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Introduction
Attention Deficit Hyperactivity Disorder (ADHD) has a 

prevalence of 4-7 % in children [1–3]. Methylphenidate (MPH) is 
the first-line pharmacological treatment for the core symptoms of 
inattention, hyperactivity and impulsivity, and the use in children 
has increased rapidly in recent years [4–7]. Response rate to MPH 
is about 70-77 % [8,9] but with a marked individual variation in the 
observed effect and tolerability [8,10]. This response variation may 
relate to individual differences in the MPH metabolism. Varying 
drug metabolism can lead to differential beneficial effects and side 
effect profiles, resulting in diverse prescription patterns. Hence, there 
is a need for tools to assist the evaluation of individual treatment 
strategies.

Pharmacogenetic approaches can assist in the prediction of 
MPH drug response as already used in other areas of medicine [11]. 
Investigations of genetic factors that affect drug metabolism may help 
determine relevant factors for individual tailoring of medications 
[12]. MPH is primarily metabolized by isozyme carboxylesterase 1 
(CES1) that converts MPH to the inactive metabolite, ritalinic acid, 
in the liver [13]. The gene encoding CES1 is located on chromosome 
16 and harbor variations that influence the MPH response [14–16]. 
Several variations in the CES1 gene with a potential impact on drug 
metabolism or drug response have been reported including several 
Single Nucleotide Polymorphisms (SNPs) [17–21]. Bruxel et al. 
found a possible association between the CES1 variation -75 T>G 
(rs3815583), a polymorphism in the 5’ untranslated region of this 
gene, and severity of appetite reduction in MPH treated children 
with ADHD. The G allele carriers had a trend towards a higher risk 
of appetite reduction, and a significant elevated risk for worsening of 
reduced appetite over time, compared to T allele homozygotes [22]. 
This indicates that the gene variation -75 T>G in CES1 affects the 
functionality of CES1 to a degree that influences the clinical response. 

The adverse drug reactions associated with MPH treatment are 
usually mild to moderate and occur mainly within the first months 
of treatment and most often in the form of appetite reduction, weight 
loss, headache, gastrointestinal pain, insomnia and irritability [23–
26]. The severity of adverse reactions might reflect the dosing, since 
some adverse reactions, such as decreased appetite, are more common 
at higher dose levels [8,27]. Thus, the measure of appetite reduction 
may serve as an early indicator of reduced metabolism. However, this 
parameter is primarily evaluated subjectively by the child (and/or 

parents) whereas an associated parameter, namely weight loss, is easy 
to quantify and may be a more objective indicator.

The aim of this study was to investigate the association between 
the -75 T>G polymorphism in CES1 and the clinical response in 
children and adolescents with ADHD who are treated with MPH. 
Primarily, we aimed at testing whether the association between the 
-75 T>G polymorphism and appetite reduction could be reproduced 
when using weight loss as a proxy for appetite reduction. We 
hypothesized that the CES1 polymorphism would be associated 
with differential clinical response to MPH; specifically that the CES1 
polymorphism G-carriers, due to a reduced MPH metabolism, 
would exhibit a greater weight loss compared to TT-homozygotes 
during the first 3 months of MPH treatment. This study was part of 
the INDICES programme (INDIvidualized drug therapy based on 
pharmacogenomics: focus on CES1) [28], which aims at developing 
strategies for individualized treatment with MPH and Angiotensin-
Converting-Enzyme (ACE) inhibitors.

Materials and Methods
Design

This was a retrospective longitudinal study of ADHD patients 
from the time of MPH treatment onset to end of treatment. Herein, 
we report data from the first 3 months of MPH treatment in a 
naturalistic clinical setting. We analyzed the association between 
a CES1 polymorphism and longitudinal clinical data based on 
retrospective analysis of medical records, from first to last recorded 
visit at the clinic. The primary clinical outcome variable was weight 
change during the first 3 months of MPH treatment. This time-period 
was chosen because weight change usually is seen in the first months 
of treatment [25,26]. The secondary outcomes were the proportions of 
weight loss and appetite reduction, adherence, and efficacy quantified 
by change in Clinical Global Impression (CGI) scores [29]. 

The study was approved by the local committees of bioethics 
protocol H-B-2009-026. Parents or legal caretakers provided written 
informed consent.

Subjects

Participants eligible for this study, were children and adolescents 
diagnosed with ADHD according to ICD-10 [30] and treated with 
MPH. The participants were outpatients, recruited at the Copenhagen 
University Hospital, Child and Adolescent Mental Health Center, 
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Department Bispebjerg, Mental Health Services Capital Region 
of Denmark. The participants were recruited through the health 
professional staff at the Child and Adolescent Mental Health Center 
whom through their work had knowledge of eligible subjects.

Inclusion criteria

1. Children aged 3-18 years attending the ADHD clinic, both sexes, 
with a confirmed ICD-10 diagnosis of either F90.0 Disturbance 
of activity and attention, F90.1 Hyperkinetic conduct disorder, 
F90.8 Other hyperkinetic disorders, F90.9 Hyperkinetic 
disorder, unspecified or F98.8 Other specified behavioral and 
emotional disorders (subtype attention deficit disorder without 
hyperactivity).

2. Initiated MPH treatment and continued for at least 3 months. 

3. Naïve of other pharmacologic ADHD treatments.

Exclusion criteria

1. Lack of informed consent

2. Quality of DNA samples insufficient

Diagnostic and clinical assessment

The observation period for each participant was the entire 
treatment period from their first visit to their last recorded visit at 
the clinic. The data were retrieved retrospectively from the medical 
records at three time points: 1) at baseline just before MPH treatment 
was initiated; 2) after 3 months of MPH treatment; and 3) at endpoint, 
which is end of observation period for the individual patient. 
The following data were retrieved: age; gender; country of origin; 
diagnoses; weight; appetite; height; MPH dosages; dates of treatment 
start/end; additional medications; and changes in medication regime. 
For each patient, the average daily dose of MPH was calculated (mg/
kg/day) at all available time points. Explicit clinical data from every 
patient in the medical record were reviewed to assess the child’s 
beneficial effects of MPH treatment and the occurrence of adverse 
drug reactions. In addition, we reviewed all scores on standardized 

Table 1: Demographic and clinical baseline characteristics of the sample according to genotype.

All G-carriers TT-homozygotes
Pa

N=74 N=26 N=48

Male, n (%) 57 (77.0) 19 (73.1) 38 (79.2)
0.55

Female, n (%) 17 (23.0) 7 (26.9) 10 (20.8)

Age, years, mean (SD) (range) 8.6 (3.1)
(3.8-15.8)

8.3 (3.3)
(3.8-15.4)

8.8 (3.1)
(4.3-15.8) 0.54

Origin

Origin, Danish,n (%) 56 (75.7) 16 (61.5) 40 (83.3)
0.04*

Origin, otherb, n (%) 18 (24.3) 10 (38.5) 8 (16.7)

ADHD type (ICD-10)

Disturbance of activity and attention (F90.0), n (%) 61 (82.4) 24 (92.3) 37 (77.1)

0.53
Hyperkinetic conduct disorder (F90.1), n (%) 4 (5.4) 1 (3.8) 3 (6.3)

Other hyperkinetic disorders (F90.8), n (%) 2 (2.7) 0 (0.0) 2 (4.2)

Other specified or unspecified behavioral and emotional disorders 
(F98.8/F98.9), n (%) 7 (9.5) 1 (3.8) 6 (12.5)

Comorbidity 

No comorbid condition, n (%) 22 (29.7) 7 (26.9) 15 (31.3)

0.43

+1 comorbid condition, n (%) 27 (36.5) 12 (46.2) 15 (31.3)

+2 comorbid conditions, n (%) 20 (27.0) 7 (26.9) 13 (27.1)

+3 comorbid conditions, n (%) 4 (5.4) 0 (0) 4 (8.3)

+4 comorbid conditions, n (%) 1 (1.4) 0 (0) 1 (2.1)

Comorbid Conditions (ICD-10) 

Behavioral and emotional disorders with onset usually occurring in childhood 
and adolescence (F90-F98), n (%) 11 (14.9) 1 (3.8) 10 (20.8) 0.08

Disorders of psychological development (F80-F89), n (%) 38 (51.4) 15 (57.7) 23 (47.9) 0.48

Mental retardation (F70-F79), n (%) 6 (8.1) 4 (15.4) 2 (4.2) 0.18

Other and unspecified symptoms and signs involving cognitive functions 
and awareness (R41.8), n (%) 10 (13.5) 2 (7.7) 8 (16.7) 0.48

Neurotic, stress-related and somatoform disorders (F40-F48), n (%) 3 (4.1) 3 (11.5) 0 (0.0) 0.02*

aCalculated by t-test or Wilcoxon Mann Whitney U-test (quantitative variables). χ2 test or Fisher’s exact test (categorical variables). *Significance level set at P<0.05
bOther: Europe (Scotland, UK, Germany, Estonia, Macedonia and Turkey), Asia (Arabia, Iran, Lebanon, India and China), Africa (Somalia, Uganda and South Africa), 
South America (Argentina, Uruguay and Ecuador)
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scales of adverse drug reactions and on Attention Deficit Hyperactivity 
Disorder Rating Scale (ADHD-RS) schemes [31] when available in 
the medical records. If schemes were not available, other relevant data 
(i.e. assessments by physician or nurse) relating to treatment were 
used.

In order to systematically evaluate psychiatric status and 
MPH response in every case, a specialist in child- and adolescent 
psychiatry (AKP), who was blinded to patient genotype, reviewed 
all patient records. Each patient assessment was based on all 
available information, i.e. clinical descriptions; Global Assessment 
of Psychosocial Disability rating (GAPD) [32]; tests of variables 
of attention scores [33]; ADHD-RS schemes (parent and school 
versions) when available; and adverse drug reaction scores on a 
clinical scale adapted from Barkley’s Side Effect Rating Scale [34]. 
The global review of every patient’s illness severity was rated on the 
CGI severity score (CGI-S). The patients were retrospectively rated at 
baseline and after 3 months of treatment on a scale of 1 (normal, not 
at all ill) to 7 (extremely ill). At 3 months the CGI improvement score 
(CGI-I) was used to rate illness improvement during treatment on a 
scale from 1 (very much improved) to 7 (very much worse). 

Collection of samples and isolation of DNA

Samples of saliva were collected from the patients using the 
Oragene DNA (OG-250) or Oragene DNA (OG-500) kits from DNA 
Genotek Inc., Kanata, Canada. Genomic DNA was isolated from the 
saliva samples using the guidelines of the manufacturer of these kits.

Genotyping

A CES1 fragment of 2.6 kb containing the -75 T>G polymorphism 
was amplified by Polymerase Chain Reaction (PCR) using primers 
with the sequences ACTATGGGGGGACGGAGTTCA (forward) 
and GACTGTGAGGGTACATACGG  (reverse), respectively. The 
amplified fragment was purified by vacuum filtration through a silica 
membrane (Qiaquick 96, QIAGEN GmbH, Hilden, Germany) and 
sequenced by  the Sanger method (Bjerre and Rasmussen, unpublished). 
Determination of the genotype of the -75 T>G polymorphism was 
done by visual inspection of the electropherograms.

Statistical analyses

We used SPSS version 18.0 (SPSS, Chicago, IL, USA) software. 
The three patient genotypes were grouped into TT-homozygotes and 
G-carriers (TG-heterozygotes and GG-homozygotes). We assessed 
whether the genotype proportions corresponded to those expected 
under Hardy-Weinberg conditions using chi-squared test. Student’s 

Table 2: Treatment related effects according to genotype.

All G-carriers TT-homozygotes Pa

N=74 N=26 N=48
Weight, kg, mean (SD)

Baseline 35.3 (15.8) 35.3 (16.0) 35.3 (15.9) 0.99

3 monthsb 35.3 (15.9) 35.0 (16.1) 35.5 (16.0) 0.90

Change extrapolated (n=74)b

Change non-extrapolated (n=44)
+0.004 (0.8)
-0.030 (1.0)

-0.279 (0.8)
-0.423 (1.2)

+0.157 (0.8)
+0.135 (0.8)

0.03*
0.10

Height, cm, mean (SD)

Baseline 136.4 (18.1) 135.4 (18.6) 137.0 (18.0) 0.73

3 monthsb 137.1 (18.0) 137.0 (19.1) 137.8 (18.0) 0.87

Body Mass Index, kg/m², mean (SD)

Baseline 18.1 (4.0) 18.4 (4.1) 17.9 (3.9) 0.63

3 monthsb 18.0 (4.8) 18.0 (3.7) 17.8 (4.0) 0.51

Clinical Global Impression score, mean (SD)

CGI-S baseline 5.0 (0.9) 5.0 (1.0) 5.0 (0.8) 0.67

CGI-I (at 3 months) 2.2 (0.6) 2.3 (0.7) 2.2 (0.5) 0.24

CGI-S follow-up (at 3 months) 3.7 (0.9) 3.8 (0.9) 3.6 (0.8) 0.78

CGI-S mean change (Baseline to 3 months) 1.3 (0.7) 1.2 (0.7) 1.4 (0.7) 0.43

MPH treatment 

Mean MPH dose, baselinec, mg/kg, mean (SD) 0.34 (0.2) 0.37 (0.3) 0.32 (0.2) 0.41

Mean MPH dose, 3 monthsc, mg/kg, mean (SD) 0.66 (0.2) 0.73 (0.3) 0.63 (0.2) 0.11

MPH Treatment period, years, mean (SD) 3.5 (2.2) 3.5 (2.4) 3.5 (2.2) 0.98

Lack of adherence to treatment, 3 months, n (%) 3 (4.1) 2 (7.7) 1 (2.1) 0.24

Concomitant medication, n (%) 25 (33.8) 7 (26.9) 18 (37.5) 0.36

Appetite reduction, n (%) 21 (28.4) 9 (34.6) 12 (25) 0.43

aStatistics by t-test or Wilcoxon Mann Whitney U-test (quantitative variables). χ2 test or Fisher’s exact test (categorical variables). Weight change statistics by ANCOVA
b30 extrapolated data points
CPatients with adherence problems are not included in this calculation (No. of excluded patients: TT-homozygotes=7, G-carriers=6)
MPH=Methylphenidate. CGI-I=Clinical global impression – improvement; CGI-S=Clinical global impression - severity
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t-test and Wilcoxon-Mann Whitney U-test were used for analysis 
of continuous variables with and without normal distribution, 
respectively. The chi-squared test or Fisher’s exact test was used for 
categorical variables. To test our hypothesis of more pronounced 
weight loss in G-carriers, we performed an ANCOVA, with weight 
change from baseline to 3 months being the dependent variable, 
whereas genotype (G-carriers or TT-homozygotes) was a fixed factor; 
and age, weight at baseline and MPH dose at 3 months served as 
covariates. In addition, we performed a linear regression analysis to 
investigate the effect of relevant parameters on the primary outcome 
in the total sample. In case of missing data on height and weight; we 
extrapolated values based on available data on the average weight 
and height change of the cohort of G-carriers and TT-homozygotes 
respectively. A two-tailed p-value <0.05 was considered statistically 
significant.

Results
Sample characteristics

Between January 2011 and March 2012, 76 subjects gave consent to 
participate. The DNA quality of the saliva samples in two participants 
was not satisfactory and did not support amplification of the desired 
fragment of CES1 thus excluding sequencing. Hence, 74 participants 
were included in this analysis. The genotype frequencies for the TT, 
TG and GG genotype amounted to 0.62; 0.32; and 0.06 respectively. 
This genotype distribution did not deviate from that expected under 
conditions of Hardy-Weinberg equilibrium (P=0.63). The frequency 
of the G allele amounted to 0.22. There were n=26 (35.1%) G-carriers 
(GG and TG genotypes) and n=48 (64.9%) TT-homozygotes.

Demographic and clinical characteristics were not different 
between the G-carriers and TT-homozygotes, with the exception 
of more G-carriers with a non-Danish ethnic origin compared 
to the TT-homozygotes (P=0.04) and more G-carriers than TT-
homozygotes with a co-morbid diagnosis of neurotic, stress-related or 
somatoform disorder (Table 1). The observation period ranged from 
0.24 months to 10.3 years. Some subjects did not have a consultation 
at the exact 3 months follow-up date therefore the first new record 
of weight and height around the 3 months follow-up date was used. 
The observation period had a mean (SD) of 3.5 (2.1) years with no 

significant differences between groups. In our further analysis of data, 
we focused on the initial 3 months of treatment.

Treatment characteristics and effects

The treating physicians had decided titration and adjustment of 
MPH dosing over time based on clinical evaluations of benefits and 
harms of MPH treatment in the individual patient. Mean baseline 
and follow-up doses of MPH and discontinuation rates did not differ 
significantly between groups (Table 2).The age group of the included 
children was broad (3-18 years) and we therefore tested mean dose 
(mg/kg) at baseline between two age-groups (3-9 years, children) 
and (10-18 years, adolecents). However, no significant difference in 
dose between the two age groups was observed (p=0.72). Adherence 
at 3 months in the two age groups was also tested, however no 
significant difference was found (p=0.80). Of  74 patients, 25 received 
concomitant medication other than MPH at their latest visit: 
melatonin (n=19), bronchodilators (n=3) and antipsychotics (n=3) 
with no significant differences between groups. The treatment related 
effects are shown in Table 2. 

As a group, the patients pre-treatment illness severity were on 
average rated as “markedly ill” on the CGI-S (mean score 5.0) at 
baseline and “much improved” on the CGI-I (mean score 2.2) after 
3 months of treatment, also reflected in a significantly reduced mean 
CGI-S score at 3 months of 3.7 (t=16.26, p<0.001), i.e. mildly to 
moderately ill. There were no significant differences at any time point 
between groups on these measures.

Twenty-one out of 74 patients indicated reduction of appetite, 
with an overrepresentation among G-carriers (34.6%) compared 
to TT-homozygotes (25%), although not statistically significant. At 
the 3 month time point, 13 (50%) participants in G-carriers and 17 
(35%) in TT-homozygotes lacked registrations on height and/or 
weight in their medical record. These data were extrapolated based 
on the average registered weight and height change at 3 months in the 
remaining G-carriers and TT-homozygotes (non-extrapolated values, 
mean (SD) change weight/height: G-carriers: -0.42 (1.2) kg/+ 1.40 
(2.1) cm; TT-homozygotes: +0.14 (1.2) kg /+0.75 (1.0) cm). On non-
extrapolated data, groups did not differ with respect to the growth 
parameters weight, height and BMI at baseline and after 3 months. 
The mean change in height did not differ significantly between the 
groups (p=0.21). As shown in Figure 1, G-carriers had lost more 
weight than TT-homozygotes after 3 months of treatment (based on 
extrapolated data, n=74). In our ANCOVA, genotype was statistically 
associated with weight change at 3 months (F=5.036, p=0.028). 
None of the other variables included in the model were significantly 
associated with weight change. When repeating the ANCOVA in the 
non-extrapolated data (n=44) the finding was no longer significant 
(F=1.04, p=0.31). The incidence of patients with weight loss registered 
on extrapolated data was significantly higher (88%) in the G-carriers 
compared to the TT-homozygotes (31%) (Chi square=22.01, 
p<0.001). When repeated on the non-extrapolated data, the incidence 
of weight loss was still larger in the G-carriers (77%) than the TT-
homozygotes (48%), but not significantly (chi square=3.04, p=0.08). 
We also tested whether mean dose between outcome-groups (weight-
loss vs no weight-loss) was significantly different. The mean dose at 3 
months (subjects with adherence problems not included) registered 
on extrapolated data was not significantly different between subjects 
with and without weight-loss (P=0.23). When repeated on non-

Figure 1: Mean weight change (in kg) from baseline to 3 months 
(extrapolated data) according to genotype.
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extrapolated data, the mean dose was still not significant different 
(p=0.11). Mean BMI decreased (extrapolated data) significantly 
more in the G-carriers than in the TT-homozygotes (-1.12kg/m2 and 
-0.12kg/m2 respectively) (t=2.869 p=0.006).  

Due to the difference between genotype-groups concerning 
ethnicity, we performed a sensitivity analysis and repeated the 
ANCOVA in the group of patients with Danish origin (n=56) and 
in the group of patients of non-Danish origin (n=18). In neither of 
these two subgroup analyses, the effect of genotype on weight change 
was significant. When performing a t-test comparing Danish and 
non-Danish participants, there was a significant difference in weight 
change, with patients of Danish origin gaining a mean (SD) of 0.13 
(0.8) kg, while patients of non-Danish origin lost a mean of 0.40 
(0.7) kg during the 3 months treatment period (t=2.54, p=0.013). 
In the group of Danish origins, mean (SD) weight change was -0.09 
kg (0.85) in G-carriers (n=16) and +0.22 (0.79) in TT-homozygotes 
(n=40), a non-significant finding (t=1.316, p=0.194). In the group of 
non-Danish origins, mean (SD) weight change was -0.58 kg (0.69) 
in G-carriers (n=10) and -0.18 kg (0.59) in TT-homozygotes (n=8), 
a non-significant finding (t=1.361, p=0.207). When performing a 
regression analysis of the whole sample (n=74) with weight change 
as the dependent variable, genotype independently had a significant 
regression coefficient (beta=-259, t=-2.280, p=0.026), while origin 
did not (beta=-208, t=-1.801, p=0.076). When both independent 
variables were included in the same regression analysis, none of the 
coefficients were significant (p=0.66; p=0.210 respectively).

Discussion
We examined the association between the CES1 polymorphism 

-75 T>G and response to MPH in the first 3 months of treatment in 
74 children and adolescents with ADHD aged 4-16 years. We tested 
the hypothesis that G-carriers would exhibit more severe side effects 
expressed as a greater weight loss compared to TT-homozygotes. Our 
main finding was an average weight loss of 0.280 kg in G-carriers, 
while TT-homozygotes on average gained 0.157 kg, thus confirming 
our hypothesis of an association of the CES1 polymorphism and 
an increased risk of side effects to MPH, which presumably reflects 
a decreased MPH metabolism by CES1 [16]. This decreased 
metabolism could result from a lower level of expression of the 
enzyme due to an effect of the G allele on the process of translation 
initiation. Alternatively, this allele may not be causal in it but is in 
linkage disequilibrium with a variant in CES1 that influences the level 
of transcription or translation of the gene.

The clinical characteristics of this initially ADHD medication-
naïve sample resembled the typical description of children and 
adolescents with ADHD [35]. Kaplan et al. found similar CGI-S scores 
in children with ADHD as in our study, indicating that our sample is 
representative with respect to illness severity [36]. The mean MPH 
dose at 3 months of 0.66 mg/kg/day is in line with that of other reports 
[37]. We identified a similar prevalence of appetite reduction (28%) 
in our sample, in accordance with several studies [38–40], including 
a randomized, double-blind, placebo-controlled study where more 
than 30% of the patients treated with MPH experienced decreased 
appetite [41]. Moreover, we found the expected distribution of the 
investigated genotype frequencies with 26 (35%) patients carrying 
the TG or GG genotype, while 48 (65%) carried the TT genotype at 
position -75 in the 5’ untranslated region of CES1. The two groups 

were demographically and clinically similar, except for a higher 
prevalence of non-Danish origin among the G-carriers.

Our study results extend the findings of the study by Bruxel et al. 
[22] with equivalent frequencies of the G-allele, that demonstrated 
an association between the -75 T>G polymorphism and appetite 
reduction. They found an excess of appetite reduction in the 
G-carriers vs. the TT-homozygotes (34% vs 13%, Odds Ratio (OR) 
= 3.47, confidence interval (CI=1.4-8.8) and we reproduced this 
finding, although not reaching significance (35% vs 25%, OR=1.59, 
CI=0.6-4.5). However, in our sample, the association was significantly 
expressed as a failure to gain or sustain average bodyweight in the 
group of G-carriers. The finding is underlined by our finding of a 
significantly higher number of patients in G-carriers with weight 
loss and a larger mean BMI decrease. In addition, although not 
statistically significant, we found less adherence to treatment in the 
G-carriers, which might indicate less tolerance to MPH treatment. To 
our knowledge, no further studies have investigated the association 
between the -75 T>G polymorphism and MPH drug response. 
However, others have examined the role of other CES1 gene 
variations in MPH treatment. Johnson et al. investigated seven SNPs 
in the CES1 gene, and found no associations to clinical beneficial 
response or dose prescribed, but a significant association between two 
CES1 SNP markers and occurrence of sadness [17]. This supports the 
association of CES1 variations to another known side effect of MPH. 
The findings of significant associations between several variations 
of the CES1 gene and side effects to MPH may pave the way for an 
improved understanding of the genetics underlying the clinical 
response induced by MPH.

Strengths and Limitations
The retrospective design of this study was a limitation to the 

quality of our clinical data and did not allow for MPH plasma 
monitoring, which could have revealed more insight to variations in 
drug metabolism. However, concrete measurable observations such 
as MPH doses; height and weight are easily sampled from medical 
records, and retrospective CGI ratings of medical charts has been 
used in other studies on child- and adolescent psychiatric samples 
[39]. We chose to use weight change as a proxy for appetite reduction 
in order to rely on an objective parameter for our primary outcome, 
which we expect to have better validity than retrospective reports on 
subjective measures of adverse events as registered in medical records. 
Moreover, a single trained specialist, blinded for case genotype, 
evaluated all medical records with CGI, which is a valid clinical 
outcome measure across diagnostic groupings [42]. This limits the 
effects of variations in the clinical evaluation of treatment efficacy 
that may occur when carried out by different clinicians. The use of 
CGI enabled comparisons across studies. Although this study design 
has its limitations, it also represents a unique strength because the 
naturalistic setting allows us to describe the treatment of unselected 
subjects meeting research criteria for ADHD over a longer period.

The amount of missing data on our primary outcome measure 
may limit the validity of our findings. The commonly used method of 
Last Observation Carried Forward did not seem attractive given only 
two data points of major interest. We therefore used extrapolations 
based on average values from the sampled data sets without missing 
data. When reanalyzing findings from the extrapolated data sets 
in the non-extrapolated data sets, the direction of the results were 
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reproduced, although not significantly, probably due to lack of 
power. We acknowledge that the extrapolation method used has its 
limitations however it can give a hint of a direction. Another limitation 
was the small sample size. Although we had sufficient statistical power 
to identify a significant effect on our primary outcome, we may lack 
power to identify other relevant possible differences in treatment 
response, and the small sample size limits the possibility of further 
exploring the implications of ethnic origin as a possible confounder 
of the findings. The number of subjects in this present study did not 
provide enough power to investigate effects of the subgroup of the 
GG-homozygote genotype, due to the low frequency. Finally, our 
study design was not adequately powered to explore the association 
of MPH dose-dependent adverse events that has been shown in other 
studies [8,27].  

Relevance/Implication
Our results indicate that genotype assisted individualized MPH 

treatment could support future clinical practice in the treatment of 
ADHD. However, the results need to be replicated prospectively in 
a larger scale.
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