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Abstract: The shape and composition of a membrane directly regulate the localization, activity,
and signaling properties of membrane associated proteins. Proteins that both sense and generate
membrane curvature, e.g., through amphiphilic insertion motifs, potentially engage in recursive
binding dynamics, where the recruitment of the protein itself changes the properties of the membrane
substrate. Simple geometric models of membrane curvature interactions already provide prediction
tools for experimental observations, however these models are treating curvature sensing and
generation as separated phenomena. Here, we outline a model that applies both geometric and
basic thermodynamic considerations. This model allows us to predict the consequences of recursive
properties in such interaction schemes and thereby integrate the membrane as a dynamic substrate.
We use this combined model to hypothesize the origin and properties of tubular carrier systems
observed in cells. Furthermore, we pinpoint the coupling to a membrane reservoir as a factor that
influences the membrane curvature sensing and generation properties of local curvatures in the cell
in line with classic determinants such as lipid composition and membrane geometry.

Keywords: amphipathic helix; BAR domain; membrane curvature; curvature sensing; membrane
scission; lipid packing defect; surface tension; GUV; liposomes

1. Introduction

The cellular membrane is not merely an inert platform for cellular processes, but it also actively
regulates the localization, activity, and signaling properties of different types of proteins through
geometric and/or compositional cues [1–3]. Some of the proteins that are recruited to the membrane in
turn modulate membrane morphology, as in the case of Bin/amphiphysin/Rvs (BAR) domain proteins
and dynamin [4,5], and further protein recruitment will depend on the interaction between the protein
and membrane in a recursive manner. Simple geometric models do not integrate the membrane as
a dynamic substrate and are therefore inadequate to explain such recursive phenomena.

The membrane morphology throughout the cell varies greatly, and trafficking processes,
in particular, involve dynamic regulation of morphology in the shape of tubules and vesicles [6].
Moreover, these cellular membranes are not uniform entities with homogenously distributed lipids
throughout the cell, but rather contain specific compartments, and even sub-compartmental regions
and domains, which are characterized by different lipid compositions [7]. Localization to specific
lipid compositions can be mediated by interaction between protein domains, such as Phox (PX) and
the Pleckstrin Homology (PH), and specific lipid headgroups [8], or via electrostatic interactions, e.g.,
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between negatively charged lipids and BAR domains. These domains also show high specificity for
certain membrane geometries that fit their inherent crescent shape [9–11] (see Figure 1).

Membranes 2017, 7, 6 2 of 19 

 

between negatively charged lipids and BAR domains. These domains also show high specificity for 

certain membrane geometries that fit their inherent crescent shape [9–11] (see Figure 1). 

 

Figure 1. Different membrane geometries recruiting intracellular proteins. Protein recruitment to 

different membrane compartments with different local curvatures are exemplified here with N-BAR 

(BAR domains containing N-terminal amphipathic helices) proteins containing crescent shaped BAR 

domain dimers and amphipathic helices (blue/yellow). Arrows indicate potential sites of protein-

membrane interactions. 

In addition to adsorptive binding regimes, selective recognition and stabilization of membrane 

geometries and compositions can be obtained through amphiphilic insertion motifs (AIMs), which 

are motifs that contain a hydrophilic part opposing a hydrophobic part [12,13]. These motifs interact 

with a membrane by inserting asymmetrically into one leaflet of the membrane, and are thus 

dependent on the presence of transient lipid packing defects (LPDs), which generate binding sites for 

AIM by disclosing the hydrophobic interior of the membrane. Unsaturation of lipid side-chains can 

promote formation of LPDs by inhibiting the close packing otherwise seen with cylindrical saturated 

lipids [14,15], and thereby provide compositional cues for interaction. The prevalence of these LPDs 

also correlates directly with the geometric curvature of the membrane, and different geometric 

models of curvature-sensitive protein recruitment of AIMs have consequently been suggested 

[13,16,17]. Common among these models are a continuous membrane curvature sensing (MCS), 

where the density of protein binding continuously increases with higher curvatures (or higher 

abundance of unsaturated lipids). 

An intimate relation between the size of the AIM and such continuous MCS regime has been 

observed in vitro [18], and recently a study elegantly showed that the in vitro dependence of an AIM 

on LPDs was recaptured in cells, and could be modulated by changing either the lipid composition 

or the geometrical curvature of liposomes [19]. In addition to sensing of the curvature, AIMs are also 
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Figure 1. Different membrane geometries recruiting intracellular proteins. Protein recruitment to
different membrane compartments with different local curvatures are exemplified here with N-BAR
(BAR domains containing N-terminal amphipathic helices) proteins containing crescent shaped
BAR domain dimers and amphipathic helices (blue/yellow). Arrows indicate potential sites of
protein-membrane interactions.

In addition to adsorptive binding regimes, selective recognition and stabilization of membrane
geometries and compositions can be obtained through amphiphilic insertion motifs (AIMs), which
are motifs that contain a hydrophilic part opposing a hydrophobic part [12,13]. These motifs interact
with a membrane by inserting asymmetrically into one leaflet of the membrane, and are thus
dependent on the presence of transient lipid packing defects (LPDs), which generate binding sites
for AIM by disclosing the hydrophobic interior of the membrane. Unsaturation of lipid side-chains
can promote formation of LPDs by inhibiting the close packing otherwise seen with cylindrical
saturated lipids [14,15], and thereby provide compositional cues for interaction. The prevalence of
these LPDs also correlates directly with the geometric curvature of the membrane, and different
geometric models of curvature-sensitive protein recruitment of AIMs have consequently been
suggested [13,16,17]. Common among these models are a continuous membrane curvature sensing
(MCS), where the density of protein binding continuously increases with higher curvatures (or higher
abundance of unsaturated lipids).

An intimate relation between the size of the AIM and such continuous MCS regime has been
observed in vitro [18], and recently a study elegantly showed that the in vitro dependence of an AIM
on LPDs was recaptured in cells, and could be modulated by changing either the lipid composition or
the geometrical curvature of liposomes [19]. In addition to sensing of the curvature, AIMs are also
capable of inducing local curvatures in membranes [20–23], and a direct relationship between the
effective size of the AIM and the membrane curvature generation (MCG) property has been hinted
experimentally [24]. AIMs, being both MCS and MCG, therefore serve as good model systems for
recursive binding regimes with membranes. However, because the current geometric models of MCS
do not integrate the membrane as a dynamic substrate, they do not provide explanation for phenomena,
where a regulated recruitment of proteins modulate the membrane, e.g., during tubulation and fission.
In addition, the simple geometric models do not explain discrepancies in experimental observations
regarding the MCS of lipids between in vitro assays that utilize small unilamellar vesicles (SUVs) and
assays that utilize the tubes pulled from giant unilamellar vesicles (GUVs). Such discrepancies have
been suggested to be rooted in differential coupling to lipid reservoirs [25], however the theoretical
framework for this contributing factor has yet to be addressed.

Here we outline a transition from a simple geometrical model of insertion of AIMs into
a model that combines simple geometry and basic thermodynamics. By treating membranes as
fluent entities rather than static platforms, we allow for alterations of the intrinsic properties along
the membrane surfaces. This model allows the integration of recursive changes of the membrane
substrate during saturation of binding and underlines the intimate connection between the MCS and
MCG properties. Furthermore, it illustrates the importance of considering the degree of coupling
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to a membrane reservoir when predicting the local properties of a membrane substrate. In addition,
the degree of coupling has important implications for fission processes from closed, as opposed to
open, membrane compartments. Ultimately, membrane reservoir coupling emerges as an additional
qualitative aspect of membrane identity in line with lipid composition and membrane geometry.

2. Different Modes of Interaction

In adsorptive binding regimes (see Figure 2), e.g., the electrostatic interactions between membrane
and BAR domains [26,27], the amount of bound protein (Pbound) to the binding sites (S) can be
deduced from the law of mass action, if the binding sites can be assumed to be mutually independent,
(see Equation (1)).

[Pbound] =
[

Pf ree

]
×
[
S f ree

]
× KA (1)

ϕ =
ϕMAX

(1 + KD/c)
(2)

∆Gbinding = −RTln(KD) (3)

The law of mass action can be rewritten into the Langmuir Equation (see Equation (2)),
where the bound density ϕ can be fitted against the free protein concentration c [18,28]. The Langmuir
equation allows for extraction of two central parameters; the maximum density ϕMAX and the KD-value.
While the driving force of the reaction, in terms of Gibbs free energy, can be calculated directly from
the experimentally derived KD-value (see Equation (3)), the maximum density ϕMAX can be used to
estimate the total number of possible binding sites in a substrate. However, as this model only applies
to binding sites that do not change upon binding, it poses problems for proteins that modulate their
substrate upon recruitment [28].
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Figure 2. Adsorptive binding of protein to independent binding sites. Adsorptive binding of proteins
(green) to specific binding sites (purple) in the membrane is illustrated. The binding sites are assumed
to be independent, and the binding is characterized by an on-rate (kon) and an off-rate (koff).

2.1. Two Insertion Regimes: MCS and MCG

AIMs are found in a large variety of protein domains, such as the C2 domain, hydrophobic loops,
and in particular amphipathic helices [29]. In terms of membrane curvature, AIMs display a dual mode
of action, as they both promote recruitment to membranes, while also modulating the morphology
of the membrane substrate itself. The ipso facto dual nature of these AIMs can be recognized in
an energy-diagram, where the two processes are represented as transformations between specific
energy-functions of state (see Figure 3). Because all possible processes can be described as a transition
from one energy state to another

(
Ex → Ey

)
, which can be expressed in terms of the Gibbs free

energy change, the direction of a spontaneous process can be predicted through simple considerations.
Firstly, since the path between states is arbitrary, the free energy change in a process where a membrane
is initially bent and subsequently recruits AIMs is identical to the free energy change of a process where
AIMs insert into a flat membrane, and subsequently force it to bend (see Figure 3 and Equation (4)).
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Figure 3. Dual curvature interaction; MCS and MCG by AIMs. The dual nature of curvature stabilizing
proteins or motif exemplified with insertion of AIMs, which are depicted with a hydrophobic face
(green) and a hydrophilic face (red).

∆Gx→y = Gx − Gy

and
∆G1→3→4 = ∆G1→2→4

so if
∆G3→4 < ∆G1→2

then
∆G2→4 < ∆G1→3

(4)

By simple conversion it follows that if the transition from a flat membrane to a bent membrane
is more favorable when amphiphiles are inserted, then the transition from unbound protein and
membrane to bound protein on membrane will be more favorable if the membrane is already bent
(see Equation (4)). This can be literally formulated in this simple dogma for dual curvature interaction:

If a forced insertion of an AIM will favor bending of the membrane (MCG), then bending of the membrane will
favor insertion of this AIM (MCS).

2.2. Geometric Models for Insertion of AIMs

As membranes are two-dimensional structures, interactions between amphiphiles and membrane
curvature must be described through two principal radii of curvature, (Rx) and (Ry), which are defined
as the radii of the circle that fits the arc of the curvature best, where Cx = 1

Rx
and Cy = 1

Ry
. These together

distinguish the predicted properties between geometrical shapes (see Figure 4). There are two general
types of geometric curvature; mean curvature and Gaussian curvature (see Equation (5)), but as the free
energy contribution from Gaussian curvature is mostly negligible, the mean curvature is often referred
to simply as the ‘curvature’, and it is this term that will be applied throughout this review.

CMean =
1
2

(
1
Rx

+
1
Ry

)
; CGaussian =

1
Rx
× 1
Ry

(5)
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Figure 4. Three cardinal types of geometrical curvature. The geometrical point in each shape is marked
with red, where the two principal radii of curvature intersect. The curvature of the x-axis in each figure
is assumed to be C in each geometrical point, whereas the curvature of the y-axis ranges from −C in
the saddle-point, over 0 in the cylinder, to +C in the sphere. Hence, the mean curvatures are calculated
as 0, 0.5 × C, and C, respectively.

During trafficking processes in biological cells, the membranes undergo a large variety of shapes,
of which the three cardinal types have been shown in Figure 4: the saddle point (intermediate
during scission [4,30]), the cylinder (e.g., Endoplasmatic Reticulum (ER) or recycling tubuli [31,32]),
and the sphere (e.g., transport vesicles or lysosomes [6,33]). The cylindrical shapes and the spheres
have been experimentally mimicked through various in vitro assays, where cylindrical tubes are
pulled from Giant Unilamellar Vesicles (GUVs) and small spherical liposomes are generated directly
from lipid films [34,35]. From a geometric point of view, it should be possible to compare properties
between these different shapes directly, as a sphere with a 50 nm radius and a tubule with a radius of
25 nm should yield the same effective curvature, and consequently are expected to contain identical
intrinsic properties. This approach relies on an assumption of a conserved direct relation between
the geometrical curvature and the lipid packing defects in the membrane.

2.3. Geometric LPD-Model 1: Saturation of Static Membranes

LPDs provide the “binding sites” for AIMs in the membrane, and the abundance of LPDs
have therefore been used as a predictor of possible binding density. In a simple geometric model
for MCS, the maximum density ϕMAX of bound protein was predicted to correlate directly with
the calculated sum of de novo LPDs that would arise from the bending of a membrane into
a certain curvature (see Equation (6)). The model was originally used to explain MCS phenomena
observed in vitro, where the protein binding density scaled continuously with the curvature of
liposomes, and the saturation of binding appeared to fit the Langmuir Equation well [18,36].
Hence, the shape of the individual liposome was assumed constant during binding, and the “binding
sites” were assumed to be independent (see Figure 5a). Consequently, the maximum density ϕMAX
of bound AIM was predicted to depend directly on the relationship between curvature (1/R),
and therefore the relative distribution of defect areas (∆A/A) and the effective size (AAIM) of the AIM
(see Equation (6)). When lipids of different effective sizes were recruited to liposomes of different
curvatures, this relationship was conferred [18], and this simple geometrical model has since been
applied in the Single Liposome Curvature Sensing (SLiC) assay, which uses small unilamellar vesicles
(SUVs) as membrane substrate, and where the MCS read-out, an assigned property of the AIM itself,
has been the numeric value of the power α [13,37]. However, the simple relation between geometric
curvature and AIM recruitment was challenged, as the experiments in GUVs with similar AIMs did
not recapitulate the findings with similar lipids [18,25].
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Figure 5. Saturating binding of amphiphiles to static or dynamic membranes. Liposome is shown here
with an excess of amphiphiles (red/green). Inset shows the complete saturation of any putative lipid
packing defects on static membranes (a); and incomplete saturation with small excess defects below
the permissive size for insertion (here 20 Å) on dynamic membranes (b).

ϕMAX ∝

∫
∆A/A∂A
AAIM

= ∑ LPD

∑ LPD ∝
(

1
R

)α

α ∝ MCS

(6)

2.4. Geometric LPD-Model 2: Saturation of Dynamic Membranes

Lipid bilayers are not static substrates of rigid building blocks that are pushed aside when AIMs
are inserted, but rather constitute dynamic landscapes in constant change. Therefore, recent models
that address the relationship between geometric curvature, as well as lipid composition, and
LPDs, often describe the local abundance of LPDs as a statistical distribution. In these models,
the abundance of LPDs over an area ( fLPD) falls off with their LPD-size according to an exponential
decay (see Equation (7), upper), where A is the area of the defect and AC is an area constant thought to
depend on the lipid composition and geometric shape of the membrane [14–16,19]. Putative binding
of AIMs into these dynamic membrane systems will reduce the total area of LPDs, which consequently
change the distribution of defect areas. Therefore, the size of the expected maximal LPD-size will also
be reduced until it reaches a size that is no longer sufficient to accommodate the insertion of additional
AIMs (see Figure 5b), and the system will approach saturation (see Equation (7), lower). This is
expected to hold true for any rigid AIM.

fLPD = e(−A/Ac)

lim
f (AAIM)→0

ϕ = ϕMAX
(7)

Amphipathic helices, however, comprise a special type of AIM in the sense that they usually do
not fold into their amphipathic secondary structure before they are fully inserted. The insertion of
an amphipathic helix is thus thought to happen through a step-wise process with an initial insertion of
one or a few hydrophobic residues, and subsequent folding in the membrane [16]. The potential for
further insertion in this case will therefore depend on the prevalence of defects that are big enough
to accommodate insertion of such bulky hydrophobic residues, i.e., above 20 Å2 [17]. This model
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integrates the membrane as a dynamic substrate in terms of MCS, rather than assuming independent
binding sites, but it does not allow a straightforward prediction of whether or not an insertion
is energetically favorable. In addition, the focus of both these geometrical models is isolated on
the MCS properties of the AIM, and do not address the putative MCG effect that AIMs might exert on
the membranes at saturating conditions. However, such predictions can be made by the combination
of these simple geometrical considerations and basic thermodynamics.

3. Thermodynamic Insertion-Model

The lipid bilayer is held together by a simple thermodynamic phenomenon known as ‘the hydrophobic
effect’, which minimizes the energetically unfavorable interface between the hydrophobic lipid chains
and water. This minimization of interface is described through surface tension, a contractive force in
the membrane that has been shown to link membrane geometry and the function of transmembrane
proteins directly [38]. There are thus no attractive forces between the aliphatic chains per se, but rather
a steric repulsion that increases upon membrane contraction. These repulsions add up to a lateral pressure
in membranes, in a concentration-dependent manner [39], and the lipid bilayer is consequently held in
an equilibrium state, where the expansive forces from the lateral pressure balance the contractive forces
of the surface tension [28]. In this aspect, the lipid composition and the local biophysical properties of
the membrane are highly interconnected [40–42], however, to ease direct comparison with established
geometrical models, we assume homogenous and symmetrical lipid compositions across the bilayer
throughout this review. Importantly, although the initial spontaneous curvature depends on membrane
composition and asymmetries between the leaflets, the changes upon insertion into or bending of
the membrane are fundamentally the same from a biophysical point of view.

3.1. Basic Intrinsic Properties of Curved Membranes

Although lipid bilayers are preferably flat [43], given identical lipid composition on each
side, the cell is dominated by membranes of curved morphologies. A wide range of molecular
motors, scaffolding proteins, or membrane-inserting proteins drive the formation of these curvatures
through MCS/MCG-processes that are governed by the elastic properties of the membrane [17,44–46].
When a membrane is bent (see Figure 6), the outer monolayer is displaced from equilibrium by
stretching, which is energetically penalized through an increased surface tension (γ), which correlates
directly with the relative change of the interface area and therefore also LPDs (see Equation (8),
upper). The simultaneous free energy change from decreasing lateral pressure in this monolayer is
negligible. Conversely, the inner leaflet is simultaneously displaced from equilibrium by compression
and therefore energetically penalized through increased lateral pressure (Π), which correlates with
the square of the relative change of the membrane area (see Equation (8), lower). In this case,
the simultaneous change of free energy from the decrease in surface tension is also negligible [28,47].

∆Gγ ∝
∆Ainter f ace

Amembrane

∆GΠ ∝
(∆A f lat→bend

Amembrane

)2 (8)

Accordingly, the total expected free energy change is estimated as the sum of the energetic
penalties in each monolayer (see Equation (9)), which can be directly related to the energy needed
to bend the membrane into a certain curvature. When the membrane is described as a thin sheet,
these intrinsic elastic properties of the membrane are described directly through the bending modulus
(κB), the Gaussian modulus (κG), and the two types of geometric curvature (see Equation (9)), again,
with a negligible contribution from the element containing the Gaussian modulus. It can further be
shown that the bending modulus is directly related to the tension and lateral pressure components [28],
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and since we are focusing on AIMs rather than scaffolding proteins in this review, we examine
the recursive effects of binding in terms of these two components instead.
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Figure 6. Bending of the lipid bilayer by external forces. The membrane is shown as a lipid bilayer
surrounded by water molecules (red/white). External forces, such as scaffolds, molecular motors,
or AIMs, provide the energy to bend the flat membrane (left) into a curved morphology (right).
The outer leaflet of the membrane now increases the interface between the water molecules and
the hydrophobic interior of the membrane, while the lipids of the inner leaflet are compressed.

∆Gγ + ∆GΠ = ∆Gtotal

gB ∝ 1
2 κB
(
Cx + Cy

)2
+ κGCxCy

(9)

3.2. Saturation of Insertion in Fixed Membrane Morphologies

If we again consider a membrane held in a curved morphology, e.g., in a liposome, and assume
this morphology to be fixed without any flipping of lipids, the insertion of AIMs into the outer leaflet
will be energetically driven by the surface tension (see Figure 7). However, as this insertion continues,
a counterbalancing increase in lateral pressure in the same leaflet builds up, in a manner corresponding
to the effective sizes of the AIMs. Saturation, i.e., maximum insertion density ϕMAX, will then be
reached, when the energetic penalty from increasing lateral pressure balances the energetic gain from
a surface tension reduction (see Equation (10)).
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Figure 7. Thermodynamic model of the insertion of AIMs into liposome membranes. Half a liposome
is shown here with an excess of amphiphiles (red/green). Inset shows the insertion of amphiphiles,
where the properties of the membranes permit. In energy-state E2 (right) the outer leaflet is stretched
and thereby penalized with an increase in surface tension, while the lateral pressure remains low.
Upon amphiphile insertion, the lateral pressure increases, while the surface tension is reduced until
further insertion is not energetically favorable (left).
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lim
−∆GΠ,insertion→∆Gγ,insertion

ϕ = ϕMAX

ϕMAX ∝ AAIM & Cα
(10)

Because both the lateral pressure and the surface tension depend directly on a relative change of
the membrane surface area (see Equation (9)), the density at saturation will depend on the interplay
between the effective size of the AIM and the initial stretching of the outer leaflet, which in turn is
related to the simple geometry of the membrane in terms of curvature (see Equation (10)). In a simple
isolated system, where the membrane morphology does not change upon interaction, it should thus be
possible to derive the MSC and saturation properties directly from the membrane composition and
local geometry by relating these factors directly to the properties of the AIM itself. However, as earlier
shown, membranes are dynamic substrates that can change morphology upon insertion of AIMs.
This phenomenon also holds true for liposomes, which are seen to tubulate, vesiculate, and break in
other terms [21–24].

4. Recursive Changes of Membrane Morphology

The size and morphology of a liposome is, in general, held stable by opposing forces;
the contractive forces from the surface tension in both monolayers and the inward osmotic pressure,
and the expansive forces derived from the lateral pressure in both monolayers, together with
the outward osmotic pressure (see Figure 8). AIMs bind only from the outside, which accordingly
reduces the surface tension in the outer monolayer, while the lateral pressure is simultaneously
increased. This change is asymmetric and disrupts the balancing forces, destabilizes the liposome and
concomitantly leads to expansive morphological changes such as swelling or tubulation until a new
equilibrium is established (most likely in accordance with the Young-LaPlace relation of capillary
pressure [48]). However, since this changed membrane morphology now putatively provides a new
substrate for favorable insertion, this insertion/modulation cycle can continue in a recursive manner
until further insertion is prevented by restrictive forces or radical change of liposome morphology
through breakage or fission.
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Figure 8. Change of the membrane substrate upon amphiphile insertion. Liposome morphologies are
stabilized by opposing forces (left), which are generally speaking a combination of contractive forces
(surface tension γ and inward osmotic pressure posmotic,inward) and expansive forces (lateral pressure Π
and outward osmotic pressure posmotic,outward). Insertion of amphiphiles reduced the surface tension
(see red dashed line), while increasing the lateral pressure (see dashed red ellipse), and thereby tips
the balance in favor of the expansive forces (middle). As a consequence, the membrane will change
morphology (right).
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Derivation of precise models for such pathways are beyond the scope of this review, however we
do consider it relevant to discuss the implementation of recursive MCS/MCG-changes, as these are
already experienced in vitro, where curvature sensing AIMs promote fission and/or vesiculation of
different membrane compartments [24,36,49]. These observations have been recapitulated in cells,
where AIMs are not only shown to be important for protein recruitment to curved membrane
morphologies, but are also implicated in initial curvature inductions, as well as membrane
fission [19,24,50].

4.1. Fission in a Closed Uncoupled Compartment

Membrane fission in cells generally happens from tubular extensions, which represent open
systems with access to lipid reservoirs. Fission of small closed and uncoupled compartments, e.g.,
in relation to dense core vesicles during biogenesis, or budding of small vesicles from lysosomes of
approximately 500 nm in diameter [33,51], poses other challenges. If we again consider liposomes
of membranes without spontaneous curvature, i.e., where the lipid composition is symmetric in
between the leaflets, it can be shown that the integrated elastic energy (Gv) over the entire surface is
independent of the size, and thereby the curvature, of the vesicle [28] (see Equations (9) and (11)).

gv ∝ 2κB

(
1
R

)2

Gv =
∫

gvdA

Gv = 8πκB

(11)

This implies that the fission of one closed vesicle into two minor vesicles will increase
the total elastic energy of the vesicle system, and accordingly allow for more amphiphile insertion
(see Figure 9). A similar conclusion can be reached by direct comparison of their respective curvatures,
as the two smaller vesicles integrate higher local curvatures over the same summed membrane area
(see Equations (10) and (12)). Fission can thus, as expected, be an energetically favorable response to
saturating binding.
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Figure 9. Fission of closed compartments. A closed spherical membrane compartment undergoes
fission and generates two smaller compartments. As the integrated elastic energies of A–C are assumed
to be identical, more favorable insertion per surface area are assumed to be permitted on the fission
products. However, there will be an excess of volume, which will be expected to destabilize one or
both of the fission products (see red dashed circle), which will react by changing morphology if
energetically favorable.

CA > CB > CC

ϕMAX,A < ϕMAX,B < ϕMAX,C
(12)

However, several geometrical problems arise in the case of uncoupled membranes. Firstly, for any
fission to occur, the membrane needs to go through a series of unfavorable membrane morphologies [30,52],
which becomes highly unlikely without any lipid reservoir to support these changes. Secondly, because
the volume scales with R3, while the membrane area of the liposomes scales with R2, there will
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be excess volume (VA > VB + Vc) which cannot be supported by the two resulting liposomes, if
we assume conservation of lipid material (AA = AB + Ac) and still negligible leakage of content.
In a cellular context, this needs to be considered in relation to the suggested budding of excess
membrane material during the maturation of dense core vesicles. In a similar fashion, fusion processes
between such closed cellular compartments, as suggested for homotypic fusion of immature secretory
granules [53] will yield a fusion product that contains insufficient volume to sustain a sphere, if we still
assume no leakage of content (see Appendix A). Instead these fusion-products are forced to take on
ellipsoid or tubular shapes, where the surface/volume ratio is higher (see Figure 10). We do recognize
that the most likely scenario is the ellipsoid with a more homogenous energy-profile, however choose
to continue with tubular shapes for illustration of boundaries and for easier calculation of examples.
In such tubular shapes the relative mean curvature Ct is increased, relative to its spherical counterpart,
due to a reduced radius rt (see Appendix B), and the resulting tubular fusion products will thus retain
surprisingly much of their elastic properties in spite of their increase in surface area (see Table 1).
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Figure 10. Formation of tubular carriers through homotypic fusion. A spherical membrane
compartment A undergoes homotypic fusion with another similar spherical compartment, and yields
a tubular fusion product B, where the radius decreases slightly to accommodate morphological changes
as a result of insufficient volume. Fusion with another spherical compartment A yields the triple fusion
product C. Both fusion products are defined as tubes consisting of two hemispherical caps spanned by
a cylindrical part.

Ct

Cs
∝

rt
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∝

Vt

Vs
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(See the exact derivation of
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and

Ct

Cs
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in Appendixs B and C).

Table 1. Preservation of mean curvature in tubular carriers of less volume.

Relative Change A (1 × A) B (2 × A) C (3 × A)

Vt/Vs 1
1√
2

1√
3

Cn+1/Cn NaN 0.87 0.95
Ct/Cs 1 1.22 1.43

Vt/Vs is the relative reduction of volume between the theoretical spherical volume to sustain the surface area of
the fusion product (Vs) and the actual volume in the tubular fusion product (Vt); Cn+1/Cn is the relative change of
mean curvature between the fusion product (Cn+1) and its predecessor (Cn+1); Ct/Cs represents the relative change
of curvature in the fusion product in response to the relative reduction of volume Vt/Vs.

From the table it can be seen that a tubular fusion-product of three identical spheres,
will retain 1.43 times the mean curvature, as would the spherical counterpart with sufficient
volume. Hence, such fusion-processes can succeed while still maintaining the intrinsic properties,

as
Cn+1

Cn
= 0.95. As the intrinsic properties, in terms of membrane tension, are linked to both fission
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and fusion events [30,52,54], such preservation of properties through geometrical changes could be
essential to continuously sustain these processes correctly, or alternatively to continuously recruit the
adequate proteins. Interestingly, such tubular shaped carriers have also been observed in the context
of fission from plasma membrane, which can be considered both open and coupled, and therefore do
not pose the same geometrical challenges [55].

4.2. Recursive Morphology Change in Open Coupled Systems

When local curvatures are generated on larger lipid reservoirs, there will be a fast lateral flow of
lipids [25], and the free diffusion of water will keep the volume as well as the osmotic pressure stable
during any morphology changes. Thus, an expected surface tension penalty in the outer monolayer
will be relaxed by a flow of lipids into the region of local curvature, while the energetic penalty from
lateral pressure in the inner leaflet will be correspondingly reduced by a flow of lipids out of the local
curvature (see Figure 11). The lateral flow of AIMs (e.g., lipids) from a region of low surface tension to
a region of high surface tension is called a Marangoni-Flow and the extent of the flow (R) has been
shown to correlate directly with the change of surface tension (∆γlocal vs.reservoir) between the reservoir
and local regions [56] (see Equation (14)).
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Figure 11. Alterations of properties in local curvatures by the Marangoni Flow of lipids. When local
curvatures are generated on coupled membranes, the elastic properties of the local curvature,
represented here by surface tension (γ) and lateral pressure (Π) are changed relative to the elastic
properties of the membrane reservoir (γ0 and Π0). This will generate a flow of lipid away from the area
of high lateral pressure into the area of higher surface tension (arrows).

As the relaxation of elastic energy in the local curvature will relate directly to the relative change
of area, as earlier shown, the relaxation by Marangoni Flow (∂AMarangoni) will be directly related
to the effective size of the AIM and the number of AIMs flowing to the local curvature (∆NAIM),
which in turn is directly related to the difference in surface tension (see Equations (14) and (15)).
As the difference in surface tension is directly linked to the relative morphology-change at the local
curvature, we therefore predict it will change in a continuous manner according to the “degree of
reservoir coupling” (DRC).

R ∝ ∆γlocal vs.reservoir (14)
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∂AMarangoni = AAIM × ∆NAIM

∆Namph ∝ R ∝ ∆γlocal vs.reservoir

∆γ ∝
Creservoir − Clocal curvature

Clocal curvature
= DRC

(15)

In the earlier case of homotypic fusion, where closed compartments are forced into tubular
shapes, due to an insufficient volume to sustain a sphere, the overall mean curvature was relatively
preserved by structural changes into tubular shapes. However, by simple geometrical considerations
the hemispherical ends are expected to contain very high local curvatures in these tubular shapes
(see Figure 10). However, as a consequence of the predicted Marangoni Flow, even such high apparent
local curvatures of the hemispheres would be diminished by flow from the cylindrical part, which take
up to 83.4% of the tube in fusion product C (see Appendix B for calculations). The relatively lower
fraction of cylindrical geometry in fusion product B (73.2%) would relax the local tension to a relatively
lesser extent, and no unidirectional flow would be expected in sphere A, where the surface is
assumed homogenous for this review. Ultimately, the geometrical restraints and DRC both constitute
mechanisms by which recursive changes in membrane morphology can counteract local changes in
intrinsic properties, e.g., in the process of homotypic fusion.

In summary, an area constant (see Equation (7)), which defines the distribution of expected LPDs
(Ac), will be expected to depend not only on lipid composition

(
Ac,comp

)
and local membrane geometry(

Ac,geom.
)
, but also contain a component of DRC (Ac,DRC) (see Equation (16)). In thermodynamic

terminology, the actual free energy change of insertion into a coupled membrane will be numerically
lower than if calculated directly from lipid composition and local geometry (∆Gcomp,geom) in a manner
that relates directly to the relative properties of the reservoir (see Equation (17)).

Ac = Ac,comp + Ac,geom. + Ac,DRC (16)

∆Ginsertion = ∆Gcomp,geom. + ∆GDRC (17)

5. Summary

In summary, based on a review of the current models that describe the interaction of amphiphilic
insertion motifs (AIM) with membranes, we employ simple thermodynamic considerations to extend
the current models to consider the membrane as a dynamic entity. This enables a description of
the recursive nature of AIM-membrane interactions and predicts the degree of reservoir coupling
as a key determinant of membrane biophysical properties, with implications for AIM-membrane
interactions as well as membrane fusion and fission processes.

6. Discussion

The exact derivations of constants and free energy relations are beyond the scope of this
review, but we speculate that the effect of DRC might underlie some of the reported discrepancies
between the apparent MCS of lipids in SUV-systems and the lack of MCS by similar lipids in
the GUV-system [18,25] (see Figures 11 and 12). Moreover, the DRC is likely to account at least in part
for the more pronounced role of AIMs in membrane curvature sensing and generation observed on
liposomes as compared to tubules of the same curvature (Cmean) [25,36,57]. The model further predicts
differences in the nature of budding of isolated carriers from closed compartments (e.g., sorting from
secretory vesicles) as opposed to continuous membranes (e.g., endocytosis). Equally important,
however, is the prediction that the membrane identity of carriers, in terms of morphology and elastic
properties, in turn will reflect their individual history of generation. Consequently, we suggest that
the DRC of local curvatures should be considered at equal terms with classic determinants as lipid
composition and geometry when assessing recruitment properties as well as fusion/fission propensities
of the membrane (see Figure 12).
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Appendix A

Relative reduction in volume through homotypic fusion:

A + A => B (A1)

surface area (A) is conserved, i.e.,:
2× AA,sphere = AB,sphere (A2)

if the area constitutes a sphere, and RB,sphere represents that hypothetical sphere, then:

RB,sphere =
√

2× RA,sphere (A3)

volume-input is calculated as the sum of volumes from the two spheres:

V2×A = 2×
(

4
3
× π × R3

A,sphere

)
(A4)

volume needed to sustain the hypothetical sphere made up from the summed surface areas:
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VB,sphere =
4
3
× π ×

(√
2× RA,sphere

)3
(A5)

by substitution is obtained:
VB,sphere =

√
2×V2×A (A6)

where after the relative reduction in volume can be calculated:

V2×A
VB,sphere

=
Vt

Vs
=

1√
2

(A7)

Appendix B

Derivation of tube radius rt from the relative reduction in volume
Vt

Vs
:

Area As and Volume Vs of the hypothetical sphere:

As = 4× π × r2
s (A8)

Vs =
4
3
× π × r3

s (A9)

Though a reduced volume most likely would produce an ellipsoid geometry, we here assume
a complete conversion into a tubular carrier, which makes the calculations more approachable.

Area At and Volume Vt of the tubular product with reduced volume:

At = 4× π × r2
t + 2× π × rt × lc (A10)

Vt =
4
3
× π × r3

t + π × r2
t × lc (A11)

where lc represents the length of the cylinder that separates the two hemispherical caps.
As the surface area is maintained, the cylinder length can be expressed in terms of

the respective radii:

At

As
=

4× π × r2
t + 2× π × rt × lc

4× π × r2
s

= 1⇐⇒ r2
s − r2

t
0.5× rt

= lc (A12)

hence, any reduction in volume can predict the relationship between the radius of the hypothetical
sphere and the actual radius of the tube:

Vt

Vs
= −1

2
×
(

rt

rs

)3
+

3
2
×
(

rt

rs

)
(A13)

which can be converted to a third degree polynomial and solved in terms of
rt

rs
and

Vt

Vs
:

rt

rs

3
− 3

rt

rs
+ 2

Vt

Vs
= 0 (A14)

because 0 <
Vt

Vs
< 1, the solution can be shown to be (see Appendix C):

(
rt

rs

)
= −0.5

(
1 + i
√

3
)

3

√√√√√Vt

Vs

2
− 1− Vt

Vs
− 0.5

(
1− i
√

3
) 1

3

√√√√√Vt

Vs

2
− 1− Vt

Vs

(A15)



Membranes 2017, 7, 6 16 of 19

When the radius of the hypothetical sphere rs is calculated, the radius rt of the tube can be
directly derived.

The mean curvature of the hypothetical sphere Cs is calculated directly as:
1
rs

, whereas the mean

curvature of the resulting tube Ct is a function of respective curvatures of cylindrical Ccyl and
hemispherical Chs parts, respectively, weighted with the fraction θ they represent of the total surface

area, e.g.,

(
θhs =

Ahs
Ahs + Acyl

)
:

Ct = θhs × Chs + θcyl × Ccyl (A16)

Appendix C

The third degree polynomial from Appendix B;

rt

rs

3
− 3

rt

rs
+ 2

Vt

Vs
= 0 (A17)

is written as
x3 − 3x + 2d = 0, where d is treated as a constant (A18)

making the substitution: x = y + 1/y, which yields an equation of the form:

y3 +

(
1
y

)3
+ d = 0 (A19)

multiplying with y3 and making the substitution: z = y3, yields a second order equation:

z2 + 2dz + 1 = 0 (A20)

let u and v denote the two solutions of this second order polynomial, then:

u = −d +
√

d2 − 1

v = −d−
√

d2 − 1
(A21)

as these solutions, by construction, are solutions to y3 +

(
1
y

)3
+ d = 0, this polynomial has solutions:

y =
3
√
−d±

√
d2 − 1 (A22)

substituting this solution back, gives these following solutions to x:

x =
3
√
−d±

√
d2 − 1 +

1
3
√
−d±

√
d2 − 1

(A23)

= −0.5
(

1 + i
√

3
)

3
√√

d2 − 1− d− 0.5
(

1− i
√

3
) 1

3
√√

d2 − 1− d
(A24)

and

x = −0.5
(

1− i
√

3
)

3
√√

d2 − 1− d− 0.5
(

1 + i
√

3
) 1

3
√√

d2 − 1− d
(A25)
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