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ABSTRACT 

Epigenomics is a fast-evolving field of research that has lately attracted considerable interest, mainly due to 

the reversibility of epigenetic marks. Clinically, among solid tumors, the field is still limited. In 

cholangiocarcinoma (CCA) it is well known that the epigenetic landscape is deregulated both during 

carcinogenesis and disease progression as a consequence of aberrant mechanisms leading to genome 

instability. In this article, we will briefly review the molecular alterations that have been described in the 

transformation of normal cholangiocytes into malignant derivatives, focusing on the role of non-coding 

RNA (ncRNA) interactions, DNA methylation, post-translational modifications (PTMs) of histones and 

chromatin remodeling complexes. 

 

1. INTRODUCTION 

Increasing incidence and mortality rates of cholangiocarcinoma (CCA) [1, 2] may potentially reflect an 

atypically high mutational burden shared by these malignancies in the biliary tract, which clinical 

intervention has thus far failed to identify [3]. It is therefore unanticipated that whole-exome [4] and 

whole-genome [5] sequencing approaches have revealed only intermediate global mutation rates in this 

cancer type [4, 6]. As such, the genetic alteration frequency is insufficient to entirely explain current clinical 

observations (such as the innate chemoresistance and rapid disease progression characteristic of CCA) or 

genomic observations (such as tumor subgroups characterized by grossly different transcriptomic profiles 

[4, 7, 8]). One substantial contributor to the missing oncogenic virulence could certainly involve epigenetics, 

heritable alterations in gene expression independent of DNA sequence changes, and epigenome 

dysregulation. This hypothesis is bolstered by the recurrent detection of mutations in epigenetic regulators 

(IDH1/2, KMT2C, ARID1A, BAP1), aberrations which likely have substantial (epi)genome-wide 

consequences. 

Epigenetic information is transmitted trans-generationally through a variety of biochemical modifications 

and processes, including non-coding RNAs (ncRNAs), DNA and RNA modifications, histone post translational 

modifications (PTMs) and chromatin remodeling. The cholangiocyte epigenome constitutes a unique 

combinatorial state of these epigenetic marks, a minority of which are responsible for maintenance of 

biliary epithelial cell identity (and therefore, should remain constant) and a majority which fluctuate to 

control gene expression in response to endogenous and exogenous stimuli. Cholangiocarcinogenesis, like 

other neoplastic processes, is accompanied by gross epigenomic insult affecting almost all levels of 

epigenetic regulation. Such individual epigenetic alterations, or ‘epimutations’ [9], are becoming 

increasingly appreciated as potential pro-oncogenic lesions functionally synonymous to genetic mutations, 

though verification of true ‘epi-driver’ status remains elusive. 

Comprehensive resolution of the origin(s) and perpetuation mechanism(s) of epimutations has not yet 

been achieved. One obvious contribution arises from classic genetic alterations (mutation and structural) of 

epigenetic enzymes, a phenomenon recurrently reported across all categories of epigenome regulators in 

CCA (Figure 1). However, given the widespread epigenomic insult in CCA that is emerging from the limited 

epigenome-wide association studies (EWAS) to date [10, 11], it is clear that other mechanisms (likely, 

epigenetic regulation of epigenetic regulators, rate-limiting enzymatic cofactors) also fuel the evolution of 



CCA epigenomes. An enhanced understanding of these epimutational processes and their downstream 

consequences holds significant translational potential to improve both diagnostic and prognostic tools, as 

well as putative therapeutic strategies. 

Accordingly, in this review we critically assess our current understanding of the processes that drive 

epigenome dysregulation in CCA, as well as their immediate and downstream biological consequences. 

Epimutations are broadly separated into ncRNA alterations, DNA methylation aberrations and chromatin 

perturbations. Additionally, we establish a rational framework to guide future design and execution of 

EWAS for CCA to optimize the potential for translational and clinical success. 

 

2. NON-CODING RNAs IN CHOLANGIOCARCINOGENESIS 

Non-coding RNAs (ncRNAs) are endogenous RNA molecules which are not translated into proteins and have 

emerged as key transcriptome regulators in many different cellular pathways and systems. NcRNAs are 

grouped into two broad subclasses according to their number of nucleotides (nt), small ncRNAs (100-200 

nt) and long ncRNAs (>200 nt). Small ncRNAs mainly act as translational repressors and include microRNAs 

(miRs), piwiRNAs (piRNAs), small interfering RNAs (siRNAs) and small nucleolar RNAs (snoRNAs). On the 

other hand, long ncRNAs (lncRNAs) are generally involved in gene silencing. As such, this category of 

ncRNAs has lately emerged as new players in the malignant transformation of cholangiocytes [12], being 

able to act as oncogenes or tumor suppressor genes (TSGs) and, therefore, representing potentially 

valuable tools as predictive biomarkers or as therapeutic targets. 

 

2.1 MicroRNA (miR) dysregulation in cholangiocarcinoma 

MiRs are, so far, the best studied ncRNAs. Initially discovered in 1993 [13], these highly conserved, single-

stranded 19-25 nt ncRNAs function as genomic rheostats that exert transcriptional control and impact 

translation by affecting initiation and mRNA destabilization of their multiple target genes [14]. Thus, miRs 

have a significant role in diverse fundamental cellular processes such as cell differentiation, proliferation, 

migration, cell cycle control and apoptosis. Through their capacity to regulate various genes, and 

consequentially multiple pathways, miRs are significant contributors to disease heterogeneity, a property 

which suggests translational potential for patient stratification, as well as confounding drug response [15]. 

Preliminary studies attempting to clarify the contributory pathogenic role of miRs in CCA have mainly 

focused on single candidate miRs. Accordingly, different studies have reported that miR-21 is upregulated 

in CCA patient tissue [16, 17], as well as in diverse CCA cell lines [18]. High levels of miR-21 have also been 

detected in serum of CCA patients [19]. Induced overexpression of miR-21 in vitro can lead to 

downregulation of the MMP inhibitor RECK (Reversion-inducing cysteine-rich protein with Kazal motifs) 

subsequently increasing proliferation, invasion and migration [17] and tumor growth [20]; PTPN14 (protein 

tyrosine phosphatase non-receptor type 14), regulating invasion and metastasis[17]; and tumor suppressor 

PTEN, causing chemoresistance in CCA cell lines [18]. Moreover, deregulation of the miR-200 family 

(enclosing 5 members divided in two clusters, miR-200a, mir-200b and miR-429 in chromosome 1; miR-

200c and miR-141 in chromosome 12) contributes to the early stages of metastasis by epithelial-to-

mesenchymal (EMT) transition. [21]. Although various studies have shown that expression of miR-200 



family members is downregulated in biliary tract cancers compared to normal tissues, leading to EMT 

activation and cancer cell invasion [22, 23], miR-141 and miR-200b were previously reported to be 

significantly overexpressed in malignant cholangiocytes and further contribute to tumor growth and 

gemcitabine resistance [18]. These confounding results reflect both their ability to act as oncomiRs or 

tumor suppressors, as well as suggesting that certain miRs can retain dual roles depending on the cellular 

context. Further, miRs like miR-34a [24], miR-204 [25, 26], miR-214 [27] and miR-221 [28] have also been 

reported to regulate EMT in CCA, thus representing potential therapeutic targets for preventing post-

operative recurrence. Other miRs involved in CCA development and progression are summarized in Table 1. 

The expression of miRs can be controlled at both the transcriptional and post-transcriptional level. Also, 

endogenous (hormones, cytokines) and exogenous (xenobiotics) compounds may affect miR regulation. 

Intrahepatic CCA (iCCA) has previously been classified into two different biological subtypes with markedly 

different outcomes (i.e., the `Proliferation´ and `Inflammation´ subsets) [8]. The main mediator of the latter 

tumor subset is the inflammation-associated cytokine Interleukin-6 (IL6), known to be overexpressed and 

to contribute to tumor growth in CCA. In this regard, IL-6-mediated hypermethylation of miR-370 leads to 

overexpression of the oncogene MAP3K8 [29]. In addition, IL-6 has been shown to upregulate the 

expression of DNA methyltransferase 1 (DNMT1) and epigenetically alter the expression of miR-148a [30] 

and miR-152 [30], both of which can bind and regulate DNMT1. The connection between miR and 

epigenetic modifications of genes has also been reported in extrahepatic perihilar CCA (pCCA), where miR-

373 is downregulated and negatively regulates methyl-CpG-binding domain protein 2 (MBD2), which in turn 

hampers the methylation-mediated tumor suppressor RASSF1A [31, 32]. miR-200 family members (miR-

200a, miR-200b and miR-429), which share a common promoter, have been found to be hypomethylated in 

CCA [33]. As a consequence, subsequent miR upregulation results in significant downregulation of the miR-

target genes, including tumor suppressors DLC1, FBXW7 and CDH6 [33]. 

To date, limited large-scale miRNome studies are available in sufficiently well-characterized CCA patient 

cohorts, including subsequent patient-matched integrative ‘-omics’ functional investigations. Palumbo et al. 

[34] recently performed a functional high-throughput miR mimic screen with a library covering 316 

different miRs. The study was performed using the human extrahepatic bile duct CCA cell line (TFK1), and 

designed to elucidate miRs regulating CCA cell proliferation (reduced cell growth of 50% was considered as 

a positive hit). MiR-410 was the top suppressor of growth out of the 21 miRs identified to regulated CCA 

cell growth [34]. Concurrently, Lin and colleagues [35] used small RNA sequencing to determine the miR 

expression profiles in 24 human CCAs. In total, 3 members of a common miR cluster (let-7c, miR-99a and 

miR125b) were found to be downregulated in the tumors, which aberrant regulation further was associated 

with the activation of the IL-6/STAT3 signaling pathway, reinforcing the key role this signaling axis plays in 

cholangiocarcinogenesis [36]. 

 

2.3 Long non-coding RNAs (lncRNAs) in cholangiocarcinoma 

Long non-coding RNAs (lncRNAs) are known to play important regulatory roles in development and 

progression of different types of cancer. The length of these non-protein-coding molecules (>200nt) 

enables them to form secondary or tertiary structures, and themselves function as RNA sequences. 

However, little is known about the role of lncRNAs and their downstream mechanisms in the pathogenesis 



of cholangiocarcinoma (Figure 2). It has been reported that some lncRNAs play an important function in the 

regulation of inflammatory response pathways stimulated by viral and/or fluke infections, as well as 

oxidative stress [37]. This is the case of H19 and HULC, which in CCA are both activated by oxidative stress 

and target IL-6 and CXCR4 respectively, subsequently promoting cell migration and invasion [37]. 

Interestingly, the biological mechanism(s) underlying this event involves the `miR sponging´ phenomenon. 

A mechanism, in which lncRNAs possess the ability to affect the miR activity through direct binding and 

therefore impede miR binding to its usual target (miR-target gene). Thus, lncRNA (H19) has been shown to 

`sponge´ let-7a/let-7b, subsequently increasing the expression level of its target IL-6 [38]. Additionally, 

HULC can bind miR-372 and miR-373, which are suggested to target CXCR4. As such, overexpression of IL-6 

and CXCR4 in CCA cells consequently results in a chronic inflammatory response, promoting progression of 

the tumor. This regulatory mechanism highlights the importance of the lncRNA-miR-mediated crosstalk. 

Another example of sponging involves the lncRNA MALAT1 (Metastasis-associated lung adenocarcinoma 

transcript 1), miR-204 and its target CXCR4, which through this interaction promotes proliferation, invasion 

and migration of human pCCA [39]. Interestingly, the nuclear paraspeckle assembly transcript 1 (NEAT-1) 

lncRNA has recently been reported to have a pivotal role in modulating CCA drug sensitivity [40]. This study 

emphasized how reduced mRNA expression of the chromatin modulator BAP1 (BRCA-1 associated protein-

1) enhances sensitivity to gemcitabine in the CCA cell line (KMBC). Additionally, in an attempt to identify 

BAP1-regulated candidate lncRNAs with a role in controlling CCA drug response, an inverse correlation was 

observed between BAP1 and NEAT-1 expression. This demonstrates that NEAT-1 acts as a functional 

downstream target of BAP1, and how their interplay may modulate drug responses. Nevertheless, the 

direct mechanism by which NEAT-1 modulates BAP1 control still remains unknown. As such, the BAP1 

expression level varies substantial between different CCA cell lines. Recently, the mitochondrial enzyme 

encoded by CPS1 and its lncRNA (CPS1-IT1) were shown to promote proliferation of iCCA cells [41], 

suggesting a putative role of this lncRNA as a potential diagnostic and prognostic biomarker in iCCA. Also, a 

recent study determined that the lncRNA (AFAP1-AS1) promotes growth and metastasis of CCA cells [42]. 

As such, AFAP1-AS1 deficient cells gave rise to smaller xenograft tumors compared to control. In addition, 

the study demonstrated an elevated expression level of AFAP1-AS1 found both in CCA tissues and cell lines 

compared to matched adjacent non-tumoral tissue as well as normal biliary epithelial cells, respectively.   

High throughput methodologies have revealed an unexpectedly large number of abundant lncRNAs by far 

surpassing the miRNome. Furthermore, experimental evidence increasingly suggests the presence of 

network interactions (sponging) between lncRNA and microRNAs [43]. Transcriptomic profiling of 77 iCCAs 

and their adjacent non-malignant tissues was performed using lncRNA and mRNA microarrays [44]. This 

study defined more than 5100 lncRNAs and 6500 mRNAs as differentially expressed between paired tumor 

and adjacent noncancerous tissues. Further co-expression modules identified a total of 290 significant 

lncRNA-mRNA target gene pairs. Within this list, 6 gene pairs were previously reported to be associated 

with tumorigenesis in other cancers. Validation of these lncRNA-mRNA modules by qRT-PCR showed that 

four pairs (RNA42085-SULF1, RNA47504-KDM8, RNA58630-PCSK6 and RNA40057-CYP2D6) were positively 

correlated in iCCA tissues. As such, these pairs may have prognostic significance in CCA, i.e., patients with 

low levels of PCSK6 and CYP2D6 were found to have a reduced overall survival. Another recent analysis of 

the lncRNA landscape was performed in 34 iCCA patients, including their matched adjacent non-cancerous 

tissues and samples obtained from 4 healthy individuals [45]. Whereas, targeted qRT-PCR analyses were 

performed on all samples only 4 samples were used for lncRNA-mRNA expression profiles. In this study, a 



total of 2716 lncRNAs and 883 mRNAs were found to be differentially expressed, with 142 putative lncRNA-

mRNA pairs comprising co-modular signaling networks. Though current results are limited in scope, taken 

together, these studies reinforce the premise that the lncRNA landscape in CCA may contribute to disease 

pathogenesis and possibly drug resistance. Nevertheless, to attribute any concrete biological or clinical 

roles to lncRNAs or lncRNA-mRNA modules, larger and well characterized cohorts are needed.  

 

3. DNA METHYLATION IN CHOLANGIOCARCINOGENESIS 

 

3.1 DNA methylome dysregulation in cholangiocarcinoma 

CpG dinucleotide methylation is by far the most prevalent DNA modification in the human genome. DNA 

methylation involves the S-adenosyl methionine (SAM)-dependent transfer of a methyl group onto cytosine 

to generate 5-methylcytosine (5mC). This fundamental epigenetic process is actively written by DNA 

methyltransferase enzymes (DNMTs) and erased by Ten-eleven translocation methylcytosine dioxygenases 

(TETs). Genomic distribution of CpG sites is non-random and can be categorized as CpG-rich regions or CpG 

islands (CGIs), CGI borders (CpG shores and shelves, 2kb and 4kb up- and downstream of CGIs, respectively) 

or CpG-depleted (‘open sea’). These CpG-oriented domains co-localize with different regulatory elements 

to modulate transcription (promoters), facilitate long-range regulation (enhancers) and promote genomic 

stability (inter-genic elements, repetitive sequences). DNA methylation alterations are among the earliest 

molecular lesions to occur in tumorigenesis [46], displaying classic cancer hallmarks such as tumor 

suppressor promoter hypermethylation leading to transcriptional inactivation and, later in disease 

progression, global hypomethylation resulting in reactivation of endoparasitic sequences [47]. 

Characterization of the CCA methylome is still limited, though several classic epimutation mechanisms have 

been confirmed alongside some atypical features (Figure 3).  

Given the functional diversity of presence or absence of CpG methylation sites at different regulatory 

regions, it is expected that modes of DNA methylation alteration are also non-uniform in CCA. Using a CGI-

array (containing 237,000 probes), DNA hypomethylation events were found to be more common than 

hypermethylation (55.3% versus 44.7%) in 18 CCAs (mixed anatomical location), though hypermethylation 

events were more recurrent across patients (60% versus 40%) [11]. Suggestion of predominant 

hypomethylation conflicts with global 5mC quantification by LC-MS, which indicated comparable 5mC levels 

between a small sample set of CCA and surrounding normal [48]. This suggests the less CpG-rich regions of 

the genome, not covered by the CGI-array, may shift towards more methylated states or at least remain 

consistent in disease. Notably, 5-hydroxymethylcytosine (5hmC), the immediate downstream metabolite of 

5mC during DNA demethylation, is significantly downregulated in iCCA, and is an indicator of poor 

prognosis [49]. Similar inter-chromosomal epimutational trends were observed with 94.8% X chromosome 

alterations comprising loss of methylation events, in comparison to predominant autosome 

hypermethylation. Evidence for sub-chromosomal regional differences has also been demonstrated, 

epitomized by the distal 30 megabase (Mb) region of chromosome 1. This region is commonly deleted in 

different cancers and contains many tumor suppressor genes. Intriguingly, gene bodies within this region in 

CCA are largely hypomethylated, suggesting substantial (though mechanistically unclear) transcriptional 

dysregulation. 



Like other cancers, the most commonly described epimutations in CCA comprise promoter 

hypermethylation events of genes with tumor suppressor function. Binomial distribution of epigenome-

wide hypermethylation events certainly suggest that these epimutations are not random but directed in 

CCA [11]. Epigenomic analysis of 18 CCA patients uncovered 65 distinct WNT pathway genes to harbor 

epimutations, predominantly targeting promoter and alternative promoter sites. Follow-up 

immunohistochemistry in a larger independent sample set confirmed significant transcriptional 

consequences of these epigenetic alterations for the WNT pathway, though such genes could be rescued in 

vitro by treatment with hypomethylating agent, 5-aza-2’-deoxycytidine [11]. In contrast, DNA 

hypomethylation is less well characterized in CCA. IMP3, a fetal oncoprotein that is restricted to expression 

during development, was found to be reactivated in iCCA [50]. Such transcriptional activation was mediated 

by gross promoter hypomethylation, highly recurrent (high immunohistochemical staining in 82% of 

patients) and independently associated with multiple adverse prognostic parameters (tumor volume, 

grade, metastasis and overall survival). DNA methylome alterations are not restricted to protein-coding 

genes and frequently target miRs in CCA [33], as discussed in the ncRNA section this review. Many of the 

epimutations described in CCA are not disease-specific and are found in other types of gastrointestinal 

cancers (including gastric, pancreatic and colorectal) [51]. Certain epimutations synergize with co-occurring 

mutations as indicated by the adverse outcome of TP53 mutant CCA patients also presenting aberrant 

promoter hypermethylation of genes (DAPK, p14, ASC) involved in the mitochondrial apoptosis pathway 

[52]. Furthermore, certain loci are targeted by diverse perturbation mechanisms (mutational, epimutational 

or structural rearrangement) such as RUNX3 promoter hypermethylation as well as 1p36.1 loss (containing 

RUNX3) in CCA, indicating universal tumor advantage by any perturbatory mechanism [53]. Integrating 

target gene data from different mechanisms may provide a novel method to in the future identify `true´ 

disease drivers, as well as likely increase the percentage of patients that may benefit from subsequent 

pathway-directed therapy. 

Epigenetic modifications significantly govern differentiation states and, thus, cellular identity. It therefore 

logically follows that epimutations should target genes involved in differentiation during 

cholangiocarcinogenesis. Indeed, analysis of differentially methylated sites in CCA patient tissues has 

indicated an enrichment of epimutations in Polycomb Repressive Complex 2 (PRC2)-target genes [10]. One 

study remarkably found that 10% (97 out of 970) of aberrantly methylated CGIs mapped to HOX genes [54], 

further confirming preferential targeting of developmentally important loci. Focusing on the hepatobiliary 

system, SOX17 is a highly specific marker of biliary differentiation and has emerged as a potent tumor 

suppressor in CCA [55]. Using a morphogen-driven in vitro differentiation system (from induced pluripotent 

stem cells to hepatic progenitors to induced cholangiocytes), SOX17 was specifically identified as a factor 

induced exclusively in the progenitor to differentiated transition. In vitro knockdown of SOX17 in normal 

cholangiocytes was sufficient to induce loss of biliary marker (CK7, CK19) expression, as well as increase 

proliferation and cancer-associated gene expression profiles, whereas overexpression in CCA cell lines had 

inversely complimentary effects. In vivo, SOX17 overexpression effectively inhibited growth of pre-existing 

tumors and completely impaired tumor grafting when administered simultaneously. Mechanistically, 

WNT3A was elucidated to downregulate SOX17 in a DNMT1-dependent manner, mirroring SOX17 

downregulation by promoter methylation in CCA patients. These findings highlight a unique case of tumor 

suppressive function that is tightly linked to biliary differentiation and is modulated by epimutations in 

cancer. Given the diversity of hypothesized cells of origin in CCA [56], it is likely that other differentiation-



associated epimutations exist and that these may vary between CCA patients arising from different cellular 

origins.  

Akin to mutations, epimutations also appear to display temporal specificity. For example, promoter 

hypermethylation of p16 has been well described in CCA but has also been detected in 45.6% primary 

sclerosing cholangitis (PSC) samples, a well-known predisposing risk factor for development of CCA, without 

any signs of malignant onset [57]. Similarly, this locus was also found to be hypermethylated in liver 

intraductal papillary neoplasia (IPN), a precursor lesion to CCA, and inversely correlated with gene 

expression [58]. Hepatitis C virus (HCV) core protein is capable of upregulating DNMT1, leading to 

suppression of miR-124 and induction of oncogenic SMYD3, linking early infection with pro-oncogenic 

effects [59]. In a series of matched extrahepatic CCA, biliary intraepithelial neoplasia (BiIN) and normal 

cystic ducts, 4 cancer-associated promoter hypermethylation events (TMEFF2, HOXA1, NEUROG1, RUNX3) 

were detected in pre-malignant lesions and retained in tumors, suggesting clonality of these epimutations 

[60]. Repetitive element analysis in these samples also revealed progressive hypomethylation of SAT2 

repeats from normal to BiIN and from BiIN to CCA, but LINE1 hypomethylation exclusively occurred in BiIN 

to CCA transition. These findings begin to emphasize the early evolutionary dynamics of epimutations 

during cholangiocarcinogenesis. Little is known of these processes at the opposite end of the disease 

spectrum, however, during the transition from primary CCA to metastatic CCA. Promoter hypermethylation 

of ITGA4 has been tentatively suggested as such, given its methylation status in 100% patients with lymph 

node metastasis in a modest study population [61]. Further clarification of the epimutational contribution 

to CCA dissemination is required given metastasis is the actual cause of death in >90% of cancer patients. 

 

3.2 Origin(s) of DNA methylation alterations in cholangiocarcinoma 

It is evident, even given the limited EWAS in CCA, that the DNA methylome undergoes widespread 

dysregulation with concomitant transcriptome destabilization. What lacks clarification, however, is the 

molecular origin(s) of these epigenomic insults. Two plausible scenarios currently exist: genetic (mutation 

and structural) alterations of DNA methylome regulators or epigenetic alterations of such epigenetic 

regulators. 

Intrahepatic CCA is different among epithelial cancers in that approximately 10% of patients present 

tumors with mutations in Isocitrate Dehydrogenase (IDH) enzymes, IDH1 and IDH2 (otherwise mutated in 

tumors of mesenchymal and neuronal origins) [62]. Normally, IDH1 and IDH2 catalyze the conversion of 

isocitrate to α-ketoglutarate (α-KG) in the cytoplasm and mitochondria, respectively. When mutated, 

typically at hotspots R132 (IDH1) and R172 (IDH2), these enzymes acquire neomorphic activity and produce 

2-hydroxyglutarate (2-HG). This oncometabolite severely impairs the normal function of multiple pathways, 

including DNA demethylation as mediated by TET2 [63]. The effects of these mutations are so pronounced 

in patient tumors that The Cancer Genome Atlas (TCGA) cholangiocarcinoma network has identified IDH 

mutant tumors as an independent subtype of biliary cancer [4]. IDH mutants have higher 5mC levels and 

lower 5hmC levels, indicative of DNA demethylation pathway dysfunction. Consequently, IDH mutant 

tumors are grossly hypermethylated in comparison to wild type tumors with DNA methylation alterations 

significantly enriched at promoters, depleted at gene bodies and predominantly targeting other epigenetic 

regulators [62]. This is further corroborated by observations of genes involved in chromatin regulation 



being significantly downregulated in IDH mutant CCA [4], indicating a potential epigenomic ‘snowball 

effect’ between mutant IDH (functioning as an oncogene) and downregulated chromatin modifiers 

(functioning as tumor suppressors). Remarkably, however, IDH tumors did not on average have the 

greatest amount of DNA methylations alterations, re-emphasizing the unclear but significant contribution 

of other biomolecules outside DNA methylation pathways.  

Since DNA methylation profiles are actively modulated in response to exogenous stimuli, it is logical to 

assume inter-cellular signaling mechanisms may direct methylome alterations. Accordingly, the 

inflammatory mediator IL-6 (which is overexpressed in CCA patients) and its signaling axis came to 

attention due to its capacity to attenuate the hypomethylating and subsequent cellular effects of 5-aza-2’-

deoxycytidine treatment in vitro [64]. Epigenetic mechanisms sustain IL6 signaling in biliary tumors through 

promoter hypermethylation of its negative regulator SOCS3, thereby inhibiting the feedback loop [65]. 

Persistent IL-6 signaling in turn has pleiotropic effects including upregulation of cancer associated pathways 

[64], hypermethylation and downregulation of tumor suppressor genes [30], hypermethylation and 

downregulation of miRs (miR-148a, -152) [29] and, intriguingly, upregulation of DNMT1 [29, 30]. 

Subsequently, DNMT1 upregulation was shown to be due to IL6-associated downregulation of miRs that 

target the 3’-UTR of DNMT1 through an elusive mechanism [30]. This is another exemplar case of 

epigenetic snowball effects in CCA, whereby epigenetically-perpetuated IL-6 signaling (via SOCS3 

hypermethylation) downregulates epigenetic regulators (miRs) leading to upregulation of the epigenetic 

regulator DNMT1 and subsequent epigenetic modulation of tumor suppressor genes. Anecdotally, DICER 

also appears to be able to direct DNA methylation (specifically SFRP1 promoter hypermethylation) through 

translocation to the nucleus, though the specific mechanism behind this is unknown [66]. 

 

3.3 Translational potential of the cholangiocarcinoma DNA methylome 

Characterization of DNA methylation alterations in CCA to date has revealed that these events are 

recurrent and occur early during disease manifestation (including under predisposing conditions such as 

PSC and precursor lesions such as BiIN). These properties together indicate DNA methylation could be a 

useful biomarker tool for the early detection of CCA, arguably one of the biggest issues in the management 

of this disease given the low resectability rates (10-30%) of patients at time of diagnosis. In vitro, 

pharmacological rescue experiments using 5-aza-2’-deoxycytidine has led to the identification of a 

candidate 4-gene biomarker panel (SFRP1, DCLK1, CDO1, ZSCAN18) [67]. Targeted methylation analysis of 

these promoters correctly diagnosed tumor from normal controls with an impressive sensitivity of 87% and 

a specificity of 100%. These findings support the relevance of in vitro culture systems to understand 

molecular changes in patients, as well as highlight the predictive potential of epimutations in fresh frozen 

(FF) and formalin-fixed paraffin-embedded (FFPE) samples. Nonetheless, biopsies taken at biliary tract are 

highly invasive and non-invasive tests (liquid biopsies) would be preferred. While tissue-guided selection of 

a 2-gene panel (SHOX2, SEPT9) did correctly identify some tumors when quantified in plasma [68], its 

performance was significantly poorer than in tissue, suggesting that these two biomaterials are not directly 

comparable from a DNA methylation perspective. Rather, preliminary data suggests bile may be a more 

relevant biofluid to question. Biliary brush cytology is currently used to aid diagnosis of CCA but possesses 

several limitations, including difficulty in discriminating atypical reactive epithelia from true neoplasia, low 

cell recovery and cellular disintegration. By initially testing in tissue samples, Andersen and colleagues 



identified an optimal 4-gene panel (CDO1, CNRIP1, SEPT9, VIM) for targeted methylation analysis in bile 

samples [69]. To compare the diagnostic ability of this novel method against routine brush cytology, DNA 

methylation analysis achieved sensitivities of 73% and 91% in both test and validation cohorts, whereas 

cytology achieved 58% and 63% (specificity was comparable across diagnostic tools). As such, DNA 

methylation-based biomarkers may serve useful when the liquid biopsy is biofluid (e.g., bile) in close 

proximity to the hepatobiliary system.  

Similarly, DNA methylation alterations are attractive therapeutic targets since, unlike mutations, they are 

reversible. Debate still exists as to the existence of ‘epi-drivers’ [70], epigenetic alterations upon which 

tumors have developed a functional dependence and which function synonymous to classic mutational 

drivers. Nonetheless, traditional use of 5-aza-2’-deoxycytidine as a pharmacological rescue agent across 

many DNA methylation studies confirms the in vitro efficacy of such agents. Zebularine, a second-

generation nucleoside analog, competitively binds DNMTs, leading to an overall reduction in DNMT levels, 

genome hypomethylation and active induction of apoptosis in CCA [71]. DNMTs are overexpressed in CCA 

patients, though the extent to which is highly variable, indicating that a responder signature may be 

required to identify patient subgroups that could benefit from DNA hypomethylating agents [72]. However, 

the relatively poor solid tissue bioavailability of these compounds alongside peak cytosine deaminase (a 

rate limiter of demethylating agents) concentrations within the liver brings the therapeutic potential of 

these compounds into question. 

 

4. CHROMATIN DYNAMICS IN CHOLANGIOCARCINOGENESIS 

The fundamental unit of chromatin organization, the nucleosome, is comprised of a histone octameric 

complex around which 146bp DNA is spooled. Through a variety of histone post translational modifications 

(PTMs) added and removed by specialized epigenetic enzymes, nuclear compaction is regulated to direct 

gene expression profiles, facilitate DNA repair and promote genome stability. Analogous to ncRNA and DNA 

methylation epimutations, histone PTMs also become dysregulated in cancer. Of the many PTMs identified, 

only two biochemical modifications (histone acetylation, histone methylation) have been evaluated in CCA 

across a limited number of studies. 

Histone acetylation is written by histone acetyl transferase (HAT) enzymes and erased by histone 

deacetylase (HDAC) enzymes. Addition of acetyl groups onto the histone tail is a pro-euchromatin event, 

altering the tail charge from positive to neutral and promoting loosening of the nucleosomes, while 

removal results in nucleosome compaction (a pro-heterochromatin event). A variety of HDACs have been 

uncovered as overexpressed in CCA, including associations with adverse prognosis [73, 74]. Unsurprisingly, 

the effects of aberrant HDAC expression appear to be quite diverse. One of the characteristic features of 

malignant transformation of cholangiocytes involves the shortening and/or loss of ciliary appendages. This 

loss could be driven in vitro by forced overexpression of HDAC6 (also resulting in increased proliferation 

and anchorage-independent growth) and subsequently rescued in vivo through treatment with the HDAC 

inhibitor (HDACi) tubastatin [75]. SPRR2A, a gene involved in maintenance of epithelial barriers and wound 

repair, was found to be elevated in a single CCA cell line. This event resulted in deacetylation of P53 by 

p300 acetylation and increased HDAC1 expression, providing a histone-based link for attenuation of normal 

TP53 signaling [76]. HDAC4 was identified as overexpressed in CCA through downregulation of its negative 



regulator miR-29a facilitated by TGF-β1 signaling, resulting in increased metastatic characteristics in vitro 

[77]. A variety of compounds with HDACi activity, in particular Valproic Acid (VPA) and Vorinostat, have 

shown success in inhibiting CCA growth alone and in combination with chemotherapeutics in vitro [78, 79] 

and in vivo [80]. The downstream effects of HDACi treatment underpinning therapeutic responses remain 

poorly characterized, though it is in part mediated by TACC3 downregulation [74]. Nonetheless, in spite of 

such lacking molecular clarity, VPA appeared to display anti-neoplastic activity with manageable safety 

profiles in a small mixed cohort of pancreato-biliary patients (including CCA) [81] and Vorinostat in vivo 

effects appeared to be enhanced through delivery with nanoparticles [82]. A prospective phase 1b clinical 

trial (NCT02856568) will test the effects of treatment with Ricolinostat (HDAC6 inhibitor) in combination 

with standard gemcitabine and cisplatin in unresectable and metastatic CCA patients. 

Unlike histone acetylation, the effects of histone methylation are varied dependent on the target amino 

acid. EZH2, the only histone methylation enzyme analyzed in CCA to date, is a histone methyltransferase 

specifically catalyzing the methylation of histone 3 at lysine 27 (H3K27me) mark. Acting from within the 

Polycomb Repressive Complex 2 (PRC2), H3K27me is associated with transcriptional repression. EZH2 is 

overexpressed in CCA and associated with poor prognosis in both intrahepatic and extrahepatic CCA [83]. 

Inhibition of EZH2, either through siRNA-mediated knockdown or the compound DZNep, substantially 

impairs tumor cellular properties in vitro (hyper-proliferation, evasion of apoptosis, efficient cell cycling), 

synergizes with gemcitabine treatment [83, 84] and slows tumor growth in vivo, in part through rescue of 

RUNX3 expression [85]. 

Higher order regulation of nucleosomes and chromatin dynamics has additionally been implicated in CCA 

pathogenesis. Whole-exome and whole-genome sequencing has uncovered recurrent, frequently 

inactivating mutations in chromatin remodelers such as ARID1A, ARID1B, BAP1 and PBRM1 [86-88]. 

Chromatin modifiers are also targeted by alternative perturbation mechanisms, such as promoter 

hypermethylation and transcriptional silencing of ARID1A in IDH mutant tumors [4]. The functional 

implications of this impairment of chromatin remodeling in cancer cells require substantial clarification, 

though they do appear to act broadly as tumor suppressors (Figure 4). Indeed, functional testing through 

hepatocyte-targeted CRISPR screening in vivo confirmed positive selection of ARID1A mutations in cancer 

cells [89]. Specifically, ARID1A is a member of the SWI/SNF chromatin remodeling complex. ARID1A 

expression becomes lost in CCA, though its expression was still detected in pre-malignant lesions [90]. 

Similarly, another SWI/SNF complex member, PBRM1, displayed comparable patterns with normal 

expression in precursor lesions before becoming lost in CCA [91]. These findings indicate loss of expression 

of SWI/SNF members is a late event in cholangiocarcinogenesis and may underpin acquisition of the 

invasive cancer phenotype. 

 

5. EXPERIMENTAL DESIGN & THE FUTURE OF CCA EWAS 

Development of EWAS, particularly in oncology, has led to the retroactive identification of fundamental 

pitfalls in experimental approaches to identify true epimutational associations with a given phenotype [92, 

93]. It is perhaps, therefore, relatively opportunistic that CCA epigenomics remains in its infancy and that 

careful study design may prospectively maximize the likelihood for detection of true disease-associated 

epigenetic alterations. Such issues identified to date include careful patient stratification, tissue 



deconstruction of cell types and inference of association and/or causation (whether direct or reverse) 

(Figure 5). 

Common population variables have been shown to influence DNA methylation profiles (and plausibly may 

affect other epigenome modifications). Unlike genetic information, DNA methylation profiles are temporal 

and have been proven to flux over time. Though CCA is typically a disease associated with advanced age, 

efforts should be made to design study populations with matched age profiles.  Similarly, study populations 

should be controlled for ethnicity and disease etiology (e.g. HCV infection, alcohol exposure, fluke 

parasitism) as potential confounders, especially given the findings of alcohol- and HCV-associated DNA 

methylation signatures in hepatocellular carcinoma [94]. Gender distribution should also be considered. 

While sex chromosomes are typically excluded from DNA methylation analysis of mixed-sex disease (due to 

female X chromosome inactivation), many cancer-relevant genes are located on the X chromosome. Of 

note, Goeppert and colleagues identified gross DNA hypomethylation of the X chromosome in CCA that was 

demonstrated to be statistically independent of technical issues or sampling bias [11]. This suggests that 

sex chromosomes should not automatically be discredited in future CCA EWAS. Also, longitudinal sampling 

and epigenetic characterization should be pursued to characterize intra-individual epigenome evolution in 

response to disease progression and clinical intervention. 

Given the intimate link between epigenomes and cellular identity, perhaps the biggest challenge in EWAS 

to date is the stratification of epigenetic signals based on their cellular origins and identification of 

biologically-relevant comparison points. CCA epigenetic studies have typically, like most other cancers, 

employed surrounding normal as the control to tumor. This has three primary limitations: (1) the majority 

of ‘surrounding normal’ tissues are cirrhotic and, therefore, will not have truly normal epigenomes; (2) 

even if surrounding tissue appears histologically normal, extensive field cancerization mediated by 

epigenetic field defects are common; and (3) cell subpopulation composition between tumor and control 

may significantly differ leading to spurious epimutation results, in particular in comparison of iCCA with its 

predominantly hepatocyte-derived surrounding normal liver tissue. Potential solutions to some of these 

issues include the use of appropriate donor tissues comprising truly normal cholangiocytes (potentially 

introducing inter-individual variability as a confounder) or extensive laser microdissection of samples. 

Alternatively, cellular deconvolution strategies should be incorporated into CCA EWAS. While this may be 

computed purely using statistical algorithms (‘reference-free’) [95], future establishment of reference 

cholangiocyte epigenomes (‘reference-based’), alongside epigenomes of co-occurring cells (hepatocytes, 

fibroblasts, endothelial, immune), is highly warranted to accurately optimize these analyses to the 

hepatobiliary system. 

Definitively proving the causative or consequential role of high confidence epimutations is notoriously 

difficult. Estimates of the extent of DNA methylation alterations driven by SNPs range from 22-80% [93], 

indicating a need for tight mutational controls in epigenomic studies. Similarly, discriminating epigenetic-

driven transcriptomic changes from transcriptome-driven epigenetic changes supports matched epigenome 

and transcriptome profiling experiments. Such ‘cross-omics’ analysis was recently generated by the TCGA, 

highlighting IDH mutant-associated ARID1A promoter hypermethylation and subsequent transcriptional 

silencing [4]. Similar difficulties also exist at the phenotypic level in establishing whether epimutations are 

causative or a consequence of CCA. While certain epimutations have been tentatively proffered as ‘epi-

drivers’ in liver cancer purely on the basis of recurrence, these are insufficient to address the 



causation/consequence debate. Rather, functional epigenetics experiments involving the targeted 

modulation of epimutations followed by their rescue are required, technologies which are only in the early 

stages of development [96-98].  

 

6. CONCLUSION 

To date, CCA remains largely understudied from an epigenetics-perspective, likely due in part to its status 

as a rare orphan disease. Nonetheless, its unique epigenetically-orientated mutational profile indicates 

biliary tract malignancies may comprise ideal solid tumors to benefit from epigenetic biomarkers and, 

potentially, epigenome-targeted therapies enabled through continued CCA epigenome characterization. 

Many epigenetic modifications (for example, RNA modification or chromosome conformation states) have 

yet to be investigated and those which have (ncRNA, DNA methylation, histone PTMs, chromatin 

remodeling) require expansion and refinement to (epi)genome-wide scales, facilitated by universal EWAS 

guidelines and standards. Only then may epigenomic data be accurately allied with other genome readouts, 

heralding ‘integromics’-driven personalized medicine for CCA patients.  

 

FIGURE TEXT 

Figure 1. Genomic alterations of epigenetic regulators in CCA patients. Plot depicting the frequency of 

mutation and structural alterations to epigenetic regulators in TCGA biliary tract cancer tissue samples. 

Data were assessed from whole-exome sequencing experiments conducted by TCGA CHOL consortium. 

Categories of epigenetic enzymes were mined from EpiFactors database (http://epifactors.autosome.ru/).    

 

Figure 2. Schematic representation of pathways modulated by long non-coding RNAs in CCA cells. H19, 

HULC and MALAT1 are upregulated in CCA cells. LncRNA-miR sponging has been shown for these lncRNAs 

and miR-let-7a/let-7b, miR-372/miR-373 and miR-204, respectively. In this process, sponging has been 

demonstrated to increase the expression of inflammation–related genes, IL-6 and CXCR4, causing abnormal 

inflammatory state, which is involved in the pre-neoplastic onset and progression of the disease. Secondly, 

lncRNA (NEAT1) is upregulated in CCA cells when the level of its upstream regulator BAP1 is attenuated, 

thereby, enhancing sensitivity to gemcitabine treatment. Third, a high expression level of lncRNA AFAP1-

AS1 promotes growth and metastasis of CCA cells. Also, increased expression of the mitochondrial enzyme 

encoded by the gene CPS1 and its lncRNA (CPS1-IT1) have been shown to promote CCA proliferation. These 

data emphasize the potential of lncRNAs as diagnostic and prognostic markers as well as putative 

regulators of drug response in CCA.  

 

Figure 3. DNA methylome dysregulation during cholangiocyte transformation. The malignant 

transformation of normal cholangiocytes is accompanied by gross insult to the DNA methylome. This is 

mediated through diverse mechanisms which impede DNA methylation catalysis, including mutations (e.g. 

IDH1, IDH2), epigenetic alterations (e.g. DNMT-targeting miRs) and autocrine factors (e.g. elevated IL-6 



levels). The CCA methylome displays several hallmarks characteristic of cancer. These include (1) promoter 

DNA hypermethylation of genes with tumor suppressive functions, resulting in gene body hypomethylation 

and transcriptional silencing; (2) promoter hypomethylation of genes with oncogenic functions, leading to 

gene body hypermethylation and transcriptional activation; and (3) loss of methylation at intergenic 

regions, promoting reactivation of endoparasitic sequences and genomic instability. 5hmC: 5-

hydroxymethylcytosine. DNMT: DNA Methyltransferase. TSG: Tumor Suppressor Gene.  

 

Figure 4. SWI/SNF remodeling complex dysfunction in cholangiocarcinogenesis. Cholangiocarcinogenesis 

is a multi-step process involving the degeneration of normal bile ducts to hyper-proliferative pre-malignant 

lesions in situ (e.g. BiIN, IPN), followed by acquisition of an invasive phenotype to form primary 

adenocarcinoma. SWI/SNF is a multi-protein chromatin remodeling complex responsible for directed 

repositioning of nucleosomes, enabling efficient DNA repair, transcriptional homeostasis and genome 

stability. Recurrent mutations in SWI/SNF complex members, ARID1A and PBRM1, have been detected in 

CCA patients and have been specifically identified to occur after the development of carcinoma in situ.  The 

broad consequences of such late mutational events (likely DNA misrepair/damage, transcriptome 

dysregulation and genomic instability) remain to be characterized in CCA and, given their timing during 

disease pathogenesis, SWI/SNF dysfunction may contribute to manifestation of the invasive phenotype. 

BiIN: Biliary Intraepithelial Neoplasia. IPN: Intra-ductal Papillary Neoplasia. SWI/SNF: SWItch/Sucrose Non-

Fermentable. 

 

Figure 5: A rational framework for conducting EWAS in CCA. Expansion of epigenetic analyses from locus-

specific to (epi)genome-wide scales presents new challenges for experimental design. These include careful 

study population stratification to avoid potential confounding factors (age, gender, hepatitis infection, 

alcohol exposure, NAFLD/NASH), cellular deconvolution of epigenetic signals (using reference-based or 

reference-free statistical algorithms, microdissection) and cautious inference of causation or indirect 

causation (through matched ‘omic’ controls and functional editing of epimutations). Prospective 

consideration of such limitations is warranted in CCA to maximize likelihood for successful translation of 

findings into clinical trials. EWAS: Epigenome-Wide Association Study. NAFLD: Non-Alcoholic Fatty Liver 

Disease. NASH: Non-Alcoholic Steatohepatitis. 
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Table 1. MicroRNA expression in CCA, target genes and functions. 

miR expression Target(s) Role Ref. 

miR-21 ↑ RECK, PTEN, PTPN14 Migration/invasion, proliferation 
[18, 20, 

99]  

miR-421 ↑ FXR Migration/invasion, proliferation [100] 

miR-124 ↓ SMYD3 Migration/invasion [59] 

miR-138 ↓ RhoC Migration/invasion, proliferation [101] 

miR-144 ↓ LIS1 Migration/invasion, proliferation [102] 

miR-200b/c ↓ ROCK2; SUZ12 Migration/invasion; drug resistance [23] 

miR-376c ↓ GRB2 Migration [103] 

miR-605 ↓ PSMD10/Gankyrin Migration/invasion, apoptosis, inflammation [104] 

miR-494 ↓ CDK6 Proliferation [105] 

miR-26a/b ↑ 15-PGDH/HPGD Proliferation [106] 

miR-141 ↑ CLOCK Proliferation,  cyrcadian rhythm [18] 

miR-200b ↑ PTPN12 Proliferation, drug resistance [18] 

miR-26a ↑ GSK-3β Proliferation, colony formation [107] 

miR-31 ↑ RASA1 Proliferation, apoptosis resistance [108] 

miR-214 ↓ Twist EMT [27] 

miR-200c ↓ NCAM1 EMT [22] 

miR-34a ↓ SMAD4 EMT [24] 

miR-204 ↓ SNAI2, Bcl2 EMT [25, 26]  

miR-221 ↑-↓ PTEN; PIK3R1 EMT; drug resistance 
[28, 

109]  

miR-17-92 

cluster 
↑ PTEN EMT, migration/invasion, proliferation, cell cycle, inflammation [110] 

miR-let7a ↑ NF2 Drug resitance & survival [38] 

miR-320 ↓ Mcl-1 Drug resistance [26] 

miR-205 ↓ To be clarified Drug resistance [109] 

miR-148a ↓ DNMT1 Proliferation, DNA methylation, poor prognosis [30] 

miR-152 ↓ DNMT1 Proliferation, DNA methylation, poor prognosis [30] 
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miR-370 ↓ MAP3K8; WNT10B Proliferation, DNA methylation 
[29, 

111] 

miR-373 ↓ MBD2 Epigenetic changes in DNA methylation [31, 32] 

miR-29b ↓ Mcl-1; PIK3R1, MMP-2 Apoptosis; drug resistance 
[109, 

112]  

miR-25 ↑ TRIAL DR4 Apoptosis resistance [113] 

miR-410 ↓ XIAP Apoptosis resistance [34] 

miR-101 ↓ COX-2, VEGF Angiogenesis, tumor growth [114] 

miR-203 ↓  Clinical relevance (poor prognosis) [115] 

 

Abbreviations: RhoC, Ras homolog gene family, member C; LIS1, platelet-activating factor acetylhydrolase isoform 1b; NCAM1, 

neural cell adhesion molecule 1; 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; RASA1, RAS p21 GTPase activating protein 1; 

TRIAL DR4, TNF-realted apoptosis inducing ligand death receptor-4; ROCK2, Rho-associated protein kinase 2; XIAP, X-linked inhibitor 

of apoptosis protein; PTEN, Phosphatase and tensin homolog; RECK, Reversion-inducing-cysteine-rich protein with kazal motifs; 

PTPN14, Tyrosine-protein phosphatase non-receptor type 14; PTPN12, Tyrosine-protein phosphatase non-receptor type 12; SMAD4, 

SMAD family member 4; FXR, Farnesoid X receptor; SMYD3, SET and MYND domain-containing protein 3; SUZ12, Polycomb protein 

SUZ12; SNAI2, snail family transcriptional repressor 2; Bcl2, B-cell lymphoma 2; PIK3R1, Phosphatidylinositol 3-kinase regulatory 

subunit alpha; GRB2, Growth factor receptor-bound protein 2; PSMD10, 26S proteasome non-ATPase regulatory subunit 10; GSK-3β, 

Glycogen synthase kinase 3 beta; HPGD, Hydroxyprostaglandin dehydrogenase 15-(NAD); CLOCK, Circadian Locomotor Output 

Cycles Kaput; Mcl-1, Induced myeloid leukemia cell differentiation protein; MMP-2, Matrix metalloproteinase-2; COX-2, 

Prostaglandin-endoperoxide synthase 2; VEGF, Vascular endothelial growth factor; DNMT1, DNA (cytosine-5)-methyltransferase 1; 

MAP3K8, Mitogen-activated protein kinase kinase kinase 8; WNT10B, Wnt Family Member 10B; CDK6, Cell division protein kinase 6; 

MBD2, Methyl-CpG-binding domain protein 2; NF2, Neurofibromin 2. 
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