often issue irregu-
lar memory accesses. For instance, in a parallel graph traverse algorithm, when the
adjacency-list data structure is used, different threads will access the data scattered
across different memory locations, which requires the GPU to issue multiple memory
accesses to fetch all needed data. Such irregular data layout substantially limits the
degree of parallelism of a GPU and does not help unleash its full power. In addition,
a GPU device typically communicate with the CPU host by a PCI Express (PCIe) bus
or an Accelerated Graphics Port (AGP), which has a limited bandwidth. Therefore, it
is critical to design the appropriate graph data layout to reduce the amount of data
movements between the GPU and the host.

— Memory Access Pattern. CPU is usually equipped with a very large main memory,
which is enough to process most real world graphs. Furthermore, even with graphs
that are larger than the main memory size, CPU-based systems can efficiently use
secondary storage to handle the problem due to the relatively high bandwidth. But
a GPU is usually equipped with high-speed but small-sized on-chip shared memory,
which can be used to cache the frequently accessed data to reduce the need of ac-
cessing the on-device global memory. However, if many threads access different data
in the shared memory concurrently, it will cause the conflicts of memory bank and
hence limit the degree of parallelism. Furthermore, the access to the global memory
in a modern GPU is usually in the unit of blocks. The block size is usually 64KB, but
also depends on the GPU architecture. Therefore, if the accesses to global memory
issued by a warp are coalesced and aligned within one or a few memory access units,
then it can significantly improve the utilization of memory bandwidth. So similar to
data layout, carefully designing the memory access pattern is also a critical issue in
GPU computation.
Using the limited memory to process large-scale graphs that cannot fit into the GPU
global memory, which is called out-of-core graph processing, is another major chal-
lenge [Kyrola et al. 2012; Roy et al. 2013; Khorasani et al. 2014]. Partitioning graphs
into small parts or designing smart graph data representations, with which the data
are swapped in and out of the GPU memory when needed, may be the potential solu-
tions to this problem. However, the research on how to organize the irregular graph
data and the relevant performance study are relatively sparse. In addition, in this
out-of-core graph processing technique, whether the device memory is used or not
can hugely influence the processing quality and power efficiency.

— Workload Mapping. CPU has a strong and flexible Control Unit, which can change
the scheduling strategy flexibly in runtime. But GPU runs in a Single Instruction
Multiple Threads (SIMT) model. Once the instruction is distributed by the controller,
it is impossible to change the scheduling strategy until the next iteration. Parallel-
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lizing graph computations often causes load imbalance due to the irregular graph
structure. For instance, different vertices in a graph often have very diverse degrees,
which complicates the balancing of the workload among the parallel tasks. An uneven
load distribution among the threads within a kernel call may significantly harm the
performance [Khayyat et al. 2013]. Furthermore, as CPU and GPU favor different
types of tasks, how to partition the workload between CPU and GPU so as to achieve
good overall performance in such a hybrid system also becomes a challenging task.

— Miscellaneous. Besides the aforementioned aspects, implementing efficient graph
computations on GPUs need to address various other issues, such as branch diver-
gence, kernel calls and kernel configuration. Thanks to its flexible Control Unit, CPU
is good at handling condition branches. But for GPU, the branch divergence arises
when different threads take different paths in a condition branch in the same wave-
front. This will cause serious performance problems on GPUs, because only one path
can be executed at a time in the SIMD mode of GPU, which means that only a portion
of threads in a warp are running on a path while all other threads that should take
other paths are blocked and not be able to perform any effective work [AMD 2011;
Bienia and Li 2010; Meng et al. 2010]. Avoiding branch divergence is a great chal-
lenge for GPU programmers. In addition, synchronous and asynchronous processing
on GPU is another issue. As GPU is a parallel streaming processor, synchronous op-
erations may limit the computing power of GPU. On the other hand, it is hard to
implement asynchronous graph processing operations on GPUs as there are a large
number of messages passing between the vertices. Kernel configuration is a complex
multidimensional structure, which reflects the hardware architecture of the GPU.
In a parallel GPU programming, threads are grouped into the blocks for the conve-
nience of inter-thread communication and memory sharing. A block can be of one,
two or three dimensional structure, blocks can be further grouped into a grid. The
grid is a one or two dimensional structure. Because GPU has the SIMD execution
mode, each thread in the grid will compute the same kernel function on different
parts of the same dataset. Thus, the kernel configuration has a significant effect on
the degree of parallelism and hence influences the computing efficiency. A kernel is
callable from the host while the kernel executes on the GPU device. Each thread is
given a unique ID, which is generated when the kernel is invoked. As mentioned
above, threads within the block share the same shared memory, through which they
can cooperate with each other. Therefore, improper kernel invocations may cause the
accessing conflict of memory banks and hence harm the computing power of GPU.

This survey focuses on graph processing on GPUs. In this survey we group the GPU
graph processing systems into two categories, i.e., graph processing systems on a single
GPU and those on multi-GPUs. Accordingly, the remainder of this paper is organized
as follows. Section 2 presents some background information about graph processing on
GPUs, such as CUDA, OpenCL and GPU computing architecture. The implementation
of graph algorithms on GPU is elaborated in Section 3. Section 4 introduces the GPU
graph processing systems, including both single GPU and multi-GPU graph processing
frameworks. Section 5 designs a series of experiments to show the performance with
different data types and algorithms on GPUs. We conclude this paper and discuss some
research opportunities in Section 6.

2. BACKGROUND
Although the advent of general programming platforms and APIs, such as Compute
Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), have
simplified the implementation of general computations in GPU, efficient GPGPU pro-
gramming requires not only learning new GPU programming languages and APIs, but
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also understanding the underlying hardware and internal mechanisms in the GPU.
This section presents the background information of the GPU architecture and two
main GPU programming types: CUDA and OpenCL.

2.1. History and Evolution of GPU Architecture
The evolution of the modern graphics processor begins with the introduction of the
first 3D add-in cards in 1995 [Seiler et al. 2008]. From the perspective of parallel
architecture, we can divide the evolution into three generations.

— Fixed functional architecture. From 1995-2000, each hardware unit consists of
a graphics processing pipeline, the functions in the pipeline are fixed. In this gen-
eration, a plurality of pixel pipelines execute the same operation on each input data
using the stream computing model. By using this architecture, GPU can significantly
accelerate graphics rendering.

— Separated shader architecture. In 2001, NVIDIA’s GeForce 3 introduced pro-
grammable pixel shading to the consumer market which sets off a new generation of
GPU. In this generation, the programmable vertex shader replaces the illumination
associated fixed units, and the pixel shader replaces the texture sampling and mix-
ing associated fixed units. This greatly enhanced the flexibility and expressiveness
of graphics processing. Although both of these two parts are stream processors, they
are physically separated and have no direct communication channel. Due to GPU’s
powerfulness in graphic rendering, it is widely used in gaming and other consumer
applications.

— Unified shader architecture. The unified shader architecture emerged from 2006.
In this generation, the geometry shader program was introduced in GPU, which
can be dynamically scheduled to execute the vertex, geometry and pixel programs.
This generation of GPU adopts the parallel architecture rather than the stream-
ing one. In addition, they support integer and single/double precision computations,
and their instructions, textures and data accuracy are further improved. However,
they still cannot support recursive procedures. With the development of the com-
putation power of GPU, GPGPUs emerged, which are not only for graphic shader-
ing, but also for high performance computing (HPC). Examples include the NVIDIA’s
Fermi, Kepler, Maxwell and Pascal. Fermi was introduced in 2006 which is the first
complete GPU computing architecture. In order to provide high accuracy compu-
tation for HPC, NVIDIA introduced the first Fermi-based product, GeForce 8800,
in 2006 [NVIDIA 2009; Arjun et al. 2011], which is one of the most representa-
tive parallel computing processors. In 2012, NVIDIA introduced the Kepler archi-
tecture based on Fermi [NVIDIA 2012], which adopted some new features such as
dynamic parallelism, Hyper-Q, grid management unit and NVIDIA GPUDirect to
provide higher processing power and parallel workload execution for HPC. With the
focus on low power operations, NVIDIA proposed the Maxwell architecture in 2014
[NVIDIA 2014]. In order to make the GPU more suitable for PCs, workstations, su-
percomputers and mobile chips, NVIDIA grouped SMs into quads to minimize power
consumptions. Since then, GPU is widely used in mobile chips. With the development
of AI, Deep Learning, autonomous driving systems, and numerous other computing-
intensive applications, NVIDIA introduced the Pascal architecture in 2016 [NVIDIA
2016b] to improve the support of computing-intensive applications with many new
technologies including NVLink, HBM2 High-Speed GPU Memory, Unified Memory,
Compute Preemption, etc.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: ????.
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2.2. Modern GPU Computing Architecture
Figure 1 illustrates the overall architecture of a modern GPU device. To support mas-
sive parallel computing, a GPU typically consists of several streaming multiproces-
sors (SMs), each of which is composed of a number of GPU cores (alternatively called
streaming processors), special functional units, registers, double-precision unit(s) and
a thread scheduler. Each GPU core has the scalar integer and floating point arithmetic
units, where most instructions of a GPU program are executed. A GPU core supports
multithreading, typically supporting 32 to 96 threads in the current hardware.

The memory of a GPU device can be divided into two hierarchies: on-device memory
and on-chip memory, which is shown in Figure 2. The on-device memory is the Dynamic
Random Access Memory (DRAM), which is logically divided into local memory, global
memory, constant memory and texture memory; while the on-chip memory consists
of several physical components, including register shared memory, L1/L2 cache, and
constant & texture cache. Each thread has the access to a small and exclusive part of
the on-device local memory, while all the threads can access the global memory. The
logical constant and texture memory are mainly designed for graphical computations
in image processing.
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The access to the on-device memory usually has a long latency, in the unit of hun-
dreds of clock cycles. Mainstream architectures include a two-level or three-level cache
on a SM, including the constant and texture caches, and L1/L2 cache, to reduce the
average memory latency. However, GPU is mostly used for stream computing, where
cache is not important in general (This is also why the die area contributed to the
cache is very limited in GPU). The shared memory on each SM is small (48KB per
SM in NVIDIA K40 GPU 3) but is of high-speed, and is only accessible to the threads
spawned on that SM.

A GPU is generally used as a co-processor or an accelerator for the host CPU. A
GPU is connected to the host by the PCI-Express bus. The data is transferred between
the on-device memory in GPU and the main memory in CPU usually by using the
programmed DMA, which operates concurrently with both the host CPU and the GPU
computing units. The zero-copy function is supported in some GPU architectures, such
as CUDA from version 2.2 and OpenCL from version 1.2, where a GPU is able to access
the host memory through PCIe and its on-device memory can be mapped into the host
address space. This technique highly improves the communication efficiency.

2.3. Compute Unified Device Architecture (CUDA)
CUDA is probably the most popular general purpose GPU programming framework,
which is developed by NVIDIA. The CUDA architecture has a unified shader pipeline,
allowing each arithmetic logic unit (ALU) to perform general-purpose computations.
There are three key concepts in CUDA: thread hierarchy, shared memory, and barrier.

Figure 3 shows the thread hierarchy. In CUDA, the first two layers of thread group is
called warps and blocks. A programmer can set the number of threads per block subject
to the hardware-dependent constraints, which is usually in the range of hundreds. All
the threads in a block can access the shared memory, which works as a cache and can
be used to share data among the threads within the block. A programmer can also set
the number of threads per warp. CUDA can then divide the threads in a block into
warps. The threads in a warp share the same code and follow the same execution path.
During the computation, there is only one warp that can be executed at the same time
in an SM, and all the warps mapped to an SM are executed in a time-sharing fashion.
Each SM operates in a Single Instruction Multiple Threads (SIMT) fashion, where the
SM issues one set of instructions to a warp of threads for concurrent executions over

3http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001 v05.pdf
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different data elements. Namely, the SM supports the instruction-level parallelism,
but does not support branch prediction or speculative execution.

Finally, a number of blocks form a grid. A grid of threads execute the same GPU
kernel, reading inputs from the global memory and writing the results back to the
global memory. A device with capability 2.x or higher can execute multiple kernels
concurrently. The maximum number of threads allowed depends on the specific device
capability. The kernels from different CUDA contexts cannot run concurrently. Differ-
ent kernels synchronize only through the kernel calls.

Barrier is a thread synchronization construct, which is a point in the code where all
the threads within a block synchronize. Only until all the threads have reached the
barrier, can they proceed to execute the next instruction after the barrier. If for some
reason, some threads cannot reach the barrier, e.g. they are stuck in an infinite loop,
then the threads that have reached the barrier will be blocked forever.

2.4. The OpenCL Programming Model
OpenCL is a more general programming framework than CUDA for heterogeneous
architectures, which can be used on CPU, GPU and some other processors or hard-
ware accelerators, such as DSP and FPGA. Different from CUDA, which only supports
data parallelism, OpenCL supports both task and data parallelism. Similar as CUDA,
OpenCL also provides the general programming interface such as memory manage-
ment, device management, kernel management, error checking and information query-
ing. Programmers can control the related device by using this interface.

OpenCL views the computing system as consisting of a number of computing devices,
which can be CPU, GPU or other accelerators. In OpenCL, a computing device contains
several computing units and each computing unit is composed of multiple processing
elements. Different from the memory hierarchy in CUDA, four types of memories are
defined in OpenCL. The “global memory” is shared by all processing elements but with
high latency. The “constant memory”, which is small but with high-speed, is writeable
only by the host CPU and read-only for other devices. The “local memory” is shared
by a group of processing elements. Finally, the “private memory” (also called device
register) is a fast on-chip memory.

3. GRAPH PROCESSING ALGORITHMS ON GPU
One research direction in the literature is to study how to make use of GPUs’ massive
parallellism and high memory bandwidth to accelerate specific graph algorithms. Ini-
tially, the work of making use of GPU to accelerate specific graph algorithms mainly
focused on graph traversal algorithms. More recent researches have studied more com-
plicated algorithms, including Betweenness Centrality (BC), Connected Component
(CC), Single Source Shortest Path (SSSP), PageRank (PR), and Minimum Spanning
Tree (MST). This section attempts to discuss and summarize these existing efforts.

3.1. Traversal Algorithms
Traversal algorithms are a type of graph algorithms that visit each vertex of a graph in
a certain pattern. Researchers have mainly studied how to efficiently perform Breadth-
First Search (BFS) and Single Source Shortest Path (SSSP) on GPUs.

3.1.1. Breadth-First Search (BFS). As one of the most important graph traversal algo-
rithms, executing parallel BFSs on GPUs has attracted a lot of research efforts.

Memory Access Pattern. Merrill et al. [Merrill et al. 2012] adopt the CSR graph
representation in their BFS traversal algorithm, which, as analyzed above, provides a
compact and regular data layout.
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However, the edge information needed by a warp may still not be coalesced and
aligned in one memory access unit (i.e. 64 or 128B in modern GPUs). Therefore, the
authors extract the information of the edges to be visited from the CSR representation,
and then align them in one memory access unit. To avoid bank conflict of the shared
memory, each thread broadcasts within the warp, the location of the shared memory it
is going to access. Putting all these together, the authors reduce the complexity of the
BFS algorithm to O(|V |+ |E|), while the methods proposed by others have a quadratic
complexity [Harish and Narayanan 2007; Hong et al. 2011b; Jia et al. 2011].

In order to process large scale graphs, Liu et al. [Liu and Huang 2015] proposed a
GPU-based BFS framework, called Enterprise. In each iteration, Enterprise scans the
status of the vertices and stores the status in a Status Array, and uses a Frontier Queue
to store the unvisited adjacent vertex. As Enterprise executes the BFS in a tree man-
ner, the unvisited adjacent vertices will be visited in the next level. Enterprise aligns
the vertices in Status Array according to the Frontier Queue. By using this method,
Enterprise can visit the memory in a regular fashion.

The parallel BFS proposed by Fu et al. [Fu et al. 2014] extends the expand-contract
BFS algorithm developed by Merrill et al. [Merrill et al. 2012] to GPU clusters. In their
work, they propose a 2D partitioning method, and use MPI to contract columns on the
edge frontiers after each expanding step. Their method has several disadvantages,
such as algorithm generality, hardware compatibility and scalability. The proposed
parallel BFS method only works with the graph algorithms with no data access be-
yond direct neighbours, which limits the general applicability of the proposed method.
Also, the proposed method limits the number of GPUs to n2, in order to ensure the
hardware compatibility of the algorithm. In addition, the proposed method ensures
the scalability of the algorithm by reducing the edge frontier transmission between
GPUs, which also reduces the communication overheads.

Job Mapping. In many graphs, the vertex degrees vary significantly, which causes
load imbalance among the threads. To solve the problem, Hong et al. [Hong et al.
2011a] propose to use the whole warp to explore the neighbors of a vertex (or a few
vertices if the number of neighbors of one vertex is smaller than the number of threads
in a warp), instead of using a single thread to explore all neighbors of a vertex. Besides
being able to achieve load balance, this strategy also enhances the usage efficiency of
the shared memory, because there are less data (i.e. less neighbor information) needed
by the whole warp. Experiments show that small (sub-)graphs and the graphs with
long diameters have poor performance on GPUs, but can archive good performance on
multi-core CPUs. In order to utilize both multi-core CPU and GPU resources, Hong et
al. [Hong et al. 2011b] propose a hybrid scheme, in which, the graph is partitioned into
several sub-graphs and the sub-graphs are distributed on the multi-core CPU and the
GPU according to the number of vertices and the diameter of the graph. The partial
results for the sub-graphs are combined to obtain the final result.

3.1.2. Single Source Shortest Path (SSSP). SSSP is another typical graph traversal al-
gorithm, which requires finding a shortest path between two specified vertices [Bulu
et al. 2010].

Memory access pattern. Harish and Narayanan [Harish and Narayanan 2007]
are the first to use CUDA to implement the Dijikstra’s algorithm, a traditional SSSP
method. However, the implemented algorithm suffers from the inefficiency of atomic
operations. By using the SSSP algorithm formulation, they also implemented the
CUDA-based APSP (All-Pair-Shortest-Path) problem, which was originally solved by
the Floyd-Warshall (FW) algorithm in CPU.

In the proposed CUDA-based APSP method, the global memory is used and the
shared memory is not used because in APSP each thread can access the global mem-
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ory, but finds it difficult to achieve data locality in the shared memory. This method
is easy to use, but can hardly process large scale graphs because of the limited device
memory. The experiments on an NVIDIA GTX8800 GPU with the artificially generated
high-degree graphs show that SSSP and APSP can achieve 70x and 17x speedup, com-
pared with the performance of running the serial implementation on an Intel Core 2
Duo processor. However, in the experiments with real-life graphs that contain several
millions of vertices, the method does not demonstrate a similar performance advan-
tage. This is mainly due to the low average degree of these real-life graphs. Namely,
the algorithms manifest a poor performance on the graphs with low degree. In order to
solve this problem, a blocked FW algorithm was proposed in 2008 by Katz and Kider
[Katz and Kider 2008], which proposed a hierarchically parallel method in the revised
FW algorithm. In this algorithm, the graph was represented by an adjacency matrix.
In order to process large scale graphs, this algorithm partitions the matrix into B ×B
equally sized sub-matrices. By using this method, the sub-matrices which have no rela-
tionship with each other can be calculated at the same time in the computation phase.
In the first phase, the block (0, 0) is loaded into the global memory for the computation.
At the same time the blocks (0, i) (i 6= 0 and i < B − 1) and (j, 0) (j 6= 0 and j < B − 1)
are loaded into the shared memory. In the second phase, the blocks (0, i) (i 6= 0 and
i < B − 1) and (j, 0) (j 6= 0 and j < B − 1) participates the computation while block
(1,1) is loaded into the shared memory and so on. Benefiting from this shared memory
strategy, the proposed method has a 5.0-6.5x speedup over Harish and Narayanan’s
work.

3.2. Iterative Algorithms
Iterative algorithms are very common in graph processing and machine learning.
Many looping statements such as while, loop or do–while are used in iterative algo-
rithms. The algorithm executes the steps in iterations by using these looping state-
ments. The aim of an iterative algorithm is to find the approximation solution by up-
dating the vertex values successively.

PageRank. PageRank was first proposed by Google, and used in web link predic-
tions. As the irregular memory access brought by the graph data, it is very hard to use
GPU to process the PageRank. Rungsawang et.al. [Rungsawang and Manaskasemsak
2012] implemented the PageRank on GPU by using the CSR representation. Wu et al.
[Wu et al. 2010] use a modified CSR format to represent the graphs. In order to solve
the job mapping problem caused by uneven row sizes of the spare linkage matrices
(degree of the vertex), Wu classifies the vertices into three classes, i.e., Tiny Problems,
Small Problems and Normal Problems, according to the amount of calculation. Wu as-
signs different number of threads to process the corresponding classes according to the
computation task.

Sparse Matrix-vector Multiplication. Sparse matrix-vector multiplication
(SpMV) is widely used in sparse linear algebra, and has been extensively studied.
SpMV is a highly irregular computing algorithm. How to design a sufficient regu-
lar execution path and memory access pattern for SpMV is an interesting research
topic. Salvatore et al. [Filippone et al. 2017] surveyed the techniques for implement-
ing SpMV on GPUs. The main issue of running the SpMV kernel on GPU is how to
map the irregular data access pattern to the GPU architecture. Bell et al. [Bell and
Garland 2009; Bell and Garland 2008] discussed the sparse matrix format for SpMV,
including ELL (ELLPACK), COO (coordinate), DIA (diagonal format) and CSR. Exper-
imental results show that the scalar-based CSR format is not suitable for SpMV due
to its low bandwidth utilization caused by non-coalesced memory access pattern, while
the vector-based CSR format can achieve a good performance on matrices with large
row sizes due to the contiguous memory accesses. Based on this conclusion, a hybrid
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(HYB) format is proposed in [Bell and Garland 2009]. In the HYB format, the ELL
format is used to store non-zeros values in each row and the COO data structure is
used to store the remaining entries. Monakov proposed a hybrid BCSR/BCOO format
in [Monakov and Avetisyan 2009], where a CSR-like format is used to store the blocks.
The row coordinate is stored by sorting the blocks by rows and then storing the index
of the first block in each row in a CSR-like format. Compared to the BCSR format, the
hybrid format is more flexible. The performance of SpMV with different data formats
varies with different data characteristics [Li et al. 2015], hence the best format has
to be chosen according to the dataset. To address the problem, Benatia et al. [Benatia
et al. 2016] proposed a machine learning approach to select the best representation
method for a given spare matrix. Similar to [Benatia et al. 2016], Su et al. [Su and
Keutzer 2012] developed a SpMV framework, called clSpMV, where a Cocktail format
is used to represent a sparse matrix. clSpMV analyzes SpMV at runtime and chooses
the best representations of a given matrix. While most of the previous studies are cen-
tered on memory access patterns and data representations. Yan et al [Yan et al. 2014]
studied the load imbalance problem and developed the yaSpMV framework. yaSpMV
addresses the load imbalance problem by revisiting the segmented scan approach for
SpMV. By partitioning a matrix into strips of warp sizes, Zheng [BiE 2014] proposed
the BiELL format to maintain load balance for SpMV.

Graph Partition. A graph partition algorithm cuts the vertices into several dis-
joint subsets, which is widely used in distributed large-scale graph processing and
many other application scenarios, such as scientific computing, computer vision and
distributed job scheduling. Vineet and Narayanan [Vineet and Narayanan 2008] im-
plemented the push-relabel max-flow/min-cut algorithm on GPUs. The authors stored
the vertices status information in the shared memory. Experiments on 640 × 480 im-
ages for 90 graph cuts gain 10-12x speedup over the best sequential algorithm reported
in 2008. Recently, some researchers proposed the 2-way cut algorithm. However this
method does not solve the problem of partitioning the graph into multiple sub-graphs.
This is a problem called the minimum k-cut problem. The aim of minimum k-cut prob-
lem is to partition the graph into k independent sub-graphs while every sub-graph is a
connected one. When k is a part of the input, the minimum k-cut problem is NP-hard.
The complexity is O(|V |k2

) even with a fixed k. The main goal of graph partitioning is
to achieve load balancing and facilitate task scheduling for static graphs. As the graph
topology is static, the algorithm only needs to run once. The method is suitable for
both CPU and GPU. For dynamic graphs in which the topologies change, it is difficult
to implement such algorithm. Frog [Shi et al. 2015] partitioned the graph by using a
hybird coloring model. The coloring algorithm in Frog is incomplete, which does not
restrain all adjacent vertices from being labelled by different colors. Instead, the color
number is set by the user while Frog only ensures the adjacent vertices are not colored
by the small set of colors. For the rest of vertices, Frog combined the verrices together
into a single color and all the vertices in the same color are processed in a super-step.
By using this method, if the graph is divided into N partitions, the color for the first
N − 1 partitions are different and there is an edge between any pair of vertices in
each partition. Therefore, the first N−1 partitions can be processed in parallel. CuSha
[Khorasani et al. 2014] first splits the vertices into P shards and the edges in a shard
are listed based on the increasing order of their source vertices. By using this partition
method, the edges of each vertex are stored in a continuous memory chunk, which can
make the memory access regular.

Minimum Spanning Tree (MST). For an undirected graph, a minimum spanning
tree is a connected subgraph, which connects all the vertices together with minimum
total weight. Vineet et al. [Vineet et al. 2009] implemented the fast MST algorithm on
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CUDA by recursively calling the Boruvka algorithm. In their algorithm, they mapped
the irregular steps of super-vertex formation and recursive graph construction to prim-
itives such as split to categories involving vertex IDs and edge weights. In the proposed
algorithm, in the first phase each vertex finds the edge with the minimal weight to
the neighbor vertex. In the second phase, vertices are merged into disjoint components
called supervertecies. The algorithm performs these two phases recursively, until there
is only one supervertex. In each iteration, the authors reorder the edges, put the edges
with the vertices in a continuous memory chunk and then remove the duplicate edges.
By doing so, the memory access can be regular. Experiments on a NVIDIA Tesla S1070
shows this method can achieve 8-10x and 30-50x speedup over their previous imple-
mentation and the serial implementation, respectively.

4. GPU GRAPH PROCESSING FRAMEWORKS
Besides optimizing individual graph processing algorithms, many researchers have
also investigated how to build a general graph processing systems on GPUs. In this
section we survey the existing GPU graph processing systems, including their data
layout, parallel graph programming models and their system implementations and
optimizations.

4.1. Data Layout Models
As the considerations of data layout are very similar in different graph algorithms and
frameworks, we discuss the data layout in a single section. As for other GPU aspects,
such as memory access pattern, workload mapping and GPU specific programming, we
discuss them by referring to different types of graph algorithms. As mentioned earlier,
the main requirements of data layout is the compactness and and regularity. The for-
mer minimizes the PCIe bandwidth consumption, while the latter enables the regular
memory access and maximizes parallelism. We survey the main graph representations
that are used in the existing GPU-based graph processing algorithms and systems.

4.1.1. Adjacency Matrix and Adjacency List . The adjacency matrix and adjacency list are
two basic graph representations, which have been widely used in early parallel graph
processing studies [Harish and Narayanan 2007; Narayanan et al. 2010; Merrill et al.
2012; Fagginger Auer and Bisseling 2012].

The adjacency matrix is a square matrix. In an unweighted graph, a non-zero ele-
ment aij indicates there is an edge between the i-th vertex to the j-th vertex, while
in a weighted graph, a non-zero element stands for the weight of the edge. For most
large-scale graphs, the matrix is typically sparse. Some researchers directly use the ex-
isting libraries to handle the sparse matrix, such as CuSparse4. Katz et al. [Katz and
Kider 2008] use 2D texture to represent the adjacency matrix in GPU memory. The
adjacency matrix representation simplifies the memory allocation for programmers.
However, due to the sparsity of the adjacency matrix, the memory space is wasted.

Another typical graph representation is the adjacency list, which is a collection of
unordered lists, each representing the set of neighbours of a vertex in the graph. Fig-
ure 4 shows an example of the adjacency list of an undirected graph. Adjacency list is
more compact than the adjacency matrix. However, it does not enable regular mem-
ory access, because the neighbours of different vertices are not stored in a contiguous
memory space. As discussed before, this may incur much more memory access when
reading the data needed by the threads in a warp.

4.1.2. Vector Graph (V-Graph). V-graph is another efficient graph representation method
proposed by Blelloch [Blelloch 1990]. Figure 5 shows the v-graph representations of the

4http://docs.nvidia.com/cuda/cusparse/

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: ????.

http://docs.nvidia.com/cuda/cusparse/


Graph Processing on GPUs: A Survey 0:15

V0

V1 V2

V3

V4

w1

w2

w3

w4

w5

Row offset

Column index

Values

0        1        4        7        9        11

1         0        2         4         1         3         4         2         4         1         2         3 

w1    w1    w2    w3    w2    w4    w5    w4    w6    w3    w5    w6

w6

(a) Example graph

V00

1

2

3

4

1 ^

0 2

1 3

2 4 ^

1

^4

^4

^2 3

V1

V2

V3

V4

(b) Adjacency list representation of the graph.

Fig. 4. The adjacency list representation example of graph.

Index = [0 1 2 3 4 5 6 7 8 9 10 11]

Vertex = [1 2   3   4  5]  

Segment-descriptor = [1 3   3   2  3]  

Cross-pointers = [1 0 4 9 2 7 10 5 11 3 6 8]

Weights = [w1 w1 w2 w3 w2 w4 w5 w4 w6 w3 w5 w6]

 Fig. 5. The example v-graph representation of graph in Figure 4.
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Fig. 6. The example CSR representation of graph in Figure 4.

same graph in Figure 4. In v-graph, the topology of an undirected graph is stored in a
segmented vector (i.e. the Cross-pointer in Figure 5), where each segment corresponds
to a vertex. Each element of a segment stores the Cross-pointer of an edge incident to
the corresponding vertex. For example, in Figure 4, the element with index 3 in Cross-
pointers has the value 9, which indicates that this edge is connected to the same vertex
as the edge with index 9. For a directed graph, two segmented vectors are used: one
storing the incoming edges of the vertices, while the other storing the outgoing edges.
Additional vectors are used to store other information, including the vertex degree
(Segment-descriptor), the edge weights (Weights), etc. In v-graph, all the edges are
stored in a contiguous memory space sorted by their incident vertices, which therefore
supports regular memory accesses and efficient GPU computations. However, v-graph
is not a very compact graph representation, because it contains a lot of redundant
information.

4.1.3. Compressed Sparse Row (CSR). In order to achieve both compact storage and reg-
ular memory access, some graph algorithms, such as Merrill et al. [Merrill et al. 2012]
make use of the compressed sparse row (CSR) format. Figure 6 is an example of the
CSR representations of the graph in Figure 4. In CSR, three one-dimensional arrays
are used: each storing the non-zero values in an adjacency matrix, the offsets of the
rows in the values array, and the column indices of the values respectively. Just like
v-graph, CSR sorts and stores the information of all the edges of a vertex compactly in
a contiguous chunk of memory one after another, which enables regular memory ac-
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cesses, lowers the memory requirement, and reduces the PCIe bandwidth consumption
when transferring data between the host and the GPU device.

4.2. Graph Programming Models
A general graph processing system typically exposes a programming framework to
the programmers, which consists of two components: a programming interface and
a parallel programming model. The programming interface defines a set of APIs to
facilitate the formulation of a graph computation. Existing graph systems on GPUs
typically adopt a vertex-centric model, where programmers need to define a few func-
tions that are executed on each individual vertex. The parallel programming model is
an abstraction of the parallel computation architecture, which usually states how the
parallel processes are formulated, and more importantly how they interact with each
other, including communication and synchronization. Parallel programming model is
a well studied area. A lot of models have been proposed in the literature. For example,
there are a series of traditional parallel programming models such as the Actor model
[Agha 1986], the Bulk Synchronous Parallel model (BSP)[Valiant 1990], the LogP ma-
chine model [Culler et al. 1993], the Dataflow model and the Parallel Random Access
Machine (PRAM) model [Asanovic et al. 2009].

Most existing GPU-based graph processing systems provide a vertex-centric pro-
gramming interface, with which the graph program is expressed in the functions that
will be applied on each vertex iteratively. Furthermore, two major parallel graph pro-
gramming models are proposed, namely Gather-Apply-Scatter (GAS) and BSP (Bulk
Synchronous Parallel).

4.2.1. GAS Model. GAS is a popular parallel graph programming model used in a
lot of graph processing systems [Gonzalez et al. 2012]. Several existing GPU-based
graph processing systems adopt the GAS model, such as VertexAPI2 [Elsen and
Vaidyanathan 2013], MapGraph [Fu et al. 2014], and CuSha [Khorasani et al. 2014].
These systems typically provide a vertex-centric programming interface that contain
three major functions: Gather, Apply and Scatter. In the GAS model, the program on
each vertex can be divided into three phases, which are listed as follows.

— The gather phase. In this phase, a vertex collects the information from the adjacent
vertices and edges by using the user-defined gather function.

— The apply phase. The user-defined apply function is called on a vertex based on the
information collected in the gather phase. The vertex’s value(s) is updated in this
phase by calling the apply function. This is the only phase without communications
between vertices.

— The scatter phase. In this phase, the new value(s) of the vertex is scattered to its ad-
jacent vertices and edges. In some implementations, the push-style scatter is used,
which pushes the updates to remote vertices. With the push-style scattering, some
traversal algorithms can simply disregard the gather phase so that the edge traver-
sals can be reduced.

The GAS model abstracts away the synchronization overhead, which simplifies the
analysis process for the complexity and the correctness of the graph algorithms imple-
mented using this model. However, as the synchronization overhead in GPUs is not
negligible, we cannot ignore it when we implement a graph processing system that
supports this model. For instance, CUDA only supports the synchronization among
threads in the same block. To achieve a global synchronization among all the threads
in different blocks, the system can split the computation into a number of kernels.
Since the GPU executes the kernels one after another, the end point of each kernel ef-
fectively acts as a global barrier. Both a local block-wise synchronization and a global
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synchronization using a number of kernels are very expensive. Therefore, a critical
challenge in the implementation of a graph processing system is to minimize the num-
ber of synchronization points.

4.2.2. BSP Model. A program in a BSP model [Valiant 1990] is executed in a se-
quence of so-called super-steps. Within each super-step, the parallel processes run
asynchronously and communicate with each other by sending and receiving messages.
At the end of each super-step, all the processes are synchronized by using a barrier.
This procedure is shown as Figure 7. More specifically, a super-step in each process
consists of the following three phases:

— Local computation: the computation task are executed locally;
— Global communication: all the communications, including sending and receiving mes-

sages, are executed in this phase;
— Barrier synchronization: all the computation and communications are synchronized

and guaranteed to be completed at this point.

Pregel [Malewicz et al. 2010] is probably the first graph processing system that
adopts the BSP model to implement a vertex-centric parallel graph programming in-
terface. In this model, within each super-step, a user-defined function is applied on
each vertex asynchronously, which updates the value on the vertex, and the updated
values of the vertices are then sent to their neighbors by passing messages. One iter-
ation of the function executions and message passing on all the vertices will be com-
pleted and synchronized at the end of a super-step. In addition, the vertex will be
executed only when it receives a message in subsequent super-steps.

Representative GPU-based graph processing systems that use the BSP model in-
clude TOTEM [Gharaibeh et al. 2012], Medusa [Zhong and He 2014] and GunRock
[Wang et al. 2016]. In these systems, a large graph is usually divided into several
partitions and one user-defined kernel will be run on each graph partition. In a super-
step, all the threads in the kernel are run concurrently. Within a kernel, each thread
receives the messages from the previous super-step and then performs the local com-
putation. In the local computation phase, the values of the vertices are stored at the
local memory to minimize data transfer. Each kernel can send the messages to its
neighbors if necessary before the end of the current super-step. A barrier is imposed
between two super-steps to synchronize all the kernels. A main disadvantage of the
BSP model is that it may suffer from the straggler problem, where the thread with the
longest execution time can delay all the other threads in a super-step.
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4.3. Data Layout
Due to the mismatch between the irregularity of graph processing algorithms and the
symmetric hardware architecture of GPU, applying traditional graph processing meth-
ods on GPU will inherently suffer from the problem of underutilizing the GPU’s capa-
bility. Some high-performance graph processing systems attempt to solve these prob-
lems through designing a compact storage and regular memory access data layout. For
example, TOTEM [Gharaibeh et al. 2012], Medusa [Zhong and He 2014], MapGraph
[Fu et al. 2014] and Frog [Shi et al. 2015] use the CSR format to represent the graph
structure. As discussed in section 4.1, CSR is a regular graph representation, but ac-
cessing the neighbors of a vertex will lead to poor locality, which causes lots of random
input-dependent memory accessing (also known as non-coalesced memory accesses). In
addition, CSR is hard for some update operations such as adding or deleting a vertex.
In order to overcome the non-coalesced memory accesses problem with CSR, CuSha
[Khorasani et al. 2014] implemented the shard technique [Kyrola et al. 2012] on GPU,
which is widely used in disk-based graph processing systems such as GraphChi [Kyrola
et al. 2012] and VENUS [Cheng et al. 2015]. In CuSha, the GPU implementation of
shard was called as G-Shard. The shard technique first sorts the vertices in an ascend-
ing order and partitions them into equal-sized windows. For each window, a shard is
created to store all the edges connected to the vertices in the window. Furthermore, all
the edges in a shard is sorted according to the IDs of their source vertices. In this way,
the graph data in each shard is organized according to the accessing order of the ver-
tices. G-Shard adopts the same way as shard to organize the vertices and the edges. In
addition, G-Shard revised the window as the Concatenated Window (CW), which lists
the edges related to the window, so that each thread can visit the vertices according
to the CW list. In CuSha, each G-Shard corresponds to a thread block. G-Shards can
lead to a better locality, as all the vertices are continuous and all the edges of a vertex
are stored in a continuous chunk. On the other hand, G-Shards are disjoint with each
other, the computation on different G-Shards can be performed asynchronously, which
is well matched with GPU. By using the G-Shard, the graph data is well organized in
CuSha, which enables the memory access to be coalesced.

As G-Shard equally partitions the vertices, the CW size differs as the vertex degree
differs. Therefore, it is easy for the G-Share technique to encounter the warp diver-
gence problem. In order to solve this problem and update the graph data efficiently,
GStream [Seo et al. 2015] and GTS [Kim et al. 2016] use the slotted page format pro-
posed by TurboGraph [Han et al. 2013] to storage the graph in disk and memory. In
the slotted page representation, the graph is partitioned into a list of slotted pages,
with the size of each page being several MBytes. The vertices ID and its adjacency
lists are stored in a slotted page consecutively. In most cases, since the adjacency list
of a vertex is smaller than the size of a single page, multiple adjacency lists can be
stored in one page, which is called Small Adjacency list page (SA page). In the power
law graph, there also exist some vertices with the sizes of their adjacency lists bigger
than one page. Then, several pages are needed to store the adjacency list of the vertex.
Consequently, one of those pages stores the information regarding only one adjacency
list. This type of page is called Large Adjacency list pages (LA pages). This representa-
tion is not very compact compared with CSR, but makes it much easier to update the
graph data. Compared with G-Shard, it is much easier for this method to allocate the
memory space as the page size is fixed, while the window size of G-shard changes.

4.4. Memory Access Pattern
GraphReduce [Sengupta et al. 2015] is a CUDA/C++ library for large-scale graph pro-
cessing. GraphReduce presents a set of APIs, aiming to hide the GPU programming
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details. In order to process large scale graphs which can not be loaded into memory,
GraphReduce partitions the graphs into small sub-graphs with approximate sizes, and
sorts the edges in the sub-graph according to the source’s vertex to match the mem-
ory access patten in GPU. Aiming to leverage GPU memory coalescing and pre-fetch
the unvisited data into memory for the sequential accesses, GraphReduce adopts the
Unified Virtual Addressing (UVA) to allocate the memory space and uses the DMA
technology to directly translate the memory loading/storing operations over the PCIe.
By using these methods, the memory accesses are sequential and the communications
can be overlapped with GPU computations through prefetching.

In order to maintain the regular memory access, GStream [Seo et al. 2015] in-
troduced the concept of the “join” operation from the database area and proposed a
“nested-loop theta-join” operation, which achieved the coalesced memory access by
parallelizing the read-only and the read/write operations in parallel. In the nested-
loop theta-join method, the vectors of the read/write and the read-only attributes are
denoted by WA and RA, respectively, and the topology data by SP . GStream divided
the WA into W partitions because the values change frequently during the computa-
tion phase. Since WA is updated frequently during an iteration of graph processing,
GStream stores the WAi data in the device memory to improve the system perfor-
mance. While the RA and SP are the constant data, GStream fed the RA data and the
corresponding SP data into the device memory. In GStream, an asynchronous data
transfer technique such as the overlapping technique in GraphReduce was used to im-
prove GPU utilization by hiding the memory access latency. Unlike other GPU graph
processing system, GStream is a pure GPU graph processing system, all the computa-
tion tasks were finished on the GPU processor, and the CPUs were not involved in the
computation phase.

GTS [Kim et al. 2016] processes the entire graph only using GPUs. In order to over-
come the limited memory capacity in GPU device and even in the host, GTS uses the
CUDA streaming method to transfer the unvisited graph data to the GPU device mem-
ory and swap the visited data to the disk. By using this method, there is no need to par-
tition the graph. Namely, GTS can process large scale graphs without pre-processing.
GTS distinguishes the graph data by tagging attribute data and topology data. The
attribute data refers to the information of the vertices and the edges (e.g., the weight
of the edge and the value of the vertex) that are required and updated during the ex-
ecution of the vertex kernels, while the topology data is the basic structure data of
the graph. GTS stores the graph in PCIe SSDs and triggers the direct data transfer
by GPU. Thousands of GPU cores can be used when streaming the topology data from
SSDs to GPUs through PCIe. To be more specific, the attribute data was copied into
the GPU device memory, and then the topology data was copied from the host memory
to the GPU device memory in the streaming method, where the data was processed by
the user-defined GPU kernel function. GTS adopts the similar method as GStream to
store the attribute data in the device memory and swaps the topology data to the disk.
In GTS, by using the asynchronous GPU streaming method (e.g., CUDA Streams), the
data can be transferred asynchronously, which can overlap the latency of the memory
access from GPUs to main memory and can also improve the GPU utilization. Com-
pared with GraphReduce, the pre-processing phase can be removed in GTS.

4.5. Workload Mapping
As mentioned before, the workload in graph processing is irregular because of the
variance in the vertex degree. How to mapping the uneven workload of each vertex
onto the GPU greatly affects the processing efficiency of GPU. One of the most impor-
tant existing work in this area balances the workload by cooperating among threads.
The dynamic scheduling and the two-phase decomposition strategies are used in Map-
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Graph [Fu et al. 2014] to gain better performance in workload mapping. The Dynamic
scheduling strategy combines three scheduling strategies, i.e., CTA-based, scan-based,
and warp-based, to achieve higher performance in workload mapping (here CTA is
short for Cooperative Thread Array). The CTA-based scheduling strategy distributes
the workload to the threads in a CTA according to the vertex degree. In this strategy,
the workload of the vertices in the frontier is assigned to the whole CTA and every
thread in the CTA serves only one vertex. The number of threads in a CTA is much
more than that in a warp, which made the CTA-based scheduling strategy suitable for
the vertices with large degrees. MapGraph uses a different scheduling strategy accord-
ing to the vertex degree. Mapgraph first applies the CTA-Based scheduling strategy to
the vertices with the adjacency lists larger than the CTA size. Next, it performs the
warp-based scheduling strategy for the vertices with the degrees larger than the warp
width but smaller than the CTA size. Finally, it applies the scan-based scattering strat-
egy for the “loose ends” vertices whose degrees are smaller than the warp width. Al-
though dynamic scheduling achieves relatively good performance for the many graph
algorithm such as SSSP and BFS, there are still some drawbacks with this method.

On one hand, because of these three separated stages of this strategy, the paral-
lelism among the stages is lost and hence the degree of parallelism of the instructions
decreases. On the other hand, as each thread in the scan part of the graph algorithm
needs to communicate with the thread processing its neighbor vertices in the CTA,
other threads have to wait until all threads in a CTA are loaded. Finally, by using this
strategy, the equal number of frontier vertices are assiged to a CTA, and therefore the
total number of the handled adjacent vertices may be much more than the CTAs. This
will lead to the imbalanced workloads among CTAs.

In order to solve the uneven workload mapping problem of dynamic scheduling,
MapGraph proposes a two-phase decomposition scheduling strategy. This strategy at-
tempts to achieve the optimal workload mapping performance for threads within and
across CTAs. The fundamental idea of this strategy is to decompose the scattering
process into two phases: the scheduling phase and the computation phase. Unlike the
dynamic scheduling strategy, the two-phase decomposition scheduling strategy is used
to assign the adjacent edges to a CTA ,which ensures the number of edges is same as
the CTA size. In this strategy, the target of assigning the adjacent edges is achieved
by finding the intersection between the starting and the ending points of each CTA,
which are within the column-indexed array by using the sorted method. In the com-
munication phase, the same number of adjacent vertices are visited by each thread.
This scheduling strategy solves the problem of uneven workload mapping in dynamic
scheduling strategy. But the overhead is relatively high.

GunRock [Wang et al. 2016] integrates the technologies proposed by Merrill et al.
[Merrill et al. 2012] and Davidson et al. [Davidson et al. 2014]. Then the author pro-
poses two workload mapping strategies, which are called per-thread fine-grained and
per-warp & per-CTA coarse-grained. In the per-thread fine-grained strategy, one thread
maps to the neighbor list of a frontier vertex. In this method, each thread loads the off-
set in the adjacency list of the assigned node. Next, all the edges in the adjacency list
are processed sequentially by the thread. Considering the significant difference in the
workload performance with the per-thread fine-grained strategy, which is caused by
different adjacency list sizes, GunRock proposes a per-warp & per-CTA coarse-grained
strategy. In this strategy, the workload mapping problem is solved by dividing the ad-
jacency list into three categories according to the size of the adjacency list and then
mapping each category to a strategy which targets specifically at the corresponding
size. These two strategies focus on different task granularities. The experiments show
that the per-thread fine-grained strategy works better with the graph with a large di-
ameter and the relatively even degree distribution. This strategy balances the threads

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: ????.



Graph Processing on GPUs: A Survey 0:21

well in the CTA, but does not work well across CTAs. On the contrary, the per-warp &
per-CTA coarse-grained strategy performs better for the power law graph, which has
an uneven degree distribution.

As part of the physical warp, a virtual warp controls the trade-off between GPU uti-
lization and path divergence. Generally, 2, 4, 8, 16 or more virtual warps constitute a
physical warp. So the processing task can be performed iteratively because the itera-
tion is performed separately by different GPU kernel calls. In a virtual warp, several
threads process a vertex concurrently and each thread in the virtual warp works in
parallel. Using this method, the read and computation phase are finished by different
threads in the virtual warp. Compared with the workload mapping strategy in Gun-
Rock, the virtual warp is a more general method with equally sized virtual warp, while
the strategy of GunRock is more flexible for different task granularities.

4.6. Miscellaneous
GraphReduce adopts the Gather-Apply-Scatter programming model. In real-world
graphs, the number of edges is much more than the number of the vertices. In the
gather and the scatter stage, the message passing about the edges is much more than
that about the vertices. In the apply stage, the computation for the vertices are much
less than that for the edges. In order to reduce the communication cost and improve the
parallelism, both vertex- and edge-centric programming methods are used in GraphRe-
duce. The authors use the edge-centric programming method in the gather and scatter
stage, and use the vertex-centric programming in the apply stage to improve the par-
allelism.

Medusa [Zhong and He 2014] and MapGraph [Fu et al. 2014] both provided a set
of APIs for graph processing on GPUs. By using the APIs provided by Medusa, the
programmers can define their own functions for processing vertices, edges and mes-
sages. In order to improve the programmability and usability, Medusa encapsulates
the frequently-used system operations to overlap the GPU-specific programming de-
tails. In addition, in order to enhance the flexibility, Medusa provides a set of configu-
ration parameters and utility functions to control the iteration executions. MapGraph
[Fu et al. 2014] is a high-performance parallel graph programming framework, which
also provides a set of flexible APIs with high programmability based on GAS. In Map-
Graph, programmers can define the computation functions on vertices and edges by
invoking the MapGraph kernels. MapGraph uses the same method as Medusa to en-
hance the flexibility by providing a set of configuration parameters. In addition, a set of
utility functions are provided by the library calls and used for the iteration control and
other functionalities. GunRock [Wang et al. 2016] offers an easy-to-use programming
interface by implementing a data-centric abstraction. Unlike other vertex-centric and
edge-centric programming methods, GunRock’s data-centric abstraction focuses on the
operations of the frontier of vertices or edges, which makes the programming interface
easy to use.

Frog [Shi et al. 2015] is a graph processing framework which has the lightweight
asynchronous scheme. A hybrid-coloring model is proposed for graph partition and a
streaming execution engine is designed for asynchronous processing in Frog. As graph
coloring is a complex algorithm, an incomplete coloring scheme and the Pareto princi-
ple are used as a compromise. In the graph coloring algorithm, the vertices with the
same color are disjoint. Therefore, all the vertices and edges in the same color (par-
tition) can be processed in parallel. As the incomplete coloring scheme is used, Frog
divides the first n− 1 coloring steps into the P-step and the last coloring step into the
S-step, according to the aforementioned analysis. All the vertices and edges in the P-
step can be processed in parallel, while the S-step is handled sequentially by atomic
operations. Benefiting from the asynchronous processing method in Frog, the trans-
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Table II. Experimental datasets

Datasets Amazon DBLP RoadNet-CA WikiTalk Twitter YouTube
Vertices 735,322 986,286 1,965,206 5,533,214 41,652,229 1,134,890
Edges 5,158,012 6,707,236 5,533,214 5,021,410 1,468,365,167 2,987,624

Directivity directed undirected undirected directed directed undirected

ferring of the data can be overlapped with the execution of the kernel function, which
improves the system performance.

Modern GPUs can offer very high degree of parallelism when the graph processing
is regular. It is a great challenge to effectively exploit the parallelism potential of GPU.
In addition, the GPU memory is limited compared with the ever-increasing graph size.
Hence, we need to copy the data into and out of GPU during the graph processing. It
is another critical issue to design the efficient communication method between CPU
and GPU. Designing a suitable data layout can help tackle the above two issues. On
one hand, with a smart data layout, the graph processing algorithm can match the
graph data to the memory architecture of GPU and enable the regular memory access.
On the other hand, a well designed data layout can reduce the communication cost.
Two widely used techniques of speeding up the memory access are: i) coalescing the
memory access requests from a set of parallel threads, and ii) prefetching the unvisited
data to the memory to overlap communication with computation.

5. EXPERIMENTS
In this survey, we implemented a few commonly used graph algorithms and conducted
experiments with these algorithms and a number of graph-processing frameworks. On
one hand, we compare the performance of the graph processing systems with different
types of graphs, such as graphs following the power-law and graphs with large diam-
eters. On the other hand, we compare the performance of different graph processing
algorithms when they are implemented with GPU- or CPU-based graph processing
frameworks respectively. This verifies the benefit of using GPU for graph processing.

5.1. Experimental Configurations
5.1.1. Experimental Datasets. The real world graphs have different characteristics. In

this section, we mainly focus on the typical graph datasets with comparable data for-
mat. In this paper, all the datasets are represented in the classic graph formalism
method [West 2001]. V represents the collection of verities, E is the set of edges which
connect the vertices, and G = (V,E) represents the graph. There is an edge between
vertex u and v only when the two vertices are connected. In addition, the edge is pre-
sented as e = (u, v) or e =< u, v > for undirected or directed graphs, respectively. Both
directed and undirected graphs are considered in this paper.

Considering the characteristics of power-law and large diameter in real world
graphs, we select six graphs with different structures and a varying number of ver-
tices and edges. All six graphs are shown in table II. All the graphs are stored in a
plain text file and all the graph data are organized by a processing-friendly format
without indices. In the file, the integers are used to identify the vertices, with a line
storing one vertex. For the undirected graphs, the vertex ID and the adjacency list are
included, while for the directed graph, the vertex ID and two adjacency lists, which
correspond to the incoming and outgoing edges, are included in a vertex line.

The number of vertices and edges in the selected graph datasets are shown in Table
II. The graphs are selected from diverse sources, including e-business, social network,
citation link and other sources of real world graphs with different sizes and graph
metrics. The degree of the graphs ranges from 2 to 1663. The graphs are extracted from
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the real-word problems, which have been shared in the Stanford Network Analysis
Project (SNAP) [Leskovec 2009].

5.1.2. Experimental Algorithms. The graph processing algorithms we implemented in-
clude PageRank (PR), Breadth first search (BFS), Single Source Shortest Path (SSSP),
and Connected Component (CC). We selected these algorithms because they have dif-
ferent characteristics and can be used to test different aspects of performance.

PageRank uses the edge consistency model. When the rank value of vertex v is up-
dated, the rank values of all neighboring vertices that have outbound edges are also
updated. If the algorithm is implemented based on BSP, the rank values changed in
the current iteration can only be observed by other vertices in next super-step.

BFS is a commonly used graph traversal algorithm. The computation in BFS is very
limited, while the communication is rather intensive. Due to this feature, a large num-
ber of memory lookup operations are used. Hence, the performance is related with the
memory access pattern. Medusa is based on the kernel implementation of BFS, which
explores all neighboring vertices in a level-by-level fashion from the first vertex.

SSSP tries to find the shortest path from a given vertex to other vertices in the
graph. Dijkstra’s algorithm is the traditional method to solve the SSSP problem.

CC is an algorithm extracting the subgraphs in which all the vertices are connected
and there are no additional vertices.

There is the textbook implementation for BFS. As for CC, PR and SSSP, there are
different implementations. According to the reported performance of these implemen-
tations, we use Dijkstra’s algorithm to implement the SSSP algorithm, which is a
cloud-based connected component algorithm created by Wu [Wu and Du 2010]. The
implementations of BFS and PagRank are presented in the relevant experiments.

5.1.3. Graph-processing Frameworks. We select seven popular graph-processing frame-
works, namely TOTEM, Medusa, GunRock, Frog and GraphChi, and compare their
performance in our experiments. The first four systems are GPU-based while the rest
is CPU-based.

Medusa is an optimized graph processing system with a set of simplified program-
ming interface. Since Medusa requires loading the entire graph into the GPU device
memory all at once, only the graphs whose sizes are smaller than the device mem-
ory can be processed. TOTEM is a hybrid system, which partitions the graph into two
parts, one being processed by GPU while the other being processed by CPU. There are
three partition strategies in TOTEM, HIGH-degree, LOW-degree, and RAND-degree
partitions. In the HIGH-degree partition strategy, the vertices with the highest degree
are assigned to CPU, while the low degree vertices are assigned to GPU. LOW-degree is
opposite to the HIGH-degree strategy. The RAND-degree strategy assigns the vertices
to CPU and GPU randomly or sets the percentage of the edges that are assigned to
different devices. In our experiments, in order to make full use of the computing power
of GPU, we load all graph edges onto the GPU device. Unlike Medusa and TOTEM,
CuSha is a vertex-centric graph processing framework, which uses the new graph
representations known as Concatenated Windows (CW) and G-Shards. GunRock is
a high-performance graph processing library for GPUs. The input parameters in our
evaluation are the same as the ones used in the corresponding publications.

5.1.4. Hardwares. We conducted the experiments on a Tesla-based GPU (NVIDIA
Tesla K20m with 5 GB device memory and 2496 CUDA cores). The programs are
written with CUDA 7.5 using the “-arch=sm 35” flag. We ran GraphChi [Kyrola et al.
2012]on a machine with 8GB memory and two Intel(R) Xeon(R) E5-2670 CPUs, each
at 2.60 GHz. We reused the source code of these graph-processing engines given by the
authors directly. The experiments were all conducted on RedHat 4.4.5-6.
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Table III. Execution Time (in milliseconds)

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 26.91 42.6 425.51 34.9 NULL 42.23
Frog 11.68 7.64 232.99 4.86 NULL 5.7

CuSha 27.914 19.66 374.956 2.984 NULL 0.254
Medusa 19.099 7.051 201.357 4.698 NULL 5.276

GunRock 5.6936 3.792 8.2052 6.244 9.2232 8.324
GraphChi 606.797 939.039 909.198 3362.79 658.124 NULL

PR

TOTEM 21.86 34.06 56.39 70.82 NULL 44.99
Frog 35.52 49.61 22.78 38.13 NULL 17.91

CuSha 28.013 19.748 374.873 2.987 NULL 0.253
Medusa 278.587 567.612 317.532 8757.567 NULL 2739.184

GunRock 62.6958 60.57 49.536 55.8162 62.244 58.086
GraphChi 557.177 719.923 963.803 1018.5 640.803 519.538

SSSP

TOTEM 41.82 27.43 821.39 57.55 NULL 13.12
Frog 16.45 12.63 50.08 12.2 NULL 11.16

CuSha 27.923 19.768 375.811 2.971 NULL 0.3
Medusa 3.276 4.713 1.881 57.273 NULL 18.411

GunRock 15.6443 13.3024 7.3367 10.904 13.8771 11.6144
GraphChi 475.702 634.708 641.975 858.323 NULL 455.166

CC

TOTEM 48.3 45.07 1421.82 99.39 NULL 25.7
Frog 8.88 9.47 103.54 11.3 NULL 7.51

CuSha 27.905 19.7 375.988 2.991 NULL 0.252
GunRock 23.403883 23.454189 25.617838 23.898125 25.456905 23.092031
GraphChi 1490.21 1905.63 1923.72 2338.4 NULL 1403.35

Note:Null means that the system can not process such dataset.

5.2. Experiment Results
In order to identify the types of dataset and algorithms that can be processed effi-
ciently on GPU, we first conduct the experiments and compare the runtime of different
algorithms with different datasets. The experimental results are shown in Table III.
Table III shows that, even though graph has an irregular structure and GPU performs
the best with regular data access, the tested algorithms achieve better performance
on GPU than on CPU. The difference in performance between Wiki-Talk and Twitter
indicates that the situation becomes worse as the data size increases. In PageRank,
the updated vertices need to send their values to the neighboring vertices before the
next iteration begins. Therefore, the communication cost plays an important role in
the performance of PageRank. As we have discussed in section 2.2, the GPU device is
connected to the host through the PCIe bus. But the PCIe bandwidth is limited. This
is the reason why the situation deteriorates when the data size becomes bigger than
the GPU memory. In comparison, Amazon, DBLP, Wiki-Talk, YouTube and Twitter are
power-law graphs, while RoadNet-CA is a graph with a large diameter and almost the
same degree for each vertex. The performance between RoadNet-CA and the datasets
indicate that the acceleration effect with sparse graph is not as high as with power-law
graphs.

In order to investigate the types of data layout, memory access pattern, workload
mapping and some other factors such as the branch divergence, we measure the mem-
ory throughput, the active warp in every SM cycle, load efficiency of the global memory,
memory copy time, and the bank-conflict of the systems. The results are listed in Table
IV–IX. We analyze the results in these tables from the following four perspectives.

5.2.1. Data Layout. We measured the ratio of the requested global memory throughput
to acquired global memory throughput (also called gst efficiency) of each system. Val-
ues greater than 100% indicate that, on average, multiple threads in a warp access the
same memory address. In other words, the gst efficiency indicates whether the data is
aligned or not. The result is listed in Table IV. From this table, we can see that Gun-
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Table IV. Ratio of Requested Global Memory Store Throughput to Required Global Memory Store Through-
put(%)

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 62.021 51.1614 55.3328 47.18 NULL 44
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.35 71.53 80.74 41.9 NULL 0
Medusa 14.17 14.57 10.6 11.28 NULL 14.46

GunRock 69.75 71.34875 68.51 69.72 69.35 68.735

PR

TOTEM 69.375 64.5825 71.25 71.415 NULL 70.09
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.33 71.13 80.74 41.9 NULL 0
Medusa 71.797 71.283 71.39 70.87 NULL 70.86

GunRock 90.61 90.54 90.58 90.56 90.48 90.475

SSSP

TOTEM 39.7575 30.8925 40.7525 29.5575 NULL 27.82
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.35 71.12 80.75 41.9 NULL 0
Medusa 66.95 66.49 67.31 66.687 NULL 64.71

GunRock 79.97 80.05 79.46 77.26 77.86 74.83

CC

TOTEM 63.65 59.84 57.81 58.687 NULL 58.24
Frog 16.3775 16.3175 15.5975 9.9425 NULL 14.33

CuSha 73.35 71.12 80.75 41.9 NULL 0
GunRock 73.57 65.88 73.93 74.27 74.21 74.25

Note:Null means that the system can not process such dataset.

Rock and CuSha have higher gst efficiency on all the datasets and algorithms than any
other systems, which indicates that GunRock and CuSha have a better organization of
the graph data (the experiments in section 5.2.2 can also draw a similar conclusion).

5.2.2. Memory Access Pattern. In order to investigate the memory access patterns of the
systems, we first measured the ratio of the memory copy time to the whole execution
time as Table V. Both the data copying from the host to the device and from the device
to the host are measured in our experiment.

Table V shows Medusa have higher host-to-device memory copying ratio than any
other systems with BFS and SSSP on Amazon, DBLP and RoadNet-CA. We can also
conclude that Frog have higher device-to-host memory copying than other systems, ex-
cept SSSP and CC with RoadNet-CA on TOTEM and SSSP with YouTube on Medusa,
from this table. This is because, in the computation phase, the communication of Frog
is overlapped with GPU computation. But when the computation is completed, Frog
needs to transfer the computation result to the host for combination. This is why Frog
has the highest device-to-host memory copying ratio. By using the Edge-Message-
Vertex (EMV) model, Medusa decouples the single vertex API into several separate
APIs which improves the processing efficiency, but on the other hand it also leads to
more memory copying operations. By using the G-shard technology in CuSha, the ver-
tices are sorted in every shard and the shard can be disconnected. By using this tech-
nology, the communication can be completely overlapped with the computation phase
when CuSha sends the result back to the host. This is why CuSha has the lowest
host-to-device memory copying ratio than other systems.

The global memory throughput is shown in Table VI and the ratio of active warps
to the total warps in a single SM in shown in Table VII. Coalesced memory access
has the highest impact on throughput, moreover, misaligned data format and non-
coalesced memory access will lead to too much unnecessary load operations. Table VII
and Table VI show that Frog and Medusa have higher throughput and active occu-
pancy ratio than the other systems when running BFS and SSSP, which indites that
Frog and Medusa have better parallelism than other systems with BFS and SSSP. But
Table VIII shows CuSha has the highest load efficiency. Note that Cusha uses the CSR
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Table V. Memory Copy Time to The Whole Execution Time(%)

Frog TOTEM CuSha Medusa GunRoack
HtoD DtoH HtoD DtoH HtoD DtoH HtoD DtoH HtoD DtoH

Amazon

BFS 44.77 13.18 39.27 2.41 37.69 1.13 66.61 4.99 44.05 7.83
PR 44.77 13.18 27.53 4.37 37.76 1.13 13.64 0.97 11.15 2.66

SSSP 44.77 13.18 41.08 7.76 37.64 1.16 96.07 1.67 31.14 9.05
CC 44.77 13.18 25.98 13.28 38.31 1.12 NULL NULL 50.72 6.88

DBLP

BFS 47.62 13.96 52.27 2.24 52.85 1.47 67.48 6.32 43.45 7.71
PR 47.62 13.96 24.24 5.56 52.17 1.48 5.45 0.63 11.35 2.67

SSSP 47.62 13.96 55.18 4.31 52.8 1.46 91.62 7.11 29.44 7.46
CC 47.62 13.96 26.52 8.62 52.19 1.49 NULL NULL 47.43 7.33

RoadNet-CA

BFS 15.12 11.68 7.44 3.03 5.13 0.63 83.32 2.28 43.22 7.87
PR 15.12 11.68 18.76 5.62 5.01 0.64 14.5 3.48 11.27 2.64

SSSP 15.12 11.68 37.65 21.86 5 0.62 90.27 9.35 28.6 7.86
CC 15.12 11.68 33.41 33.02 5 0.62 NULL NULL 50.79 6.66

Wiki

BFS 40.85 34.78 36.2 5.18 80.07 6.62 73.14 17.68 43.59 7.87
PR 40.85 34.78 15.06 6.93 80.08 6.62 0.65 0.2 11.3 2.68

SSSP 40.85 34.78 39.87 6.1 79.96 6.74 77.24 8.78 29.26 8.01
CC 40.85 34.78 15.3 5.46 80.09 6.61 NULL NULL 50.44 6.79

Twitter

BFS 40.85 34.78 NULL NULL NULL NULL NULL NULL 43.23 7.83
PR 40.85 34.78 NULL NULL NULL NULL NULL NULL 11.4 2.67

SSSP 40.85 34.78 NULL NULL NULL NULL NULL NULL 30.28 7.67
CC 40.85 34.78 NULL NULL NULL NULL NULL NULL 50.57 6.83

YouTube

BFS 40.85 34.78 49.45 7.35 92.03 1.67 83.15 7.34 43.25 8.78
PR 40.85 34.78 14.14 5.83 92.2 1.65 0.67 18 11.4 2.74

SSSP 40.85 34.78 69.23 9.17 92.21 1.64 74.06 74.06 30.4 7.63
CC 40.85 34.78 37.57 16.48 91.79 1.68 NULL NULL 51.22 6.86

Note:HtoD means the data copying from host to device and DtoH means the data
copying from device to host.
Note:NULL means that the system can not process such dataset.

format while Frog and Medusa use array data layout to achieve the coalesced memory
access. So the result in Table VIII indicates that the CSR is better in enabling regu-
lar memory and reducing unnecessary load operations. Meanwhile, the frontier data
layout is used in GunRock, which achieves better performance than other systems for
BFS. This phenomenon indicates that, although data layout has a great effect on the
memory access, it is not the only factor for system performance and there is no data
layout that is superior with all algorithms.

Table III and Table VI show GunRock and TOTEM have lower throughput than
other systems, and they can also achieve better performance than the other systems
on some algorithms, such as BFS and PageRank. GunRock can achieve the best per-
formance on BFS. This is because the enactor, the core of GunRock kernel, combines
multiple logical operations into one single kernel. By using this technique, GunRock
can significantly save memory bandwidth. On the other hand, TOTEM achieves the
best performance in PageRank when running on Amazon. TOTEM takes the commu-
nication rate into its performance model, and adopts data pre-fetching and caching
methods to improve the efficiency of PCIe communication, which is important to the
performance of PageRank.

Table VIII shows the ratio of the used global load throughput to the system’s global
load throughput (which also called the gld efficiency), according to this table, we can
see that the gld efficiency of Frog and Medusa is not the highest, which explains why
Frog and Medusa cannot achieve the best execution performance with their relatively
high global memory throughput and active warp occupancy.

5.2.3. Workload Mapping. The ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor is shown in Table VII, and
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Table VI. Global Memory Throughput(GB/S)

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 5.95 6.577 7.91 8.567 NULL 3.78
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.417 80.166 117.92 58.455 NULL 121.28
Medusa 92.447 95.616 98.862 83.102 NULL 98.017

GunRock 2.22 2.24 2.22 2.22 2.86 2.27

PR

TOTEM 66.96 68.94 70.026 70.109 NULL 60.69
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.356 80.069 118 58.816 NULL 121.02
Medusa 81.6 72.67 78.83 74.55 NULL 72.74

GunRock 1.74 1.74 1.75 1.75 1.74 1.74

SSSP

TOTEM 17.183 17.66 18.09 19.19 NULL 11.53
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.419 80.271 117.94 58.518 NULL 121.22
Medusa 114.9 101.22 135.58 87.27 NULL 85.05

GunRock 2.29 2.17 2.27 2.04 2.06 2.145

CC

TOTEM 44.06 46.75 49.59 52.94 NULL 39.32
Frog 122.01 122.01 110.1 72.0575 NULL 133.65

CuSha 89.346 80.22 117.95 58.382 NULL 120.86
GunRock 6.73 6.59 6.72 6.82 6.75 6.76

Note:NULL means that the system can not process such dataset.

Table VII. Active Warp Occupancy

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 0.463306 0.4228 0.4315 0.456212 NULL 0.3995
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.933773 0.933685 0.976658 0.892485 NULL 0.978875
Medusa 0.742502 0.742878 0.743046 0.736742 NULL 0.731812

GunRock 0.337857 0.34443 0.337871 0.337814 0.336987 0.3389

PR

TOTEM 0.607594 0.605802 0.581388 NULL 0.5899
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.933444 0.931491 0.976697 0.892334 NULL 0.977202
Medusa 0.737698 0.725534 0.736773 0.534144 NULL 0.583266

GunRock 0.333467 0.332244 0.332134 0.334056 0.332594 0.332982

SSSP

TOTEM 0.528717 0.5644 0.512296 NULL 0.479668
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.933199 0.933106 0.976535 0.893147 NULL 0.980656
Medusa 0.759679 0.682194 0.766345 0.559669 NULL 0.568269

GunRock 0.324806 0.322657 0.325463 0.326589 0.325844 0.322851

CC

TOTEM 0.647757 0.622963 0.557834 NULL 0.56812
Frog 0.8348 0.8364 0.7615 0.775 NULL 0.760239

CuSha 0.932829 0.933198 0.976602 0.892427 NULL 0.980411
GunRock 0.371246 0.371149 0.370246 0.371415 0.36888 0.368911

Note:NULL means that the system can not process such dataset.

the average number of instructions executed by each warp is shown in Table IX. Ac-
cording to these two tables, we can find the number of instructions executed in a cycle.
The larger number of instructions executed in a cycle indicates, on the one hand a
more efficient usage of the computing resource, and on the other hand, the higher risk
of bank conflicts and warp divergence. Tables VII and IX show that GunRock have
the lowest active warp occupancy and the most stable average number of instructions
executed by each warp of GunRock, which means GunRock can achieve more stable
performance than other systems. This is because GunRock adopts the per-thread fine-
grained and per-warp & per-CTA coarse-grained workload mapping strategies, which
can dynamically choose different workload mapping methods according to the task
granularity.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: ????.



0:28 Xuanhua Shi et al.

Table VIII. The Ratio of The used Global Load Throughput to The System Global Load Throughput

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 49.28 47.7 48.32 38.37 NULL 43.41
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.35 81.64 84.55 90.85 NULL 87.75
Medusa 79.03 78.28 85.63 67.24 NULL 69.74

GunRock 61.82 62.12 70.32 62.21 56.03 65.03

PR

TOTEM 42.57 48.36 39.64 38.47 NULL 44.96
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.36 81.65 84.55 90.85 NULL 87.75
Medusa 58.76 60.42 69.09 73.26 NULL 71.54

GunRock 80.31 80.18 80.09 80.09 80.09 80.1

SSSP

TOTEM 19.7 18.43 15.45 17.92 NULL 13.84
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.34 81.65 84.55 90.85 NULL 87.75
Medusa 52.91 53.99 64.7 52.03 NULL 52.16

GunRock 73.19 69.29 75.59 72.02 74.39 70.88

CC

TOTEM 41.27 45.63 41.5 38.39 NULL 45.89
Frog 46.11 45.29 41.95 42.57 NULL 42.52

CuSha 81.35 81.64 84.55 90.85 NULL 87.75
GunRock 50.71 49.79 64.31 64.78 65.52 64.79

Note:NULL means that the system can not process such dataset.

5.2.4. Miscellaneous. Table IX shows the average number of instructions executed by
each warp, which can help us understand the activity of the SMs. High variations
in the number of executed instructions by every warp indicate the workload of the
blocks are in a non-uniform pattern. As analyzed in section 4.5, high variations of
the number of instructions per warp (IPW) occurs when the conditional blocks are
executed. A low average IPW indicates there is little variation across the SM, and
the compute resource are used inefficiently, while a high average IPW indicates the
blocks are in a nonuniform pattern. Table IX shows the average IPW of GunRock is
almost the same with all kinds of algorithms and datasets, which indicates GunRock
is better in making use of the computing resource than the other systems. The table
also shows that GunRock has the least average number of instructions executed by
each warp, which implies there is less branch divergence in GunRock. As we mention
in section 2.2, all the threads in a warp execute the same instructions in a cycle, and
the access to the on-device memory of GPU usually has a long latency. So, we need to
avoid branch divergence and improve the utilization efficiency of the constant memory
in GPU processing system.

6. CONCLUSIONS & OPPORTUNITIES
In this paper, we surveyed a number of GPU-based graph processing systems and
discussed the challenges inherent in processing graph applications. Some of the chal-
lenges also exist in general big data processing and parallel computing. Graph com-
putations are usually data-driven. The graphs have the irregular structure. The size
of large scale graphs may exceed the space memory of a single machine, from which
challenges arise as to achieve adequate data locality and parallelization for graph pro-
cessing.

In order to summarize the performance of major existing graph processing systems,
we apply a taxonomy to classify various GPU-based graph processing systems. The
taxonomy characterizes four aspects of graph processing, including data layout, mem-
ory access pattern, workload mapping and GPU programming. Through the extensive
survey of existing systems, we find that most systems did not take drastically different
approaches, but added complementary features to the then state-of-the-art techniques.
Many systems are similar from the top-level perspective, but differ in their implemen-
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Table IX. Average Number of Instructions Executed by Each Warp

Algorithm System Amazon DBLP RoadNet-CA Wiki-Talk Twitter YouTube

BFS

TOTEM 271 226 296 267 NULL 123
Frog 706 932 611 724 NULL 417

CuSha 2900 2842 674 353 NULL 333
Medusa 3933 5226.1 3940.7 4079.8 NULL 2251

GunRock 74 73 74 73 74 74

PR

TOTEM 993 752 734 NULL 767
Frog 706 932 611 724 NULL 417

CuSha 2900 2842 675 353 NULL 333
Medusa 2270 2986 3772 1978 NULL 2470

GunRock 409 408 408 408 409 408

SSSP

TOTEM 278 487 261 NULL 159
Frog 706 932 611 724 NULL 417

CuSha 2900 2842 674 353 NULL 333
Medusa 956 1293 1665 1878 NULL 1000

GunRock 100 94 95 98 95 85

CC

TOTEM 285 385 352 NULL 186
Frog 706 932 611 724 NULL 417

CuSha 2900 2843 674 353 NULL 333
GunRock 112 108 109 109 108 109

Note:NULL means that the system can not process such dataset.

tation details. There does not seem to be a universally superior combination of features
in the existing systems.

Finally, some new research challenges and opportunities for graph processing on
GPUs are summarized as follows:

— Graph processing on hybrid systems. As the GPU memory is limited, how to
use GPU processing large-scale graph is another major challenge. Nowadays, GPU-
enabled clouds, GPU clusters and CPU/GPU hybrid systems, which has large mem-
ory space, are widely used in various applications. Porting graph processing algo-
rithms to these systems is a promising research direction for large-scale graph pro-
cessing. Graph partitioning and workload mapping are the fundamental challenges
for graph processing on such systems. First of all, we need to partition the graph and
the corresponding processing workload onto the GPUs and CPUs. Uneven workload
mapping can lead to load imbalance in the system. Since vertices in a big graph can
be connected with a complex pattern, how to partition the graph to achieve load bal-
ancing is a challenging problem. Second, a single GPU memory is limited, utilizing
GPU memory efficiently plays an important role in achieving good graph processing
performance, for which a good memory access pattern is another essential aspect.
Existing work are in general going towards this direction. However, how to capital-
ize the advantage of the GPU architecture for efficient graph processing remains a
challenge, which requires the programmers to make bespoke efforts for the graph
applications in question.
Moreover, the limitation of GPU memory impedes the processing of large-scale
graphs. Consequently, for the CPU/GPU hybrid systems, out-of-core data manage-
ment techniques are required to tackle the memory overflow problem in GPU when
the size of a graph exceeds the capacity of the GPU memory. Unfortunately, this is-
sue has not been addressed sufficiently to the best of our knowledge. In addition, the
strategy of data partitioning between CPU memory and GPU memory can also sub-
stantially affect the quality and efficiency of graph processing when out-of-core tech-
niques are applied. GPU graph processing systems need to consider whether solely
using the GPU memory or moving some graph data, (if so how much), to the CPU
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memory in a multi-node environment. New GPU architectures such as 3D stacked
memory in newer GPU devices can provide another alternative solution.

— Graph processing on new GPU architecture. Developing a graph processing
system is a systematic project in the sense that it needs to strike a balance among
many important factors in graph processing. Besides the three main aspects summa-
rized above, there are other challenges as well, such as benchmark setting, branch
divergence, communication and so on. Some of these challenges, such as branch diver-
gence, is caused by the complex programming model on GPU. A fundamental solution
to these challenges is to develop a more flexible and easy-to-use programing API for
GPU. GunRock provides a good example in this direction. As for the challenges re-
lated to the communications in GPU processing, new features such as Unified Mem-
ory, NVLink and 3D stacked memory may offer the solutions to this issue. By using
the unified memory, programmers can be liberated from the task of complex mem-
ory allocation. With the support of NVLink, a GPU device can communicate with
a CPU and other GPUs directly via high-bandwidth connections. Using 3D stacked
memory can expand the GPU memory by multiple folds. Consequently, larger-scale
of graphs can then be loaded into the GPU memory all at once, eliminating the need
of out-of-core executions on GPU.

— Dynamic graph processing on GPUs. Dynamic graph is an important application
in the real word, but there is little work on GPU-based dynamic graph processing.
So, designing and implementing systems to support dynamic graph processing on
GPUs is another interesting and challenging research direction. In dynamic graph
processing, the graph structure can be updated frequently in runtime. This poses
additional challenges to designing data layout and achieving good memory access
patterns. Furthermore, how to dynamically maintain balanced workload mapping
with the rapid changes of graphs is highly challenging.

— Machine-learning applications. Graph processing systems are also widely
adopted in training large machine learning models. A highly interesting and poten-
tially influential research direction is to identify the properties of machine learning
applications and build specialized GPU-based graph processing algorithms or sys-
tems to enhance the performance of machine learning applications.
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