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1 Preface 

IEA Bioenergy aims at supporting a development where bioenergy contributes substantially in the 

future global renewable energy mix. Several working groups (´Tasks´) under IEA Bioenergy have 

been established to help achieve this overall goal of IEA Bioenergy by providing a scientific basis 

for such development. Each Task addresses different links in or aspects of the bioenergy supply 

chain.  

When addressing questions related to technical feasibility, economic profitability and social and 

environmental sustainability, it is important to address these issues along the whole supply chain. 

An inter-Task project has been commissioned by IEA Bioenergy to facilitate collaboration among 

experts from multiple disciplines represented in the various Tasks in order to facilitate further 

mobilization of sustainable bioenergy supply chains in different operational environments. The 

project should also inform the debate around bioenergy feedstocks and end-uses, and make 

suggestions to improve governance of biomass supply chains.  

Five cases were selected for this purpose. This report addresses the case study that related to the 

use of agricultural crop residues as raw material for bioenergy and biorefineries that produce both 

high value products and energy. The study is a collaboration between Task 37 (Energy from 

Biogas), Task 38 (Climate Change Effects of Biomass and Bioenergy Systems), Task 39 

(Commercializing Conventional and Advanced Liquid Biofuels from Biomass), Task 40 (Sustainable 

International Bioenergy Trade), Task 42 (Biorefining) and Task 43 (Biomass Feedstocks for Energy 

Markets).  
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2 Summary 

Agricultural crop residues are relevant types of biomass for bioenergy and other bioproducts as 

they are by-products of agricultural crop production, and do not require additional land for 

harvest. Estimates of the potential available for bioenergy and other uses vary significantly. While 

the theoretical potential is high, the economic availability can vary greatly. It depends on 

numerous factors including the yield and site specific parameters, the type of crop rotation, slope 

and soil type, length of the harvest window, the presence of a local processor or aggregator, and 

whether the agriculture producer sees value in collecting a portion of the crop residue. Several 

product-based sustainability schemes were reviewed, namely Global Bioenergy Partnership 

(GBEP), ISO 13065, PROSUITE, LEEAFF and a new scheme developed by U.S. DOE. While these 

schemes all address the three pillars of sustainability - social, environmental and economic – they 

vary in terms of the level of application and data requirements. Dale et al. (2015) propose a 

process for clearly defining the goals of the assessment to select the most appropriate tool.  

National cases of supply chains were assessed more closely. A sustainability assessment using the 

GBEP framework was made for Denmark. Ten sustainability indicators were evaluated and it was 

found that the use of agricultural residues for energy contributes to GHG emission reductions, to 

diversification of the energy supply, to income generation in rural areas. The most critical issue 

from an environmental point of view is the risk of depleting soil organic matter through continued 

removal of crop residues. The area affected by crop residue harvest has increased since 2000 

putting increased pressure on carbon stored in agricultural soils. Business economic viability of the 

Danish supply chains are ensured by a strong political focus and mandated use of crop residues 

for energy combined with economic incentives as tax exemption and feed in tariffs.  

The Danish case also evaluated the applicability GBEP framework and highlighted a number of 

issues that could be discussed and may be further developed. The framework is data intensive, 

unambiguous attribution of impacts to processes and supply chains is difficult, and boundary 

crossing data and imported feedstock is not covered adequately. The GBEP framework is, 

however, not special in that respect as these issues pertain to most sustainability assessment 

frameworks. 

Research was done to define categories for indicators of environmental and socioeconomic 

sustainability for the U.S. Here focus is on the use of crop residues for liquid fuels. Targets set by 

the Renewables Fuel Standard 2 (RFS2) drives research and industry development toward 

lignocellulosic ethanol production. The most critical barriers for the continuous expansion of the 

U.S. cellulosic biofuel industry are related to economic viability and project finance. The industry is 

considered as a high risk investment due to technical barriers and uncertainty about the projects’ 

profitability. 

For Canada, here exemplified by Ontario, a corn stover to bioenergy case is not viable, and higher 

value products would have to be produced in a biorefinery type configuration to ensure economic 

profitability. A system based on partial corn stover removal added to corn grain harvest was 

compared with an existing corn grain only harvest using LEEAFF. The stakeholder exercise showed 

that neither system was without some issues or sensitivities. A corn stover system would likely 

provide benefits for categories of sustainability, such as land use efficiency, broad stakeholder 

acceptability, GHG emission reduction, and employment. Corn stover feedstock supply chains are 

not operational currently and several new technologies would have to demonstrate financial 

profitability at scale, and there are unknowns to address regarding nutrient addition and long term 

soil health. 

It is concluded that further opportunities for sustainable use of agricultural residues exist. 

Opportunities are, however, country and site specific, making it difficult to predict the global 

impact.   
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3 Introduction 

Bioenergy that is generated from sustainably produced biomass has the potential to contribute 

substantially to the future global renewable energy mix. Accelerating production and use of 

environmentally sound, socially accepted and cost-competitive bioenergy can increase security of 

energy supplies while at the same time reduce greenhouse gas (GHG) emissions from fossil fuel 

consumption. Currently close to 56 Exajoules (EJ) of energy is derived from biomass worldwide. 

Sixty percent of this energy is used for traditional heating and cooking while the remainder is used 

in modern conversion technologies for the production of heat, transport fuels, and electricity 

(REN21 2014).  

Various bioenergy targets are set to meet different goals on energy security and climate change 

mitigation. The International Renewable Energy Agency (IRENA), estimates that 108 EJ yr-1 of 

biomass must be used by 2030 to meet the Sustainable Energy for all (SE4All) target of doubling 

the share of renewable energy in the global energy mix before 2030  (Nakada et al. 2014). 

Meeting the targets set by the Global Energy Assessment (GEA 2012) requires significant growth 

in bioenergy production. Between 80 and 140 EJ yr-1 of biomass is required by 2050. Similarly the 

IPCC, in the 5th assessment report (Bruckner et al. 2014) outlined bioenergy use by 2100 to 

reach up to 200 EJ yr-1 depending on climate ambitions and chosen policy instruments. Breaking 

down these analyses, attainment of the SE4All target requires 13-30 EJ yr-1 of agricultural 

residues, while the GEA target would be met with extensive use of agricultural residues with an 

estimated technical potential of 49 EJ yr-1. 

In Europe, the National Renewable Energy Action Plan (NREAP) outlines how 27 EU members plan 

to meet the targets in the RED directive.  It is estimated that the annual demand for biomass will 

increase from 2.5 EJ in 2006 to 5.9 EJ in 2020 (European Commission 2014). The Renewable 

Energy Directive (RED) (European Parliament and the Council 2009) has set a target of 10% 

renewable transportation fuels by 2020, and in the U.S., the Renewable Fuel Standard set a target 

of 174 billion litres (46 billion gallons) of biofuels yr-1. This has created a significant demand for 

biofuels in the EU and North America. 

Bioenergy targets are not exclusive to Europe and North America. A large number of South 

American, Asian, African and Oceanian countries have policies and targets on bioenergy 

deployment. To mention a few:  Brazil has a target of 19.3 GW bio electricity capacity by 2021 

and blend mandates for bioethanol in gasoline (E20) and biodiesel in fossil diesel fuel (B5). Nigeria 

has a target for bio-electricity of 50 MW by 2015 and 400 MW by 2025, and Ethiopia aims at 

installing 103.5 MW of electricity capacity based on bagasse sometime in the future.  In India 2.7 

GW of bio-electricity should be added to existing capacity from 2012-2017. By 2015 China expects 

to have 13 GW of bio-electricity and by 2030 Japan aims to have 6 GW of bio-electricity capacity. 

A global overview is provided by the Renewable Energy Policy Network (REN21 2014). 

On the global scale IEA estimates for 2020 an installed capacity for bio electricity of 133 GW, up 

from 88 in 2013, 47 EJ of biomass used for heat generation (including traditional use of biomass), 

and liquid biofuel production to reach 140 billion litres (IEA 2014). First generation biofuels are to 

a large extent based on existing agricultural crops – sugars, grains and oilseeds that have 

traditionally been used for food, animal feed and some industrial uses, and can be readily 

converted into liquid biofuels. Public concerns over rising food prices and the perceived risk that 

further growth in first generation biofuels will increase food prices has led the European 

Commission (EC) to propose a limit of 7% for the amount of first generation transportation 

biofuels that can be counted towards the 10% renewables RED target (European Commission 

2016). Similarly the U.S. has capped biofuel production from corn grain at 15 billion gallons yr-1 

(57 billion litres). Public concern over direct and indirect land use changes resulting from the 

conversion of forest and grassland into crop production have also been seen. This has resulted in a 



5 

greater focus on the use of biological wastes and residues, including agricultural crop residues, for 

the production of bioenergy and non-food bio-products. By definition, agricultural residues are by-

products of crop production, and as such they do not require additional land. To a small extent, 

crop residue is used for animal bedding, as feed and as growth media.  Additional residue removal 

could provide supplemental income for agriculture producers and has been shown to increase 

subsequent crop yields through earlier soil warming and seeding in colder climates. However, 

additional residue removal also involves the transfer of carbon and nutrients from the soil, so 

removal strategies need to be developed that meet environmental needs over the long term. 

One of the world’s first demonstration-scale cellulosic ethanol plants, Beta Renewables 

Crescentino, started in operation in Italy in 2012. The production is based on giant reed (Arundo 

donax) and wheat straw, and they produce 60,000 metric tonnes per year (76 million litres or 20 

million gallons). Three new cellulosic biofuel plants came online in the U.S. in 2014. DuPont 

enacted a 30 million gallon per year plant in Nevada, Iowa, which will use corn stover as a 

feedstock. Poet-DSM has a new facility in Emmetsburg, Iowa that will produce 7 to 12 million 

gallons of ethanol a year using corn cobs and corn stover as a feedstock. Abengoa had built and 

operated a plant in Hugoton, Kansas, with a capacity of up to 25 million gallons of cellulosic biofuel 

production primarily from corn stover. Due to the financial situation of the Spanish mother 

company by the end of 2015, it was unclear whether and under which ownership the Hugoton 

plant would continue operation in 2016 (Voegele 2015). In Canada, lignocellulosic value chain 

development is happening at a smaller scale and targets the chemicals instead of the fuel market. 

Comet Biorefining has announced its intention to build a 23,000 tonnes cellulosic sugar plant with 

co-products to be sold into the animal feed market. If the necessary investment can be obtained, 

then a new facility could be built in Sarnia by 2018. 

The purpose of this inter-country study is to explore further mobilisation of agricultural residues 

for bioenergy and biorefineries (fuel driven and non-fuel driven) applications, and provide an 

assessment of potential opportunities, barriers and sustainability issues. The study assesses 

different uses of agricultural residues in Denmark (for energy and biofuels), the U.S. (for 

advanced/second generation biofuels) and Canada (for potential use for bio-chemicals and 

bioenergy). The respective agriculture residue supply chains are at different stages of 

development, and each country is taking a slightly different approach with respect to the scope of 

their evaluation and sustainability assessment. Denmark has adopted a national scale assessment 

using the GBEP indicator framework, while Canada is evaluating the suitability of several 

sustainability schemes, including GBEP, ISO 13065, Prosuite and LEEAFF, to study a lignocellulosic 

supply chain under development in a high crop yielding region of the country. In the U.S., there 

are efforts (McBride et al. 2011) to further develop indicators building off the approaches proposed 

by the Roundtable on Sustainable Biofuels (Roundtable on Sustainable Biofuels 2010), Global 

Bioenergy Partnership (GBEP 2011), Council on Sustainable Biomass Production, and several other 

national and international efforts.  McBride et al. (2011) identify major environmental categories 

of sustainability to be soil quality, water quality and quantity, greenhouse gases, biodiversity, air 

quality, and productivity, and propose a minimum number of indicators that fit into those 

categories.  

4 Feedstock production systems 

4.1 Policy and economic drivers for bioenergy and feedstock 

production 

4.1.1 Denmark 
The oil crisis in 1973-74 is often considered the starting point of Denmark’s political interest in 

renewable energy. Prior to the crisis Denmark, as well as many other Western countries, was 
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totally dependent on oil imports to drive the energy sector (Lund 2009). High energy prices 

increased the use of domestic straw and wood in household and farm heating immediately, and in 

1976 the first Danish energy policy paved the way for use of more biomass also in district heating 

and combined heat and power production. The policy aimed at increasing energy security (Nygård 

2011), and plans were to achieve end-user energy savings, while also increasing the production of 

energy from nuclear power, domestic natural gas, and renewables, such as solar and wind power 

and straw for heat and electricity.  

The earliest political intent to focus on biomass for energy is found in the 1985 ‘Windmill 

agreement’ between the Ministry of Energy and the utility sector, which acknowledged the need 

for further talks on the use of straw for energy (Ministry of Energy 1985), and in the 1986 

‘Electricity agreement’  (Ministry of Energy 1986) that stipulated the construction of 80-100 

MWelectricity combined heat and power production based on domestic fuels as e.g. natural gas, 

straw, wood chips or biogas. At the time of the adoption of the Climate Convention in 1992, new 

CO2-taxes were introduced with the aim of reducing greenhouse gas emissions, and energy 

policies shifted to take account of environmental concerns around fossil fuel use. The first targets 

specifically for biomass- based energy were set in the ‘Biomass agreement’  (Danish Government 

1993) in 1993. The agreement mandated the use of 1.2 million tonnes of straw and 0.2 million 

metric tonnes wood chips for energy by 2000 (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Time line of political agreements and incentives to support the development of bioenergy 

in Denmark. 

1985 2012 2000 1997 1993 1986 1990 

Wind mill 

agreement of 
20 December 

1985 
 

Acknowledge 
the need to 
discuss straw 

use in the 
energy supply in 
the near future. 
 

Electricity 
agreement of 6 June 

1986 
 

80-100 MW de-
centralised CHP 
based on domestic 
resources as natural 
gas, straw, wood 
chips, waste or 
biogas. 
 

Energy agreement  
of 20 March 1990 

 
Promotes CHP and 
natural gas and 
other 
‘environmentally 
benign’ fuels. 
chips, waste or 
biogas. 
  

Biomass agreement  
of 14 June 1993 

 
By year 2000 1.2 
million tonnes straw 
and 0.2 million 
tonnes wood chips 
must be used in the 
Danish electricity 
production. 
 

1st revision of the 
Biomass agreement 

of 1 July 1997 
 
Increase the 
flexibility of biomass 
sourcing. 

2nd revision of the 
Biomass agreement 

of 1 March 2000 
 
The targets set in 
the biomass 
agreement are 
sustained and must 
be met by 2005. 

Energy agreement 
of 21 February 2008 
 
Guaranteed 
minimum selling 
price for biomass 
electricity increased 
to improve 
competitiveness. 

Energy agreement 
of 22 March 2012 

  
Target set for solid 
biomass use of 114 
PJ and a 10 % 
mandatory blend of 
liquid biofuels by 
2020. 

2008 
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The ‘Biomass agreement’ was subsequently revised in 1997 and again in 2000. In 1997 more 

flexibility was put into the agreement. The overall target for biomass use was maintained, but 

straw now had to make up at least 1 million tonnes instead of the previously mandated 1.2 million 

tonnes. As the biomass target was not met by 2000 the second revision of the ‘Biomass 

agreement’, the deadline was extended to 2005. After a period in the mid-2000s with energy 

policy focusing on economic growth and liberalization of the electricity market, focus shifted again 

in late 2000s to create a fossil free future (Nygård 2011).  

Another policy driver was the European Union’s Renewable Energy Directive (RED), which was 

adopted in 2009 (European Parliament and the Council 2009). RED sets targets for the 

deployment of renewable energy by 2020 for each member state and for the EU as a whole, and 

mandated blending of biofuels in gasoline and diesel in all member states. The targets are 

implemented in national strategies and legislation as described in RED mandated national 

renewable energy action plans (NREAP). According to the Danish NREAP a slight increase in the 

use of straw for energy is required to meet the targets. By 2015 additional (compared to the use 

in 2006) 500 TJ (34 thousand tonnes) of straw should be used and by 2020 additional 1000 TJ (69 

thousand tonnes) (Klima og Energiministeriet 2010).  

The increased flexibility of fuel choice together with conversion of co-fired plants to wood pellets 

and chips has reduced the use of straw for heat and electricity since 2010. It is expected that 

straw will increasingly be used for production of bioethanol and bio-oil through thermo-chemical 

conversion, but energy utilities are holding back investments due to uncertainty around long-term 

policy commitments for second generation biofuels1. It is also likely that straw will be used in 

future biogas production, but straw suppliers fear that the efficient infrastructure that has been 

built during the last 10 years will be lost in the gap between former and new energy uses of straw. 

Cereal straw has now contributed significantly to the Danish energy system for more than 20 

years and continues to play a role. The increased use of biomass in the energy system has been 

primarily been policy driven (straw mandate), using several financial policy incentives over the last 

30 years. Together with the adoption of the first energy policy in 1976, taxes were introduced on 

oil and electricity, and investment support could be obtained. In the 1980s taxes on coal and 

natural gas were introduced, together with fixed and premium feed-in tariffs for renewables. 

4.1.2 USA 
A complete list of all renewable energy policies and measures with respect to the U.S. can be 

found at the International Energy Agency policy database (International Energy Agency 2015). 

Due to the expanse of the U.S. with 50 individual states, only federal laws are referred to here. 

State laws can be found on the respective State’s governmental websites as well as the 

Alternative Fuels Data Center (U.S. Department of Energy 2015). The latter provides a database 

with details on clean transportation laws, regulations, and funding opportunities in a particular 

jurisdiction as well as on the federal level.  

4.1.2.1 Targets for Bio-electricity 
There is no federal mandate for the production of bio-electricity. Most states however have 

renewable portfolio standards or goals in place (Figure 2). These standards require that utility 

                                                 

 

 

1 Second generation biofuels are liquid fuels based on feedstock other that sugar, starch and primary 
vegetable oils. For bioethanol second generation fuels are based of cellulosic material as e.g. straw, 
stover, grass, cob, wood, and processing wastes. For biodiesel second generation fuel are based on e.g. 
used cooking oil, other waste oils, or wood, straw, stover etc. converted through gasification to diesel 
like fuels (Fischer-Tropsch). Terms are not use unambiguously and second generation biofuels may also 
be termed advanced biofuel or cellulosic biofuel. See also Figure 3. 
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companies generate a certain amount of energy from renewable resources by a certain date. For 

example, a certain percentage of the utility’s electric power sales must be generated from 

renewable energy sources. Biomass is however only one from of renewable energy eligible to meet 

these targets, in addition to wind, solar, hydropower, etc. 

 

 

Figure 2. Distribution of renewable portfolio standards or goals (U.S. Energy Information 

Administration 2012). 

 

On August 3, 2015, President Obama and the Environmental Protection Agency (EPA) announced 

the Clean Power Plan, which defines standards for power plants and customized goals for states to 

cut carbon emissions (U.S. EPA 2014). The plan sets up a national framework that gives individual 

states the power to chart their own customized path to meet the CO2e-emissions targets proposed 

for each state. By 2030 the plan should result in 32% less carbon emission from the power sector 

across the U.S. when compared with 2005 levels. 

4.1.2.2 Federal Targets for Biofuel Production 
In 2007, Congress passed the Energy Independence and Security Act (EISA), amending the 

Renewable Fuel Standard (RFS) as established by EPACT in 2005. By 2022, the U.S. shall produce 

36 billion U.S. gallons (136 billion litres) of biofuels. Of that, 21 billion U.S. gallons (80 billion 

litres) shall be advanced biofuels (derived from feedstock other than corn starch) i.e. second 

generation biofuels. Of the 21 billion U.S. gallons, 16 billion U.S. gallons (60 billion litres) shall 

come from cellulosic ethanol. The remaining 5 billion U.S. gallons (19 billion litres) shall come 

from biomass-based diesel and other advanced biofuels (U.S. Congress 2007). The U.S. 

Environmental Protection Agency (EPA) is revising its current RFS to reflect the changes in the 

EISA. 
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Figure 3: Nesting of biofuel categories under the RFS 

(Warner et al. 2014). 

In 2011, the EPA implemented the Renewable Fuel Standard 2 (RFS2) program, a credit trading 

system along with biofuel volumetric mandates. The RFS2 establishes specific volumetric 

requirements for the four overlapping categories of renewable, advanced, biomass-based, and 

cellulosic biofuels (Figure 3). Compliance with these requirements is tracked through renewable 

identification numbers (RIN), which are numbers that are used to identify specific fuel volume by 

category. The RIN market is complex relative to other credit trading systems with four categories 

of credits each corresponding to a RIN biofuel category (see Warner et al. (2014) for a detailed 

assessment of the RIN market).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 below shows the initial targets for biofuels production as prescribed by EISA. They were 

updated by EPA to reflect actual production developments (U.S. Environmental Protection Agency 

2015). E.g., total production targets for 2016 were dropped from the initial 23 billion U.S. gallons 

down to 18 billion U.S. gallons. 
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Figure 4. Renewable Fuel Standard Volumes by Year (U.S. Department of Energy 2015). 

 

Historically, the first federal endorsement of biofuel came with the passage of the 1978 Energy 

Tax Act. The act introduced a 100% exemption of the gasoline tax for alcohol fuel blends (which 

was US$ 0.04 at the time). With the exemption still in place, biofuel, particularly ethanol, received 

more attention as a possible oxygenate to be used in reformulated gasoline as outlined in the 

Clean Air Act Amendments of 1990, which directed the U.S. EPA to establish a standard for 

reformulated gasoline. Another possible oxygenate defined in the Clean Air Act was methyl tertiary 

butyl ether (MTBE). Until recently, MTBE was the preferred oxygenate because it was less 

expensive and easier to distribute than ethanol. 

However, concerns over MTBE’s effect on ground water quality has resulted in many states 

adopting laws that ban or significantly limit its use in gasoline sold in those states. Twenty-five 

states have laws that phase out MTBE partially or completely. In light of the MTBE bans in these 

states, one element of the EPACT of 2005 repealed the oxygenate requirement as described in the 

1990 Clean Air Act Amendments. A provision of the repeal required refiners to blend gasoline so 

that they still maintain the Clean Air Act-mandated emissions reductions achieved in 2001 and 

2002. EPACT also established an RFS that required that 7.5 billion U.S. gallons (28 billion litres) of 

ethanol and biodiesel be produced by 2012 (U.S. Congress 2005). 

Prior to EPACT, Congress passed the American Jobs Creation Bill of 2004, which established a 

blender’s tax credit for ethanol and a comparable credit for biodiesel production. As of 2011, 

blenders received a US$ 0.45 per US gallon tax credit, regardless of feedstock; small producers 

received an additional US$ 0.10 on the first 15 million US gallons; and producers of cellulosic 

ethanol received credits up to US$ 1.01. Tax credits to promote the production and consumption 

of biofuels date back to the 1970s. For 2011, credits were based on the Energy Policy Act of 2005, 

the Food, Conservation, and Energy Act of 2008, and the Energy Improvement and Extension Act 

of 2008. 

The import tariff and tax credit for ethanol both expired at the end of 2011. The biodiesel tax 

credit was set to expire by the end of 2013 but got extended to the end of 2014 (Kotrba 2014). 
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Since the end of the ethanol production tax credit, production volumes have fallen behind the 

legislated EISA and EPA required volumes (Figure 5). 

Figure 5. Recent RFS2 mandates vs. actual production volumes (U.S. Department of Energy 

2015).  

 

4.1.2.3 Financial Support Measures for Biomass 
A detailed analysis of subsidies provided in the energy sector including biomass was undertaken 

by the Energy Information Administration for the year 2013 (U.S. Energy Information 

Administration 2015). In this section, we limit our presentation to the two main sources, the 

Biomass Crop Assistance Program (BCAP) and the Demonstration and Deployment (D&D) 

subprogram. 

4.1.2.3.1 Biomass Crop Assistance Program (BCAP) 
While tax credits for ethanol and biodiesel have been terminated (ethanol at the end of 2011, 

biodiesel at the end of 2014), the biofuel industry is still able to benefit from indirect financing via 

agricultural and forest feedstock support programs, predominantly the Biomass Crop Assistance 

Program (BCAP).  

The BCAP for USDA’s Farm Service Agency (FSA) was created as part of the 2008 Farm Bill (The 

Food, Conservation, and Energy Act of 2008) to reduce U.S. reliance on foreign oil, improve 

domestic energy security, reduce carbon pollution, and spur rural economic development and job 

creation (U.S. Department of Agrigulture 2010). 

BCAP was set in place to help address bioenergy’s “chicken-and-egg” challenge of establishing 

commercial-scale biomass conversion facilities and sufficient feedstock supply systems 

simultaneously: 

 Conversion facilities must have reliable, large-scale feedstock supplies to operate, but 

there are no existing markets for accessing these materials 

 Biomass feedstock producers do not have sufficient incentive to produce these materials 

because of the lack of existing markets to purchase their biomass. 
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The BCAP provides financial assistance to owners and operators of agricultural and non-industrial 

private forest land who wish to establish, produce, and deliver biomass feedstocks. It provides two 

categories of assistance:  

(1) Matching payments may be available for the delivery of eligible material to qualified biomass 

conversion facilities by eligible material owners. Qualified biomass conversion facilities produce 

research, heat, power, biobased products, or advanced biofuels from biomass feedstocks. 

(2) Establishment and annual payments may be available to certain producers who enter into 

contracts with the Commodity Credit Corporation (CCC) to produce eligible biomass crops on 

contract acres within BCAP project areas. 

For instance, in 2006, 20% of the U.S. corn harvest was used for ethanol production. The total 

agricultural subsidies through the CCC (i.e., BCAP) for corn that year totalled US$ 8.8 billion2. 

Thus, an estimated US$ 1.8 billion went to subsidize corn destined for ethanol production. 

4.1.2.3.2 Demonstration and Deployment (D&D) 
The Demonstration and Deployment (D&D) subprogram (Duff 2013) (formerly the Integrated 

Biorefinery Platform) is focused on demonstrating and validating biomass conversion technologies 

through successful construction and operation of cost-shared pilot, demonstration, and 

commercial scale integrated biorefinery (IBR) projects. 

The purpose of the D&D subprogram is to “de-risk” emerging biomass conversion technologies 

sufficiently so that broad replication and industry expansion can occur. The U.S. DOE Bioenergy 

Technologies Office (BETO) does this by providing financial assistance for scale-up and 

demonstration of emerging technologies. BETO works in partnership with private-sector 

technology developers to leverage federal financial assistance funding. The D&D subprogram plays 

a vital role in “de-risking” technologies in two primary ways: 

 Technologically, to scale-up and validate conversion process performance so that “Wrap-

around” performance guarantees can be provided by EPC firms. 

 Financially, to verify the CAPEX and OPEX so private-sector financing can invest without 

fear of default. 

To date, 33 projects of R&D, pilot, demonstration, and commercial-scale IBR projects had been 

selected. Of these, five were mutually terminated, five completed, 19 are still active, while an 

additional four new awards are currently under negotiation. Figure 6 and Figure 7 show the 

geographic and pathway diversity of the projects. 

 

                                                 

 

 

2 Testimony by Keith Collins, chief economist, U.S. Department of Agriculture, before the  U.S. 

Senate Committee on Agriculture, Nutrition, and Forestry, Washington, D.C., January 10, 2007. 

Retrieved from:  

http://www.usda.gov/oce/newsroom/archives/testimony/2007files/Collins_011007.pdf, Accessed 

7 January 2014, and U.S. Department of Agriculture, Commodity Credit Corporation, Commodity 

Estimates Book, FY 2008 President’s Budget, (Washington, D.C, February 5, 2007), p. 1. Retrieved 

from: http://www.fsa.usda.gov/Internet/FSA_File/pb08_tbl35a.pdf, Accessed 7 January 2015 

 

http://www.usda.gov/oce/newsroom/archives/testimony/2007files/Collins_011007.pdf
http://www.fsa.usda.gov/Internet/FSA_File/pb08_tbl35a.pdf
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Figure 6. BETO IBR Project Portfolio – Geographic Diversity (Duff 2013). 
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Figure 7. BETO IBR project portfolio – pathway diversity (Duff 2013). 

4.1.3 Canada 
In Canada, the drivers for the development of bioenergy and biorefining have changed over time. 

The forest products industry remains the major producer and user of bioenergy in Canada, 

generating 508 GJ of heat and power in 2014 (Statistics Canada 2016). It was the oil crisis in the 

1970s combined with pollution concerns that led the forest products industry to install hogfuel and 

recovery boilers, and move to energy self-sufficiency. Public R&D investments supported the 
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development of new conversion technologies, including gasification, pyrolysis and biochemical 

conversion of lignocellulose. In the 1990s climate change mitigation became an important 

motivator for bioenergy and renewable energy R&D. One decade later, the first generation (1G) 

biofuels industry emerged along with growth in solar and wind energy installations. Around this 

same time, the forest products industry initiated its transformation program to reinvent itself for 

the new century.  In 2009, the Pulp and Paper Green Transformation Program was launched, a 

CAN$ 1 billion fund to improve the environmental performance of Canada’s pulp and paper mills 

and renew the industry’s position in the global marketplace. The program helped to support more 

than 14,000 jobs and resulted in 195 MW of new renewable energy capacity. 

At the federal level, Canada has established a biofuel mandate of 5% renewables in the gasoline 

pool and 2% renewables content in the diesel pool. This mandate is being met through domestic 

production of 1G biofuels and imports. In addition, 5 provinces have set their own biofuel targets 

and several provinces have incentives for new bioenergy production. In its decision to replace its 

coal-fired power generation, the Province of Ontario did consider the use of agricultural biomass. 

However, given the large volumes of biomass required and the undesirable inorganic content of 

agricultural materials, the replacements have been either natural gas or woody biomass. The 

Atikoken Generating Station in Northern Ontario burns 100% wood pellets because the energy 

content of these pellets is very similar to the lignite coal that the generating station was designed 

to burn, allowing much of the existing equipment to be easily adapted. The wood pellet supply is 

procured through a competitive process requiring the biomass to be sourced from sustainably 

managed forests. 

Consequently, there is no large scale energy production based on agricultural crop residues in 

Canada. Small on-farm applications exist in rural areas to heat farm buildings, often using a blend 

of wood and crop residues as feedstock. Also, crop residues are used in small amounts as a 

supplemental feedstock for anaerobic digesters. The use of agricultural residues for CHP could be 

feasible in remote settings without access to natural gas and where users rely on propane, 

electricity or diesel fuel for heating. However such areas generally have greater access to woody 

material than agricultural biomass. 

At present, there are no specific mandates for second generation biofuels production or use in 

Canada. These policies could be revisited in the light of new climate change commitments. Until 

now, the higher cost of cellulosic ethanol production relative to grain based ethanol presents a 

significant disincentive for the development of large scale ethanol production. The international 

aviation industry is looking to introduce renewable fuels into its fuel mix over the next decades, 

but the type of biofuels and feedstock they will be derived from is not yet known. For Canada, it is 

estimated that 923 million litres of bio-aviation fuel will be required by 2035 for Canada’s aviation 

industry to achieve carbon neutral growth. Further technological developments, such as 

economical production of bio-aviation fuel from lignocellulose and the valorisation of lignin, could 

result in large scale conversion of lignocellulosic material in the future.   

Over the last few years, agricultural crop residues have been evaluated as sustainable feedstocks 

for biorefinery applications that produce high value chemicals and bioenergy. The conversion of 

agricultural residues into cellulosic sugars and other valuable products appears to make a better 

business case than the conversion into energy or biofuel. The chemicals and plastics industries are 

seeking renewable, non-food sources of biomass to produce sustainable intermediate chemicals as 

well as specialty chemicals in their production processes. From the agricultural and regional 

development perspectives, building a sustainable agricultural residue supply chain could provide 

diversification and additional revenue for agriculture producers; new jobs related to the 

harvesting, transport, storage, cleaning and processing of residues; increased wealth of rural 

communities; and slow the exodus of people from rural areas and small communities. The 
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economy of scale of such an application is also expected to be smaller than that of a cellulosic 

ethanol plant and a better fit for a sustainable supply of agriculture residue in Canada. 

4.2  Current agricultural residue production and use 

Agricultural residues constitute a large biomass resource; however they are not always well-

defined. They may be sub divided into primary residues, which originate from harvest operations 

and comprise e.g. straw, leaves, stover, stalk, husk, bagasse, and cob. Secondary residues 

originate from industrial processing and comprise e.g. pit, shell, peeling, husk, and bagasse. 

Secondary residues may also include animal waste as dung, manure, slurry, slaughterhouse waste 

(Torén et al. 2011).  

4.2.1 Denmark 
While the amount of straw produced in Danish agriculture has increased slightly over the last 15 

years, the fraction collected and utilized in particular for energy purposes has decreased. Currently 

approximately 50% of the straw resource is collected for various purposes, and of this fraction 45-

50% is used for energy generation (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Agricultural residue production and use in Denmark from 2006 to 2014. Data from 

Danish national statistics (Danmarks Statistik 2015). 

Straw was also used for energy before the 1986 agreement on the use of domestic resources for 

CHP, but predominantly for heating in individual households i.e. farmhouses at cereal producing 

farms (Figure 9). 
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Figure 9. Straw used for energy and its allocation to different energy sectors in Denmark from 

1975 to 2012. Data on CHP, district and individual heating are derived from the Danish energy 

statistics (Energistyrelsen 2012). Data on ethanol production are calculated from ethanol 

production statistics from EIA (U.S. Energy Information Administration 2014) assuming a 

conversion rate from straw to ethanol of 0.27 MJ/MJ (Bentsen et al. 2009). 

 

Today, the annual consumption of straw for heat and power production is approximately 1.4 

million tonnes (fresh weight). This accounts for some 16% of the renewable energy production in 

Denmark or 2-3% of total energy production.  

Parallel to the use of straw for heat and electricity, Danish companies have in the last 10-12 years 

been working intensively on developing technologies for converting straw/agricultural residue 

biomass into ethanol. One is the Inbicon project, which, since 2003, has been operating a pilot 

scale plant and since 2009 in demonstration scale (Larsen et al. 2012). The demonstration plant 

has a capacity of four tonnes of straw input per hour and is integrated with a power plant. Inbicon 

sees their technology as part of a more general biorefinery framework making not only energy 

products but also chemicals and materials. Straw has been tested as feedstock for low 

temperature gasification in the Pyroneer project with the aim of producing syn-gas for stationary 

applications. Although promising results were achieved in the initial stages (Thomsen et al. 2015), 

the pilot scale gasifier operated by Dong Energy has stopped operation. 

4.2.2 USA 
U.S. DOE (2016) estimates that 144 million dry tons (130 million tonnes) of agricultural resources 

are currently used in a diverse range of applications across the U.S. Corn stover makes up the 

majority of this total supply and is concentrated in the Midwest region, including the states of 

Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio, and South Dakota.  
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Since the introduction of biofuel policies in the U.S., the area of corn has increased by over three 

million hectare. The highest residue yields are realized from corn, which produces roughly 10 

metric tonnes per hectare of grain and approximately the same amount of stover in an average 

year.  

Assuming a crop to residue ratio of 1:1 (Kim and Dale 2004), the U.S. corn stover production rose 

significantly between 1950 and 2013 (Figure 10). This is largely due to productivity increases as 

the total area planted only rose by 20 million acres (8 million hectare) across the same period. 

The partly drastic fluctuations in annual yields are related to inclement weather patterns, including 

droughts (1980, 1983, 2012) and floods (1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Corn stover production across the U.S. Midwest (including Illinois, Indiana, Iowa, 

Kansas, Minnesota, Missouri, Nebraska, Ohio, South Dakota) from 1950 to 2013 (USDA 2014). 

4.2.3 Canada 
In Canada, the suitability for agricultural production and hence the potential availability of 

agriculture residues varies across the country. Li et al. (2012) estimated the annual production of 

crop residue, averaged  over the period 2001-2010, to be 82 million tonnes (dry) The annual 

variability by major crop type is shown in Figure 11. 
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Figure 11. Canadian crop residue production (2001-2010) and annual variability. Left pane shows 

total production. Right pane shows residue availability after deducting residue needs for soil 

conservation and livestock uses. From (Li et al. 2012). 

For the 2011 census year, it was estimated that 3.6 million tonnes (dry) of crop residues were 

used for animal bedding and less than 1 million tonnes (dry) for mushroom and horticulture 

applications. Also, cereal straw can be used to supplement forage crops, such as tame hay and 

fodder corn that are used for animal feed. The current markets for crop residues, namely animal 

bedding, feed and mushroom substrate, appear to represent a small fraction of the total residue 

produced on a national scale. However the fractions could be much larger in regions with 

significant livestock populations. In large countries like Canada, residue availability should be 

discussed at a regional scale.   

4.3 Theoretical residue potential 

A study by Bentsen et al. (2014) estimates the current global theoretical potential of primary 

agricultural residues from cereals and sugar cane to approximately 3.7 billion tonnes of dry matter 

annually, corresponding to ~65 EJ yr-1 of primary energy. Earlier studies find the theoretical 

potential of cereals and sugar cane to 2.7 – 3.5 billion tonnes yr-1 (Smil 1999, Lal 2005, 

Krausmann et al. 2008, Hakala et al. 2009), corresponding to 47-61 EJ yr-1. Cereals and sugar 

cane account for 80% of the total residue production and constitute the most harvestable part (Lal 

2005). 

4.4 Technical residue potential 

Very few countries collect data on residue production and use; but a number of modelling studies 

find, on a global level, a current appropriation (incl. for energy) of 2.9 billion tonnes yr-1 (66% of 

total production) (Krausmann et al. 2008) a figure corroborated by (Rogner et al. 2012). In 

contrast Wirsenius (2003) find the fraction of agricultural residues appropriated by humans to 

41%. The IPCC special report on renewable energy (Chum et al. 2011) reviewed the vast body of 

literature on bioenergy resources and reports a technical potential of agricultural residues by 2050 

of 15-70 EJ yr-1, i.e. enough to meet the SE4All target (Nakada et al. 2014), but not necessarily 

enough to meet the GEA target (GEA 2012).  

The Biomass Energy Europe project (BEE) worked on harmonizing biomass resource assessments 

and found a theoretical potential of primary residues in the EU27 of 2.7 EJ and a technical 

potential of 0.8 EJ. Corresponding figures for secondary residues including rice and sunflower 

husks and sugar beet pulp were 89 and 52 PJ (Böttcher et al. 2010). A more Recent EU wide 

project (S2Biom) found a technical potential of crop and agro-industrial residues for the EU28, 

Western Balkans, Turkey and Ukraine by 2030 of 400,000 tonnes dry biomass per year 

(Panoutsou et al. 2016). 
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4.4.1 Denmark 
The +10 million tonnes study (Gylling et al. 2013) assessed the availability of biomass resources 

in Denmark on the shorter term to the year 2020. The study found that straw harvest could 

sustainably be increased from the current 1.4 million tonnes annually to approximately 3 million 

tonnes annually. An additional amount of straw could be made accessible through increased 

mobilization of the produced straw and increased production of straw through selection of cultivars 

with similar crop yields but lower harvest indices. Without the contribution from cultivar selection 

additional mobilization of straw could yield a total straw harvest of approx. 2.5 million tonnes by 

2020. 

4.4.2 USA 
The recent assessment of potential U.S. biomass resources (U.S. DOE 2016) determines 

technically available resources. However, the availability is linked to specific prices and as such 

represents economic potentials – under the assumption that respective markets exist. Actual 

market availability of these resources is obviously dependent upon future market demands 

defining the economic viability of their mobilization. Results of U.S. DOE (2016) are presented as 

economical potentials in Section 4.5.2. 

4.4.3 Canada 
Potentially, there could be 48 million metric tonnes (dry) of agricultural crop residue available in 

Canada to furnish new markets such as the production of cellulosic biofuels, bio-based sugars and 

chemicals, biomaterials, and agri-wood pellets. However, the real opportunity for agricultural 

residues to supply these markets depends on many factors including the crop yield, the cost and 

properties of the residues, the distance from the processing facilities, the cost of converting 

residues into bioproducts and the profit potential, the degree of substitutability by other 

lignocellulosic feedstocks, and the existence of a government mandate and/or consumer 

preference for bioproducts. 

The concentration of biomass in a given region is key to determining feedstock costs and financial 

viability of a proposal. As shown in Table 1, the residue concentrations can vary significantly 

between crops and provinces. The publicly-available mapping tool known as BIMAT (Biomass 

Inventory Mapping and Analysis Tool) can be used to determine the amount of biomass available 

in a certain geographic area in Canada.  This model reports residue volumes, associated with 

wheat, barley, oats, flax and corn grain production, based on 30 years of Canadian agriculture 

census data (see http://www.agr.gc.ca/atlas/bimat). The volumes can be adjusted to account for: 

1) agriculture producer participation rate; 2) competing uses; and 3) tillage practice. Knowing the 

amount of biomass needed for bioenergy or biorefinery operation, BIMAT can be used to estimate 

the collection radius from a proposed facility location based on a 30 year history.  

 

 

 

  

http://www.agr.gc.ca/atlas/bimat
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Table 1. Estimated average concentration of residues from selected crops from 2001 to 2010 
(dry tonnes per hectare). 

Province Wheat straw Barley straw Corn stover Oat Straw 

Prince Edward Island 3.58 2.91 - 3.87 
New Brunswick 3.90 3.13 4.44 3.81 
Nova Scotia 4.72 2.92 7.08 3.65 
Quebec 3.65 3.05 8.00 3.75 
Ontario 6.06 3.32 8.58 3.87 
Manitoba 4.62 3.22 5.99 4.28 
Saskatchewan 3.05 2.62 - 3.59 
Alberta 3.78 3.18 6.07 3.90 
British Columbia - 2.74 - 3.78 

 

4.5 Economic potential 

A study on mobilizing cereal straw in the EU to feed second generation biofuel production 

(Kretschmer et al. 2012) emphasises that even if studies of technical (or theoretical) biomass 

potentials suggest that a substantial amount of straw is available this does not necessarily mean 

that the economic potentials for bioenergy are large. An uncertainty parameter is that a proportion 

of the straw is used for other purposes. The most common other uses today are animal feed or 

bedding, and as mulch for use in vegetable and mushroom production. Such parameters are site 

specific and can vary from year to year.   

Bloomberg (2011) projected the potential supply of agricultural residues in the EU by 2020 to be 

approximately 170 million tonnes at an average supply cost of €67 per tonne. The majority of the 

volume (80%) consists of straw from grain crops such as wheat and barley. Bloomberg (2011) 

estimates that already today, it would be profitable to collect 92 million tonnes at a delivered gate 

price of €60 per tonne. Projection for the availability of various biomass feedstocks in the EU are 

also reported by de Wit and Faaij (2010). By 2020 approximately 3 EJ (~200 million tonnes) of 

agricultural residues would be available at a plant gate cost of €3.5 GJ-1 (€51 tonnes-1).Taking into 

consideration the uncertainty in projecting future supplies at various prices it is estimated that 

170-200 million tonnes would be available at a price between €50 and €70 per tonnes (delivered 

at plant gate) by 2020. 

4.5.1 Denmark 
In Denmark there are still 1-1.5 million tonnes yr-1 of residues that technically could be mobilized. 

The economic potential of straw seems to be very dependent on the price of alternative biomass 

fuels as the access to e.g. wood chips at competitive (not necessarily equal or lover) prices 

influence the demand. Figure 12 shows the economic potential of various biomass fractions as 

estimated by the Danish TSO (Transmission System Operator) for scenario analyses of future 

energy system configurations (Energinet.dk 2015).  
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Figure 12. Supply-cost relation for Danish domestic biomass resources (Energinet.dk 2015). 

4.5.2 USA 
The U.S. DOE (2016) estimates that the 2017 agricultural crop residue potential at $60 per dry 

short ton ($66 per tonne) or less is in the range of 104-105 million short tons (94 million tonnes) 

(Table 2). This potential includes barley straw, corn stover, oats straw, sorghum stubble, and 

wheat straw, and is expected to increase up to 176-200 million short tons (158-180 million 

tonnes) by 2040 (U.S. DOE 2016) (Table 2). The geographic distribution of the potential for 2017 

is depicted in Figure 13 and for 2040 in Figure 14 . A stepwise cost-supply curve for a base-case 

yield scenario increase of 1% per year is provided in Figure 15 and a high-yield scenario of 3% 

yield increase per year is given in Figure 16. 
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Table 2. Summary of Currently Used and Potential Forest, Agricultural, and Waste Biomass 

Available at $60 per Dry Ton or Less, Under Base-Case and High-Yield Scenario Assumptions 

(microalgae excluded) (U.S. DOE 2016). 
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Figure 13. Combined potential agricultural residue supplies at $60 per dry ton or less at roadside 

under agriculture 1% yield increase assumption for 2017 (U.S. DOE 2016).  

 



25 

 

Figure 14. Combined potential agricultural residue supplies at $60 per dry ton or less at roadside 

under agriculture 1% yield increase assumption for 2040 (U.S. DOE 2016). 
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Figure 15. Stepwise Supply Curves (up to $90 per dry ton) for Agricultural Residues Feedstocks: 

1% yield increase (U.S. DOE 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Stepwise Supply Curves (up to $90 per dry ton) for Agricultural Residues Feedstocks: 

3% yield increase (U.S. DOE 2016).  

4.5.3 Canada 
Agricultural residue supply-cost curves are not publicly available for Canada. Modelling carried out 

by Kumarappan et al. (2009) showed the volume of agricultural residue available below US$50 per 

tonne to be relatively small, when compared with forest and mill residues (Table 3). 
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Table 3. Biomass supply cost estimates for Canada (in 2008 US$) (Kumarappan et al. 2009). 

Biomass Price, 

US$/dry tonne* 

Quantity Available (million dry tonnes) 

 Municipal 
Solids Waste 

Agricultural 
Residue 

Forest & Mill 
Residues 

Energy 
Crops 

Total** 

30 1 6 12  20 

40 2 7 12  22 

50 3 7 30  40 

60 4 31 43  79 

70 5 37 43  85 

80 6 42 43 26 117 

90 7 42 43 30 121 

100 7 42 43 31 123 

* US$ (2008) at the biorefinery gate 
** Total values may differ from summed amounts due to rounding. 

 

Another study, undertaken in 2009, estimated the logistical costs associated with agricultural 

residue procurement in Canada. The aim of the study was to identify feedstock types and costs in 

order to supply 700,000 dry tonnes of agriculture residue to a future second generation biofuel 

facility. Residue costing included harvesting, storage, transport and a growers' payment costs. The 

study estimated residues to cost: 

 CAN$65 per dry tonne of cereal straw or CAN$0.33/dry tonne/km in Western Canada; and 

 CAN$86 per dry tonne of corn stover or CAN$0.43/dry tonne/km in Eastern Canada. 

These values were significantly greater than the CAN$35 per dry tonne value that was frequently reported in the 

literature at this time. Over time, figures cited on feedstock availability and cost have varied greatly and precaution 

should be taken to confirm the methodology used in the estimation before making claims about the potential. 

Relative to many other countries, there may appear to be vast amounts of residues potentially 

available in Canada. The real opportunities are site specific. The supply chain case study described 

in this report, conversion of corn stover into cellulosic sugars in Southwestern Ontario, is one such 

opportunity. The first estimates of the cost of stover were carried out in 2012-2013 using existing 

harvesting equipment. Since this time, several stover harvest trials have been undertaken in this 

region using more specialized equipment developed in the U.S. for large volume collection. This 

has provided a better understanding of how producers might integrate stover collection into their 

operations and reduced the cost of stover collection. A comparison of these two cost estimates, 

broken down by element, is presented in Table 4. 
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Table 4. Cost of corn stover collection, storage and transport in Southwestern Ontario (Marchand 
2015). 
Itemized Harvest Cost CAN$ /tonne stover at 

15.5% moisture 

2013 Estimates  

CAN$ /tonne stover at 
15.5% moisture 

2015 Revised Estimates 

Flail chopper/inverter 17.28 9.43 
Rake 7.68 0 
Large square baling 36.45 14.03 
Stacking end of field 4.55 5.72 
Storage end of field, tarped 6.76 8.30 
Nutrient replacement 9.78 9.86 
Production management 12.38 7.10 

Corn stover cost at farm gate 94.88 54.44 

Transportation to facility 13.49 (for 75 km) 26.78 (for 100 km) 
Administration 0.85 0.85 

Corn Stover Cost, delivered 109.22 82.07 

 

At a finer spatial scale, crop residue removal can also vary with soil type and topography. That is, 

these site parameters affect susceptibility to soil erosion and future crop yields, and could result in 

different harvest protocol requirements. Modelling work by Dr. Jian Gan of Texas A&M shows how 

stover costs change with the rate of removal. Jian Gan modelled the stover removal costs for the 

four main soil types in six counties of Southwestern Ontario. Marginal cost calculations were 

derived using approaches developed by Gan and Smith (2012), and according to assumptions on 

harvest and baling cost, nutrient losses, and erosion outlined by the authors. The preliminary 

results for one of the soil types (Brookston) are shown in Figure 17. At a low removal rate, baling 

costs dominate the total marginal costs, but as removal rates increase the nutrient replacement 

costs and future yield losses due to soil erosion become more important. The optimal removal rate 

for the Brookston soil under conventional tillage practice is approximately 25%, above which the 

costs rise rapidly. At a field level, both soil type and agricultural practices can influence the total 

stover cost and the optimal rate of residue removal from a field. 
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Figure 17. Marginal stover cost for Brookston soil (conventional tillage, 1% discount rate). 

 

4.6 Environmental potential 

4.6.1 USA 
A sustainability assessment (Volume 2) to the 2016 Billion Ton Update (Volume 1) by U.S. DOE 

(2016) was published in January 2017 (U.S. DOE 2017). The report assesses the environmental 

impacts of the scenarios developed in Volume 1, but does not restrict the potentials further that 

what is presented in Table 2 above. 

4.6.2 Canada 
Several provinces, such as Alberta, Ontario and Quebec, have carried out more detailed biomass 

inventory work at regional scales. Annually, Ontario producers grow 2.5 million acres (1 million 

ha) of soybeans, 2.3 million acres (0.9 million ha) of corn and one million acres (0.4 million ha) of 

winter wheat. Studies completed for the Ontario Federation of Agriculture showed that 3 million 

tonnes (2 million tonnes of corn stover and the rest wheat straw) could be sustainably removed 

for ethanol or biorefinery production in the Province of Ontario while maintaining soil organic 

matter (Oo 2012). Recommended residue harvest numbers were developed for each county taking 

into account soil organic carbon levels, tillage practices, livestock numbers and typical crop 

rotation. As shown by the example in Table 5, the total and recommended residue harvest levels 

for a typical rotation can serve as a useful guide for siting decisions. This county level of detail is 

needed to develop a sustainable biomass feedstock chain to site a facility that would use large 

volumes of agricultural residue on a multi-year basis. 
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Table 5. Recommended residue harvest for Lambton County, Ontario (Oo and Lalonde 2012). 
Soy bean alone cannot maintain soil organic matter and requires addition of organic matter 
from other crops through crop rotation or manure fertilisation. 

Year Crop Harvestable residues 

(tonnes/ha) 

Recommended residue 

removal (tonnes/ha) 

1 Corn 5.0 2.8 
2 Soybeans -3.5 0.0 
3 Winter wheat 4.2 3.0 

Total (tonnes/rotation/ha) 5.7 5.8 

 

In the Province of Québec, 387,000 ha of corn grain and 280,000 ha of soybeans are generally 

produced annually. Also, there is an estimated 300,000 to 500,000 ha of marginal and unexploited 

agricultural land suitable for purpose grown agricultural biomass. Due to Quebec’s climate, there is 

very limited winter wheat production; however, there are 232,500 ha of other cereal grain 

production that could contribute crop residue volumes. 

Given the different economies of scale of ethanol versus chemical production and the residue 

distribution patterns, these might be better suited to a smaller biochemical-driven biorefinery than 

larger scale lignocellulosic ethanol production. Further technological developments and the use of 

feedstock blends, such as agricultural residues mixed with perennial crops, could give rise to a 

variety of different opportunities. 

Environmental sustainability is a key factor in determining the feasibility of commercial scale 

conversion of agricultural residues. In addition to obtaining adequate financial returns, agriculture 

producers are concerned with maintaining environmental sustainability. As shown in the work by 

Jian Gan, there is a cost to soil erosion and a point where stover harvest does not make sense 

from both environmental and economic perspectives. Ontario Federation of Agriculture 

recommends that only one third of the available stover be removed from a field. La Coop fédérée, 

the Province of Quebec’s largest agriculture cooperative, is developing guidelines for residue 

removal to ensure that soil productivity will be maintained.  

The remainder of Canada sections of this report focus on the regional case of a corn stover-based 

biorefinery being contemplated for Southwestern Ontario. This region has been targeted for future 

biorefinery development as it has high biomass yields per acre that are expected to continue to 

grow, a well-developed transportation corridor, is in close proximity to a variety of manufacturing 

industries, including the Sarnia biohybrid industrial park, and is close to the U.S. marketplace. 

Further description of this case is included in Appendix A.    

4.7 Availability at operational level 

There is growing recognition that supply chain development for lignocellulosic production is site 

specific. It needs to make economic sense, be environmentally sustainable and fit with the 

rotations of agricultural production in a given area. As crop residues are by-products of grain 

production – the core business of agriculture – residue availability will be affected by the demand 

for grain and how well the harvest of residue fits into a farm operation. Agriculture producers will 

grow what the market demands and can be profitably produced on their land. They enjoy this 

flexibility in production, and may choose to keep this flexibility rather than to tie themselves into 

long term contracts. For this reason, it is unrealistic to assume 100% participation rate even if the 

economics appear to work and environmental sustainability issues are addressed. Also, in colder 

climates, the window of opportunity for fall residue removal could be very small or even non-

existent some years. For example, a late harvest combined with an early winter could lead to a 

difficult choice between harvesting residue and preparing the field for the next crop cycle.  Heavy 



31 

Harvest 25 to 40%

What are your cropping 
practices?

Reduced tillage? Crop rotation? 
Use of cover crops?

Is soil organic carbon at 2%

IAre grain yields greater than 150 bu/ac?

rains during the residue harvest period may also limit accessibility to harvest machinery and 

increase the residue storage costs. 

At the level of the agriculture producer, decisions on residue utilization follow a logic model to 

ensure long term sustainability. As shown in Figure 18, there are a number of key factors that 

help to determine whether crop residue could be harvested in a sustainable manner. The presence 

of adequate soil carbon levels and crop grain yield, hence sufficient biomass to consider harvesting 

are at the base of the pyramid. In the case of Southwestern Ontario, soils with at least 2.0% 

organic carbon are considered to be suitable for corn stover harvesting as long as grain yields 

exceed 150 bushels per acre (9.4 tonnes per hectare). Assuming both factors are positive, a 

producer would implement best management practices to ensure that the residue and other inputs 

being returned to the soil are sufficient to support the future crop production. These practices 

would depend on the soil type and topography, and could include reduced tillage, different crop 

rotations, use of cover crops, and application of digestate or manure. Soil erosion control practices 

become critical to support the consistent removal of, for example, 2.5 to 5 dry tonnes of corn 

stover per hectare on a regular basis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 18. Decision-making pyramid for an agriculture producer. 

For all of the above reasons, the potential availability of biomass from a given area should be 

considered as a range. As crop residue use becomes more common place, supply logistics systems 

would ensure that a consistent reliable supply could be delivered to downstream processors. These 

supply systems however will not evolve automatically. The establishment of an agricultural residue 

supply chain that meets the criteria of its (probably diverse) clients will require a consistent and 

stable policy framework, long-term contracts, incentives for farmers to bear the initial investment 

risk, and credible sustainability guidelines. Significant investments in harvesting equipment would 

be required mobilize large volumes, particularly if the harvest windows are short. Bloomberg 

(2011) estimated that the EU agricultural sector would require an annual investment of €760 

Million in agricultural machinery to mobilize the crop residue fractions that are economically viable 

given a gate price of €80 per tonne. The amount of biomass that is consistently available for many 
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foreseeable years will also influence the type of bioproduct that is produced. For example, the 

different economies of scale of ethanol versus chemical production will indicate a preference for a 

certain amount of biomass available in a given region.  Smaller feedstock areas might be better 

suited to a smaller biochemical-driven biorefinery than larger scale lignocellulosic ethanol 

production. Further technological developments, new designs for feedstock logistics, and greater 

use of feedstock blends, such as agricultural residues mixed with perennial crops, could give rise 

to a variety of different opportunities. 

Estimated potentials of agricultural residues vary widely among studies. A review by Bentsen and 

Felby (2012) showed a variation in estimated technical potentials of agricultural primary residues 

in the EU27 by 2050 to range from approximately 0.5 to 5.0 EJ yr-1. The apparent lack of 

reproducibility requires caution when interpreting resource potentials. Within the Biomass Energy 

Europe (BEE) project causes for variability were examined. The project found that the major 

reasons contrasting resource potentials were attributable to (Torén et al. 2011): 

 Ambiguous and inconsistent definitions of concepts of potentials 

 Lack of consistent and detailed data on (current) biomass production and land productivity 

 Ambiguous and varying methods of estimating (future) biomass production and availability 

 Ambiguous and varying assumptions on system-external factors that influence potentials 

(such as land use and biomass production for food and fibre purposes). 

In the case of very large differences between resource estimates, Torén et al. (2011) state that 

the latter reason is the most influential.  

4.8 Economic competitiveness relative to reference energy systems 

Many drivers influence the economic competitiveness of agricultural residues and biomass more 

generally as alternatives to fossil resources. In Denmark biomass is exempt from CO2 taxes 

making them competitive relative to oil and natural gas (Figure 19). Straw has historically been 

the cheapest biomass fuel available. 
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Figure 19. Fuel prices incl. taxes in Denmark for fuels delivered to district heating plants (Dansk 

Fjernvarme 2012). 

As part of government plans on future bioenergy deployment projections on biomass prices have 

been made (Ea Energianalyse 2014). Straw delivered to district heating or CHP production is 

expected to increase from the current approx. DKK40 GJ-1 (€5.33) to approx. DKK55 GJ-1 (€7.33) 

by 2050. Deliveries to CHP plants are considered to be slightly more expensive (+€0.50-€0.66 GJ-

1) than to district heating plant due to longer transportation distances (Figure 20). 
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Figure 20. Price projections for biomass delivered at centralized CHP plants and more distributed 

district heating plants (Ea Energianalyse 2014). 

 

In the U.S. and Canada, bioenergy has often been more expensive than other forms of fossil fuel 
and renewable energy.  In both countries, policies and programs have been used as temporary 
measures to help with the installation of new equipment or facilities.  Although neither country has 
implemented a national carbon tax, new policies are expected to increase the use of renewable 
energy and reduce GHG emissions. Several provinces (in Canada) and states (in the U.S.) have GHG 
reduction obligations which indirectly reduce the cost of bioenergy when compared to fossil fuels.  
However, the increased value is still not always sufficient for bioenergy to replace fossil fuels. As 
shown in Figure 21, the cost of bioenergy (energy derived from biomass pellets) is significantly 
greater than the price of natural gas and below that of oil and propane. These values date from the 
year 2011 and the recent drop in oil prices have shifted bioenergy further to right.   
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Figure 21. Cost to the consumer for bioenergy from purpose-grown biomass pellets and other 

energy sources in Ontario, Canada. 

Even though oil prices are expected to rise again, the economic argument for bioenergy as the 
primary product derived from biomass is difficult to make in many parts of Canada.  In its recent 
energy forecast to 2040, the National Energy Board projected modest growth of electricity from 
biomass, increasing from 2.2 GW in 2014 to 3.8 GW in 2040. By 2040, both wind and solar energy 
are expected to exceed biomass with, respectively, 19.4 and 5.0 GW capacity in 2040. The majority 
of additions, 84% of the total 45 GW additions, are expected to be in the form of natural gas, wind 
or and hydro facilities (National Energy Board 2016). Therefore, the focus of the agricultural 
residue use in Southwestern Ontario has been placed on deriving higher value, non-energy 
products from biomass with bioenergy being produced from process residues.  

5 Supply chain development 

5.1 Logistical analysis of current supply chains 

5.1.1 Denmark 
Straw is baled in the field and transported for intermediate storage at the farm or energy utility. 

Straw used in larger CHP plants is delivered by road in the form of 500 kg bales. Despite more 

than 20 years of experience in increasing supply-chain efficiencies, inefficient road transport is still 

an issue in Denmark. Because of the low density of straw bales, road transportation is volume-

constrained and trucks transport only one-third of their load capacity. Development of densified 

bales has not led to significant breakthrough on the operational level. Recently German machine 

manufacturer Krone has developed machinery to pelletize straw directly in the field 

(http://landmaschinen.krone.de) to densify the straw resource and reduce subsequent handling 

cost. The machine, however, has a must lower capacity than traditional balers. 

http://landmaschinen.krone.de/
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5.1.2 USA 
The cellulosic biofuel industry is still in its infancy; currently producing less than 1 million gallons 

(3.8 million litres) of cellulosic ethanol per year, and current practice may not represent that of a 

fully evolved industry. At this point in the U.S., the cellulosic biofuel industry relies on a vertically 

integrated feedstock supply system where agricultural residues are procured through contracts 

with local growers, harvested, locally stored, and delivered in low-density form to the nearby 

conversion facility. The vertically integrated supply system without active quality control measures 

has been demonstrated to work in a local supply context within high-yield regions (e.g., the U.S. 

Corn Belt). However, scaling up the biorefinery industry will require increasing feedstock quantities 

at decreasing costs and active quality control. 

5.1.3 Canada 
The logistics of harvest, baling, storage, transport, and pre-processing corn stover are currently 

being evaluated in Southwestern Ontario. This is a particularly promising region of the country 

with very productive agriculture, excellent transport links, demonstrated innovation capacity, and 

clusters of related industries and supportive communities. As such it is being seriously examined 

for the development of cellulosic sugars and other bio-products including bioenergy from 

agricultural residues.  Millions of hectares of grain corn are grown in rotation with soybeans and 

winter wheat in this region. In 2015, grain corn yields averaged 10.67 tonnes per hectare (170 

bushels per acre) and furnished three ethanol plants and one corn refiner. Work has been 

underway since 2010 to explore the feasibility of converting agriculture residues (mainly corn 

stover) and purpose grown crops into cellulosic sugars and other bio-products.  

Industries along the supply chain are collaborating to support the implementation of a biorefinery. 

Work is underway on all fronts, including best management practices for stover removal, logistics 

design, economic modelling and technology assessment. Both existing ethanol producers and new 

technology companies are involved. Within a three to five year time horizon, at least one cellulosic 

sugar facility is expected to be in operation and new products are expected to be produced from 

corn stover. 

The objective of the logistics work is to develop a practical scheme for providing a consistent 

supply of corn stover (or stover blended with wheat straw, switchgrass and Miscanthus) that:  

 can be applied by agriculture producers under a variety of growing scenarios and weather 

conditions; 

 satisfies the quality specifications of processors with minimal losses (or markets for lower 

quality material); 

 arrives at a price point that is profitable and acceptable for all members of the supply chain; 

and 

 does not have a detrimental impact on the following years' crop production. 

As shown in Figure 22 harvest demonstration trials have been carried out with specialised high-

density-baling equipment operating in a two-pass system. A number of harvest practices that 

have been developed in Iowa in the USA are being reviewed for their applicability in southwestern 

Ontario. It is critical that feedstock costs are kept low for the bio-processor while still providing 

sufficient financial incentive for agricultural producers to commit to harvesting a portion of their 

stover on a long-term basis. 



37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Corn stover harvest demonstration at Woodstock Outdoor Farm Show (September 

2014).  

Work is ongoing to identify the management practices and harvesting systems best suited to this 

area. For example, in this region, corn harvest is carried out last in the year because corn can 

withstand frost conditions much better than soybeans. Current thinking is that a two pass system 

will be predominantly adopted as the moisture content of the stover could be too high during grain 

harvest. Care will be required to avoid picking up inorganic material during stover collection. 

Spring stover harvest has also been tested to provide flexibility to deal with poor fall harvest 

conditions and make better use of equipment and human resources. To meet the volumes 

requirements of 250,000 dry tonnes per year, sufficient stover supply could be derived from a 

mixture of fall and spring harvest. Such information has resulted in a more accurate and lower 

cost estimate for collected stover that is based on real farm trials with experienced equipment 

suppliers. 

Equally important is longer term work to determine the impacts of stover removal on soil health. 

While much work has been carried out on corn removal for silage operations, partial removal for 

bioenergy or bioproduct uses is a new practice. Given that changes in soil indicators are slow and 

there is a wide variability in the soil types in this region, an interim harvesting protocol will be 

required to ensure that environmental sustainability is being addressed with a caveat to be 

reviewed every few years or as new information is uncovered. 

In February 2016, Comet Biorefining announced the location of its cellulosic sugar plant in this 

region.  Approximately 23,000 tonnes of dextrose and 33,000 tonnes of co-products would be 
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produced from 60,000 tonnes of corn stover and wheat straw. This high purity dextrose could be 

subsequently converted into bio-based chemicals, such as succinic acid, or cellulosic ethanol. In 

total, 19 technologies were reviewed for their potential to support an attractive business case. 

With a real buyer, an efficient and sustainable feedstock supply chain must now be designed.    

5.2 Operational challenges to realizing potential 

There are a number of challenges to realizing the mobilization potential of agricultural residues for 

bioenergy and biorefining applications, including the following. 

 Feedstock cost: The cost of delivered agricultural residue can represent close to 50% of 

the operating cost of a biorefinery, ultimately affecting the economic viability of the value 

chain. 

 Feedstock (bulk) density: Unprocessed agricultural residues have relatively low bulk 

densities that translate into high transportation costs and limit the volume that can be 

collected.  

 Economic sustainability: Residue harvest should not negatively impact the core 

business of agricultural producers, i.e. production of quality grains and oilseeds for food 

and feed. Numerous agriculture producers in a given region need sufficient financial 

incentive to harvest their stover, and to be convinced that there will be no short- or long-

term reduction in the productivity of their land.    

 Environmental sustainability: Absence of guidelines and best management practices, 

as well as long term soil studies that provide validation of these practices, on the amount 

of residue (from what soil type and under what conditions) that must be retained without 

impacting soil health. 

 Feedstock quality: Processors require a consistent supply of feedstock of a known 

feedstock quality. Agricultural biomass is inherently heterogeneous in nature and subject 

to degradation, resulting in a range of feedstock quality. Specifications and tolerances 

must be clear, and markets are needed for off-spec residue.  

 Feedstock availability: Crop residue availability (in quantity, quality, and cost) is 

subject to changing biophysical factors. Climate and weather fluctuations can positively 

and negatively affect yields and impact the timing of harvest. While conventional 

feedstock supply systems are well adapted to supply biorefineries in local supply context 

within high biomass yield regions, they could encounter issues in some years due to 

inclement weather (e.g., drought, flood, heavy moisture during harvest, etc.). These 

supply uncertainties tend to increase the risk, which could limit the biorefinery concept 

from being broadly implemented. 

 Market uncertainty: Biomass supply and demand is subject to changing market factors 

(e.g. fluctuating markets for primary products such as corn and wheat, competing uses, 

and prices of alternative raw material). Even in highly productive agricultural areas, 

supply and demand, costs and prices can be unpredictable. As is the case for grain 

production, markets need to exist for residue that does not meet the quality requirements 

of the downstream processor.   

 Weak framework conditions: Absence of a stable policy framework for investments, 

e.g. constant feed-in rates, duration of renewable energy and biofuel mandates, market 

for carbon, valuation of GHG reductions from bio-based systems, etc. and dedicated 

strategies that support new value chain development from R&D through 

commercialisation.  

 Investment gridlock: Chicken and egg situation that impedes investment, i.e. 

processors want to build a facility if there is a guaranteed, consistent supply of crop 

residue while residue providers want a commitment from a processor. Residue processors 

seek flexibility with respect to feedstock procurement and can appear to be indifferent to 
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the type of feedstock as long as quality and cost specifications are met. On the other 

hand, agriculture producers need assurances that there will be buyers for their residue 

before making significant investments. 

 Other: Barriers typical of an emerging industry including a lack of information and 

misinformation, perception of high risk, little commercial experience, need for market 

acceptance, etc. 

Current bioethanol and biorefinery supply chain systems where feedstocks are procured through 

contracts with local growers, harvested, locally stored and delivered in low-density format to 

conversion facilities can only partially address these issues. Further optimization of the agricultural 

residue supply chain is required for large scale mobilization. 

5.3 Opportunities to increase supply chain efficiencies 

Currently, the U.S. cellulosic biofuel industry relies on a vertically integrated feedstock supply 

system, often referred to as the conventional system, where feedstock is procured through 

contracts with local growers, harvested, locally stored, and delivered in low density format to the 

nearby conversion facility (Figure 23). These conventional systems were designed to support 

traditional agricultural and forestry industries. The conventional system has been demonstrated to 

work in a local supply context within high yield regions (e.g., the U.S. Corn Belt or southeast 

forest lands). However, scaling up the biorefinery industry will require increasing feedstock 

volumes at decreasing costs. The strategic goal of the U.S. Department of Energy’s Bioenergy 

Technologies Office (BETO) is to meet a $88 (in US$2011) per dry tonne delivered on-spec 

feedstock cost at the throat of the conversion facility (including grower payment and logistics) in 

support of reaching a $0.79 per litre of gasoline equivalent (LGE) delivered fuel target by 2022 

(DOE 2013). Targets are generally iterated between advancements in feedstock logistics and the 

development of more robust conversion systems. But it remains unclear if a conventional system 

will allow for the current goal to be met.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Schematic design of the conventional feedstock supply system (Lamers et al. 2015).  



40 

 

Different analyses (Hess et al. 2009, Argo et al. 2013, Jacobson et al. 2014, Muth et al. 2014) 

have shown that the conventional system fails to meet this supply cost target outside of highly 

productive regions and could encounter issues even in highly productive regions in some years 

due to inclement weather (e.g., drought, flood, heavy moisture during harvest, etc.). These supply 

uncertainties tend to increase the risk, which could limit the biorefinery concept from being 

broadly implemented.  

The advanced uniform feedstock design system (Hess et al. 2009) introduces methods to reduce 

feedstock volume, price, and quality supply uncertainties. It is based on a network of distributed 

biomass pre-processing centres, so-called depots, which use one or several biomass types to 

generate uniform format feedstock ‘commodities’ (Figure 24). These commodities are 

intermediates with consistent physical and chemical characteristics that meet conversion quality 

targets and at the same time leverage the spatial and temporal variability in supply volumes and 

costs by improving flowability, transportability (bulk density), and stability/storability (dry matter 

loss reduction).  

A fundamental difference between the two supply systems is that the conventional system relies 

on existing technologies and agri-business systems to supply biomass feedstocks to pioneer 

biorefineries and requires biorefineries to adapt to the diversity of the feedstock. On the other 

hand, the advanced system emulates the current grain commodity supply system, which manages 

crop diversity at the point of harvest and at the storage elevator, allowing subsequent supply 

system infrastructure to be similar for all biomass resources (Hess et al. 2009, Searcy and Hess 

2010). 

Previous comparisons between the two supply systems were focused on logistic costs (Argo et al. 

2013, Muth et al. 2014). They concluded that the higher initial investments into pre-processing 

costs (depots) and more transportation activities increase average logistic costs, making a 

conventional system appear more attractive. On the other hand, advanced systems show lower 

cost variability and would enable other benefits, e.g., economies of scale at the biorefinery. 

While pre-processing operations at the depot add costs to the feedstock supply system, they 

address many of the supply risks associated with the conventional system and create wider 

system benefits. A recent study translated several of these benefits into cost reductions per litre of 

gasoline equivalent (LGE) for the biorefinery operation (Lamers et al. 2015). Supply risk reduction 

(leading to lower interest rates on loans), economies of scale, conversion efficiency improvements, 

and reduced equipment and operational costs at the biorefinery outweigh the pre-processing costs 

involved in the depot operations. The authors  found total cost reductions per LGE range between 

US$0.60 to US$0.34 for biochemical and US$0.44 to US$0.25 for thermochemical conversion 

pathways (Lamers et al. 2015). Naturally, these cost reductions appear on a systems level and 

may differ for the individual actors in the supply chain.  
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Figure 24. Schematic design of the advanced feedstock supply system (Lamers et al. 2015).  

Depot systems, when matched with the appropriate mode of transportation, could help reduce 

temporal and spatial biomass variability and allow access to greater quantities of sustainable 

biomass (including stranded resources) within a cost target by decoupling the biorefinery from 

feedstock location. Reducing profitability risks could also help leverage the reluctance from the 

investment community to invest in larger facilities, enabling production economies of scale. The 

variability of feedstock supply to biorefineries is recognized as an investment risk by financial 

institutions. Reducing the variability of feedstock supply will reduce associated project risks which 

will be reflected in the annual percentage rate for financing biorefineries. Also, depots will reduce 

the handling infrastructure (for raw biomass in various formats) at the biorefinery, improve in-

feed operations and thus reduce investment and operating costs. This should further reduce 

investment risks. While this comparison provides a first-of-a-kind holistic supply system 

perspective, future research is needed with respect to depot sizing, location, and ownership 

structures.  

6 Sustainability 

Defining and establishing metrics to effectively quantify sustainability is challenging, because there 

are many aspects of sustainability. Distinguishing the effects of bioenergy on the environment and 

society from the effects of alternative or baseline activities is difficult. Indicators can be useful 

tools for decision makers in policy and management if they provide practical guidance in an 

accepted way to quantify sustainability. While decision support tools can help in identifying 

indicators that are relevant for a particular system (Convertino et al. 2013), systematic 

approaches for selecting and using indicators are rare (Niemeijer and de Groot 2008, Lin et al. 

2009). Ongoing efforts have developed what resembles a shopping list of potential indicators that 

cover different aspects of sustainability. 

Five different indicator frameworks were reviewed to assess the sustainability of bioenergy: GBEP, 

ISO 13065, PROSUITE, LEEAFF and an approach developed for the U.S. Department of Energy. 

The frameworks are applied to the three country cases of mobilizing straw or corn stover to 

produce bioenergy, transportation fuels or bioproducts. The GBEP framework was applied to a 

Danish case, the GBEP, ISO 13065, PROSUITE and LEEAFF frameworks were evaluated for their 
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suitability to evaluate a supply chain under development to a case in Ontario, Canada, and the 

U.S. approach is described. The results of the analyses are discussed jointly to identify 

opportunities and barriers for straw and stover based bioenergy or bioproducts under different 

conditions, including policy, biophysical, environmental, economic, and social contexts. 

6.1 Sustainability goals of bioenergy 

Sustainability ensures the environmental, economic, and social needs of the present generation 

without compromising the ability future generations to meet their needs (United Nations General 

Assembly 1987). It relates to the life cycle of products that replenishes resources and is 

constrained by human and environmental needs over the long term (Seuring and Müller 2008).  

Environmentally, sustainability of the bioeconomy (including bioenergy systems) refers to the 

interaction of biophysical and ecological properties (e.g. soil conditions, surface and ground water 

quality and quantity, air quality, biodiversity, GHG emissions, and land productivity) (McBride et 

al. 2011) with environmental stressors, including human activities at several scales. 

Environmental sustainability may imply efficient use of natural resources, such as water (Juwana 

et al. 2012) and energy, and benign disposal of wastes (Sydorovych and Wossink 2008). Decisions 

about bioenergy management practices and the use of different feedstocks must consider 

variability of the ecoregions where bioenergy is produced. 

Economically, sustainability of bioenergy encompasses the relative costs associated with the life 

cycle of a complete supply chain and all its elements. Economic sustainability means that 

cultivation, processing, distribution, and end-use costs to purchasers of bioenergy are competitive 

with other energy sources and that social equity is facilitated while avoiding the obligation of 

unfair burdens on any particular location, region, or demographic group. For producers, costs, 

benefits and risks must be found competitive or advantageous relative to alternative land use and 

energy options. Economic sustainability tends to improve when purchases of supplies for 

production and borrowed capital are reduced, cash flow is adequate to cover operational expenses 

on time, and profits increase (Sydorovych and Wossink 2008).  

Socio-politically, sustainability of bioenergy implies fair access to energy and ecological resources 

and ensures that bioenergy production does not prevent people from secure access to food and 

fibre crops (Ewing and Msangi 2009) or disrupt livelihoods (e.g., employment, income, or safety) 

(Dale et al. 2013a).  

The concept of sustainability also includes respect for workers’ rights to equitable wages and 

working conditions, with safety as a primary goal. Human health and welfare implications of 

bioenergy are particularly important for marginal populations and developing countries, which rely 

on biomass as a primary fuel (Ewing and Msangi 2009).  

6.2 Regulatory context for bioenergy sustainability 

The regulatory context of bioenergy sustainability gives rise to specific priorities, which shape the 

definition of goals and objectives for analysis and choice of indicators. For example, requirements 

mandated by United States federal laws differ from regulations crafted by the European 

Commission3.  

                                                 

 

 

3 http://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/sustainability-criteria 

http://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/sustainability-criteria
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Title II of the U.S. Energy Independence and Security Act (EISA) of 2007 focuses on “energy 

security through increased production of biofuels” and defines reporting requirements for 

estimated environmental impacts of energy technologies (U.S. Public Law 110-140). EISA requires 

a life-cycle assessment of biofuel emissions, and the assessment must include direct emissions 

from bioenergy production as well as indirect emissions from land use change elsewhere in the 

world caused by the bioenergy production (Liska and Perrin 2009). Compliance with EISA requires 

measures of air, water, hypoxia, soil, pathogens, ecosystem health, biodiversity, and non-native 

vegetation. EISA mandated life cycle assessments must also consider trade of renewable fuels and 

feedstocks and environmental impacts outside the United States caused by biofuel production 

driven by the Renewable Fuel Standard (RFS). The RFS requires that transportation fuel sold in 

the U.S. contains a minimum of renewable fuels (Sissine 2007).  

The California Air Resources Board (ARB) established a Low Carbon Fuel Standard (LCFS), with the 

goal of “a reduction of at least 10 percent in the carbon intensity of California’s transportation 

fuels by 2020” (http://www.arb.ca.gov/fuels/lcfs/lcfs.htm). LCFS goals include a reduction of 

greenhouse gas emissions to 1990 levels by 2020, a reduction of the state’s dependence on 

petroleum, and the creation of a market for clean transportation technology. The regulation 

assigns scores for the carbon intensity of different biofuel supply chains including corn and sugar 

cane ethanol, cellulosic ethanol from farmed trees, and from forest waste. The assignment is 

based on a modified version of the Global Trade Analysis Project model (CARB-GTAP) and life cycle 

assessment of energy use and greenhouse gas emissions using the CA-GREET model 

(http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm), building on the GREET platform 

developed by Argonne National Lab. 

The European Union is working to improve the sustainability of energy options across Europe 

(European Parliament and the Council 2009). The EU’s Renewable Energy Directive (RED) and 

National Renewable Energy Action Plans (NREAP) has set a bioenergy target to be reached by 

2020, aimed at ensuring security of supply, promoting technological development and innovation 

and providing opportunities for employment and regional development, especially in rural areas 

(European Parliament and the Council 2009). Aware of the implications for developing countries, 

the European Union intends that growth in biofuel markets will be of benefit to European 

producers and developing nations alike.   

6.3 Identification of sustainability indicators for bioenergy 

The demand for sustainability indicators has come from several directions. From life cycle 

assessment advocates, regulators and the climate change community there has been a focus on 

GHG emissions that often overshadow other environmental, social and economic aspects of 

sustainability. There has also been disproportionate focus on the “sustainability requirements” for 

bioenergy without adequate support to use comparable criteria on alternative energy sources and 

land management systems, e.g. agriculture. Furthermore, many people active in the development 

and promotion of sustainability standards are effectively stakeholders as employed researchers 

and consultants with own interests in a growing demand for modelling, certification, verification 

and related studies (e.g., LCA, Product Codes, chain of custody, and sustainability audits). 

Acknowledgement of the need to establish sustainability indicators for bioenergy and associated 

measures has led to efforts to establish a standard suite of indicators. A suite of indicators can 

serve as a reservoir from which to compose subsets of indicators that meet specific goals. General 

agreement exists about the relevance of soil and air quality, water quality and quantity, 

greenhouse gas emissions, productivity, and biodiversity as categories of indicators of 

environmental sustainability (McBride et al. 2011). However, some indicators focus on 

management practices even though there is little scientific background to identify which practices 

http://www.arb.ca.gov/fuels/lcfs/lcfs.htm
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are “sustainable.” Furthermore, most existing approaches use indicators that are numerous, too 

costly, very broad or difficult to measure (McBride et al. 2011, Dale et al. 2013a).  

The host of standards and certification schemes for bioenergy sustainability can be categorized in 

many different ways. One characterizing variable is the object of analysis, which can range from a 

specific supplier to a national policy. An approach designed to show compliance with a certification 

scheme or demonstrate that a product is “fit for purpose,” will usually focus on a prescriptive set 

of indicators and documentation that must be prepared or presented to demonstrate that specific 

thresholds or targets are met. Other methods are designed to assess specific research questions 

related to the sustainability of processes, products, projects, policies and programs; these can be 

less prescriptive about documentation, are not necessarily concerned about threshold values, and 

focus more on replicable methods for data collection and analysis. Certification schemes and other 

sustainability assessment schemes can operate at different scales and be led by private or 

governmental entities.   

The multi-stakeholder, international Roundtable on Sustainable Biomaterials (RSB) provides an 

example of a voluntary certification scheme. RSB is a private effort that brings together farmers, 

companies, non-governmental organizations, experts, governments, and inter-governmental 

agencies concerned with the sustainability in production and processing of biomaterials. The RSB 

has established a set of principles that describe “the general intent of performance”, and criteria 

representing “objectives of performance which are measurably operationalizing a 

principle”(Roundtable on Sustainable Biomaterials 2011). An RSB indicator reflects the “outcome 

specifying a single aspect of performance” or a specific measurement associated with a criterion 

(Roundtable on Sustainable Biomaterials 2011). RSB principles include compliance with domestic 

and international laws for bioenergy production; design and operation under transparent and 

participatory processes; mitigation of climate change; consistency with human rights; contribution 

to the social and economic development of local, rural, and indigenous peoples and their 

communities; maintenance of food security; avoidance of negative impacts on biodiversity, 

ecosystems, and areas of high conservation value; improvement or maintenance of soil health; 

optimization of surface and groundwater use; minimization of air pollution; cost-effective 

production; and maintenance of land rights. Guidance for compliance with principles and criteria is 

given by the RSB, such as recommending that areas of high conservation value are mapped, 

native crops be preferred, ecosystem functions and services for an area of biomaterial production 

are locally identified, buffer zones and ecological corridors are identified and protected.   

As of 2 March 2015, the European Commission recognized the RSB and eighteen other voluntary 

schemes as acceptable ways to document compliance with its sustainability criteria (European 

Commission 2013). The approaches recognized by the EU must meet criteria related to GHG 

savings and land use, the latter to avoid disturbance to areas of high carbon stocks and 

biodiversity.  

6.3.1 GBEP 
The Global Bioenergy Partnership (GBEP) was established in 2007 to implement commitments 

taken by G84 in 2005. GBEP promotes bioenergy for sustainable development at the national level. 

GBEP is coordinated by the Food and Agriculture Organization of the United Nations (FAO) and 

includes 13 other international organizations (e.g. IEA, European Commission, IRENA, UNEP and 

                                                 

 

 

4 The Group of Eight. A forum for the governments of eight leading industrialised countries. 
Members are Canada, France, Germany, Italy, Japan, Russia (suspended as of 24 March 
2014), UK, USA and the European Union. 
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UNDP) and the world’s major economies among its 23 member nations. The partnership focuses 

its activities in three strategic areas: 1) Sustainable Development; 2) Climate Change; and 3) 

Food and Energy Security. In June 2008 GBEP established a task force on sustainability to develop 

‘a set of global science based criteria and indicators regarding the sustainability of bioenergy’ 

(GBEP 2011). GBEP developed a set of criteria and indicator categories (Hecht et al. 2009, GBEP 

2011), and is working to have examples of experiences and best practices including benchmarks 

regarding the sustainability of bioenergy (Hayashi et al. 2014). GBEP indicator categories include 

environmental, social, and economic considerations Figure 25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 25. The 24 sustainability indicators developed by GBEP (GBEP 2011). 

To evaluate the feasibility of working with the indicators and enhance the practicality as a tool for 

policy making a number of so-called pilots have been conducted in Columbia (FAO 2014a), 

Indonesia (FAO 2014b), Germany (Köppen et al. 2014), Ghana (Hanekamp et al. 2013), Japan 

(Hayashi et al. 2014) and the Netherlands (NL Agency 2012). 
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6.3.2 International Standard, ISO 13065 
Starting in 2009, experts from over 35 countries have been developing an international standard 

that communicates a common interpretation of sustainable bioenergy. The International Standard 

(ISO/DIS 13065) purpose and scope are as follows: 

This International Standard specifies sustainability principles, criteria and indicators for the 

bioenergy supply chain to facilitate assessment of environmental, social and economic aspects of 

sustainability. It is applicable to: 

The whole supply chain, parts of a supply chain or a single process in the supply chain.  

To all forms of bioenergy, irrespective of raw material, geographical location, technology or end 

use. 

This draft standard does not establish thresholds or limits and does not describe specific bioenergy 

processes and production methods, and compliance with this International Standard does not 

determine the sustainability of processes or products. 

Use of this International Standard is intended to facilitate comparability of various bioenergy 

processes or products, and it can also be used to facilitate comparability of bioenergy and other 

energy options.’ 

Principles, criteria and indicators have been agreed upon in the areas shown in Table 6.  

Table 6. Criteria and indicators of the ISO standard 13065. 

Environmental Social Economic 

Greenhouse gas 
(lifecycle) 

Human rights Economic sustainability 

Water Labour rights  
Soil Land use rights and land use 

change 
 

Air Water use rights  

Biodiversity   
Energy efficiency   
Waste   

 

The standard lays out what indicators should be addressed by an economic operator. In its present 

form, DIS 13065 follows the approach of asking how impacts related to a certain aspect are 

evaluated, what the impacts are and how the impacts are being addressed, etc. It appears to 

provide guidance on how sustainable bioenergy should be defined and lays out expectations for 

economic operators on what aspects should be identified and managed.   

6.3.3 PROSUITE 
PROSUITE (PROspective SUstaInability Assessment of TEchnologies) was an EU FP7 project 

aimed at developing rigorous and scientifically sound methodologies for assessing the 

sustainability of new technologies (Figure 26). New technologies, represented by four case 

studies, were evaluated over their whole life cycles from the perspectives of the three dimensions 

of sustainability. Building on environmental lifecycle assessment (LCA) methodology, a hybrid LCA 

model was developed for an integrated assessment that unites five major impact categories: 

human health, social well-being, prosperity, natural environment, and exhaustible resources.  
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Figure 26. Schematic overview of the PROSUITE framework. 

The output is presented in a user friendly manner for the five impact categories. Care must be 

taken to interpret the impacts correctly, i.e. some changes to more beneficial outcomes if they 

increase the impacts while others are more positive if they reduce impacts. 

Unlike GBEP and ISO 13065, the PROSUITE sustainability framework is not specific to bio-based 

applications. A biorefinery case (Meester and Dewulf 2013) was one of four cases used to develop 

and test the framework, but in theory this framework could be used to assess any new 

technology. One of its main advantages is that the impacts are considered to be independent of 

one another – enabling for a robust, quantitative integration. This has been a serious challenge for 

sustainability evaluations, enabling apples to be traded-off between with oranges and pears.  

6.3.4 LEEAFF 
LEEAFF is a six category sustainability assessment framework designed to identify and 

communicate sustainability issues for the development and design of new biorefineries (Table 7). 

It was a work product of IEA Task 42 Biorefineries that evaluated different ways of assessing bio-

based systems. As with the above-mentioned frameworks, LEEAFF also addresses the three pillars 
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of sustainability. The issues are grouped into six categories that represent the questions most 

frequently raised when discussing new bioproducts industry development. As shown below many 

of the sustainability aspects (issues) are the same as the ones addressed in previous frameworks.  

Table 7. Criteria and indicators of the LEEAFF framework. 

Category Sustainability issues 

Land Use Land ownership, land use conflicts, land use efficiency, food security 

Environment Impacts: Waste generation, greenhouse gases, air quality, water 

quality, water availability, soil health, loss of biodiversity,  

Benefits: Remediation services; carbon sequestration  

Employment Job creation, wages earned, education, new skills development 

Acceptability Landowner, company (economic operator), community, intra-industry, 
inter-industry, public; Health, noise, odour, well-being 

Financial Investment costs, operating costs, profitability, return on investment, 
markets for biorefinery products, incentives & subsidies, tax revenues 

Feedstock & Inputs  Biomass availability (security of supply for processors), water supply, 
energy supply, renewable and non-renewable resource use, limiting 
inputs 

 

The application of LEEAFF is intended to encourage users to think of sustainability from the start, 

and consider a project from a comprehensive 360° lens of relevant sustainability issues.  As in the 

case for most sustainability assessments, LEEAFF is used to make a relative evaluation, i.e. 

compare the 6 aspects of new system to an existing or reference system. Its aim is to prompt 

users to identify what they know and don't know with respect to the sustainability questions that 

are asked by a variety of stakeholders including investors, suppliers, consumers, policy makers 

and the community. It can be used qualitatively, which can be particularly useful at the start of a 

project or when data are lacking. Whenever possible, users are encouraged to include quantitative 

data that is either determined through measurement or estimated by standardized methodology. 

6.3.5 U.S. DoE Bioenergy Technology Office Sustainability Framework 
Oak Ridge National Laboratory (ORNL), on behalf of U.S. Department of Energy Bioenergy 

Technologies Office (BETO), has been developing a framework and useful set of measurable and 

meaningful indicators as they relate to biofuel production. It entails a set of indicators that cover a 

broad set of environmental categories including soil quality, water quality, greenhouse gas 

emissions, air quality and productivity. In each of these categories a set of meaningful indicators 

was identified that can be measured and tracked over time (McBride et al. 2011). The 

recommendation is that sustainability should be applied across the entire biofuel supply chain. 

Figure 27 identifies the sustainability indicators as they apply to each of the supply chain 

components. 
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Figure 27. Application of sustainability indicators to different supply chain components (Efroymson 

et al. 2013). 

ORNL has also developed a separate set of socioeconomic sustainability indicators (Dale et al. 

2013a). The selection criteria for bioenergy sustainability is based on the availability of 

information about socioeconomic conditions for each category, on other efforts to identify sets of 

indicators, and on established criteria for selecting indicators (Figure 27). Dale and Beyeler (2001) 

analysed existing literature on indicator selection to identify key criteria: 

 practical (easy, timely, and cost-effective to measure), 

 sensitive and responsive to both natural and anthropogenic stresses to the system, 

 unambiguous with respect to what is measured, how measurements are made, and how 

response is measured, 

 anticipatory of impending changes, 

 predictive of changes that can be averted with management action, 

 estimable with known variability in response to changes, and  

 sufficient when considered collectively (i.e., a suite of indicators integrates changes in 

socio-economic sustainability) (Dale and Polasky 2007). 

Indicators meeting these criteria should allow users to set targets and create incentives for 

continual improvement toward more sustainable processes. Furthermore, indicators should 

provide comparable measurements of performance across different contexts where they will be 

applied. Additional standards apply to the data used to support indicator measurement, e.g., data 

validity, reliability, quality/uncertainty, timeliness, and representativeness. 

A few of the other attempts to develop sustainability indicators, standards, or principles relevant 

to bioenergy include those of the Council on Sustainable Biomass Production (CSBP), Biomass 

Market Access Standards (BMAS), Keystone Alliance for Sustainable Agriculture, Sustainable 

Forestry Initiative, World Wildlife Fund of Germany, and Sustainable Biodiesel Alliance, as well as 

efforts that target particular feedstock crops such as sugar cane (e.g. Bonsucro-Better Sugarcane 

Initiative, Greenergy) and oil palm (e.g. Roundtable for Sustainable Palm Oil).  
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While forestry standards groups such as the Forest Stewardship Council (FSC), and the 

Sustainable Forestry Initiative (SFI) address sustainable forest management for production of any 

forest product, they do not require greenhouse gas emissions accounting and therefore need to 

link to another method or scheme to document compliance with GHG-related criteria.  

Researchers have proposed less formal lists of sustainability indicators for bioenergy. McBride et 

al. (2011) suggested 19 indicators for environmental sustainability for bioenergy in six categories: 

soil, water, air, greenhouse gas emissions, biodiversity, and plant productivity. Evans et al. (2010) 

propose indicator categories of price, efficiency, greenhouse gas emissions, availability, 

limitations, land use, water use, and social impacts for electricity generation from biomass. Dale et 

al. (2013a) identified 16 socioeconomic indicators of bioenergy sustainability that fall into the 

categories of social well-being, energy security, trade, profitability, resource conservation, and 

social acceptability. Efforts like these are driven more by the need for consistent methods that 

could facilitate comparable, science-based assessments (Dale and Beyeler 2001) than by the need 

for compliance certification. While some indicators are commonly identified by experts (Buchholz 

et al. 2009) other frameworks present approaches for indicator selection that targets key 

components of the three pillars of sustainability (social, environmental and economic). Some 

emphasize quantifiable indicators, others emphasize qualitative targets, and others again stress 

documentation requirements to permit audit and verification. Some favour sustainability goals that 

may be more socially than scientifically determined. While most are working toward the 

development of a general set of indicators, there are no generally accepted frameworks for 

selecting goal-relevant and/or contextually meaningful indicators.  

6.4 Framework for selecting and evaluating sustainability indicators 

The following describes a framework (Figure 28) that guides indicator selection towards relevance 

to specific sustainability goals and the values that shape them, and to the objectives of the 

particular bioenergy sustainability analysis. The framework helps stakeholders to articulate their 

goals and values and to narrow the long list of potential indicators to those most useful in a 

particular situation. Determining what groups constitute relevant stakeholders and reach 

agreement of relevant goals among those groups is neither trivial nor easy. Diverse perspectives 

and groups have interests in the outcomes and implications of bioenergy projects (Cuppen et al. 

2010). Use of the framework should increase the prospects for relevance to stakeholders (Rickard 

et al. 2007), facilitating the development of indicator sets that are well suited to stakeholder 

priorities.  
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Figure 28. A framework for selecting and evaluating indicators of bioenergy sustainability. Steps 

for the framework are shown in blue; supporting components of the assessment process are in 

green. Note that steps 1, 2, and 3 interact and occur concurrently. Adopted from (Dale et al. 

2015). 

These aspects of the framework should be defined simultaneously, because discussions in one 

area inevitably raise questions in another. For example, an analysis of goals leads to questions 

about the context in which the goals are placed. Who the stakeholders are depends on context 

and how overarching goals are defined. The goals themselves vary in meaning for different 

stakeholders, and acceptability of trade-offs between goals depends on the stakeholders. Goals 

are value driven, and bioenergy sustainability indicators may be thought of as measures of those 

values (Turnhout et al. 2007). Because multiple communities (e.g., policymakers, scientists, 

industries, farmers, or particular sectors of the public) with differing priorities and values have a 

stake in bioenergy sustainability, an indicator selection process that ensures that values do not get 

buried beneath technical details is more likely to yield lasting results. Hence, the process of 

selecting indicators can be hindered by apparently conflicting differences among stakeholders. It is 

sometimes better to retain a larger set of indicators rather than to seek efficiency and exclude key 

stakeholder groups. In other situations, one stakeholder may impasse progress, and the larger 

group of stakeholders may move forward on the indicator selection process acknowledging that 

some concerns are not being addressed.  
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The steps in the framework depicted in Figure 28 are discussed in detail in appendix B.   

6.5 Selecting and evaluating sustainability indicator frameworks  

The different sustainability frameworks bear much similarity in terms of the ultimate goal of 

sustainable development, and what should be included in this concept.  While the indicators are 

not identical, there is a common core set of environmental indicators, and much similarity 

between economic indicators. The greatest variation appears amongst the social indicators. What 

differ between the frameworks is intended user and application, and the resulting information, and 

the time and effort needed to complete an assessment.  

At the start of the Inter-Task project, the intention was for all of the countries to use a common 

sustainability framework, namely GBEP. As the project progressed other frameworks were 

identified, and the three countries navigated towards different sustainability frameworks. All of the 

frameworks examined consider the three sustainability dimensions that is environmental, 

economic and social sustainability. A high level comparison of the frameworks, presented in Table 

8 shows the frameworks to have very similar indicators. Most congruence can be found among the 

environmental indicators with all frameworks addressing climate change, air pollution, water use 

and pollution, soil health and biodiversity. Resource use is also included in all frameworks but in 

some cases it falls under the environmental pillar while in others it is seen as more of an economic 

matter. There is less congruence between the indicators that are grouped as being economic and 

social matters. This is mainly due to the scale of the application that the framework is targeted to 

assess, e.g. project level vs. national picture. 

In general, GBEP and PROSUITE frameworks take a more macro level perspective than LEEAFF or 

the U.S. ORNL approach based on McBride et al. (2011) and Dale and Beyeler (2001). GBEP and 

PROSUITE better address issues specific to developing countries. Only ISO 13065 includes human 

rights, labour rights and water use rights. The ISEAL Alliance's 10 credibility principles for 

sustainability standards - sustainability (goals); improvement; relevance; rigour; engagement; 

impartiality; transparency; accessibility; truthfulness and efficiency - could be used to compare 

frameworks in a more thorough manner. As shown in Table 8 many of the LEEAFF sustainability 

indicators are the same or very similar to those of the other frameworks. The main differences are 

how the information is organized, i.e. the six impact categories, and that it provides useful 

information to stakeholders even when used in qualitative mode.  LEEAFF can be used as a quick 

screening tool to scan what is known and not known, to compare different pathways, and to 

identify the vulnerable areas that should be addressed in the development process. 

As discussed by (Dale et al. 2015), the goal of the assessment will be key to determining the most 

relevant sustainability indicators, and hence the most applicable framework for a particular 

assessment. One needs to know the user, the application and the type of desired output 

information as well as the effort and time needed to complete the assessment.   Therefore some 

of the key initial steps in developing an effective framework for selecting and evaluating indicators 

include clearly defining sustainability and other goals and objectives for analysis, developing 

practical criteria for selecting indicators that relate to the goals, and applying the criteria to select 

indicators of bioenergy sustainability (Dale et al. 2015). Emphasis should be put on those 

indicators that contribute most to achieving identified goals.  The iterative process facilitated by 

most frameworks, including the refinements based on stakeholders’ involvement, contributes 

significantly to goal clarification, indicator development, and continual improvement in assessing 

the sustainability of bioenergy systems. Many challenges are associated with these steps. Ideally, 

the objectives for analysis should be defined only after potential synergies and trade-offs among 

stakeholder goals are considered. This is, however always challenging and becomes untenable at 

large scales. 



53 

Selecting indicators using a formal framework can 

 contribute to stakeholders’ understanding of sustainability and other goals,  

 ensure that important stakeholder concerns and priorities are considered in the process of 

selecting indicators, 

 develop an indicator set that is well-suited to the sustainability goals and objectives of the 

analysis, and 

 yield a good cost-to-benefit ratio.  

Also, for sound interpretation and confidence in the decision, there should be a common 

understanding of how much confidence or weight to place on the different indicator values. 

PROSUITE, for example, uses a pedigree matrix to rate the data and information on a scale of 1 to 

5 with respect to their reliability, completeness, temporal correlation, geographical correlation and 

technological correlation.  

While the frameworks reviewed propose how sustainability should be described, none of the 

frameworks bring the user to the point where it can be said that biomass to bio-product pathway 

X is more sustainable than pathway Y.  They enable the comparison of how X and Y rate with 

respect to defined sustainability indicators, or can track progression of a pathway over time if time 

series data are available. This outcome might not be adequate for some who search for a more 

definitive result.   
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Table 8. Comparison of indicators of the different assessment frameworks in the three pillars of 
sustainability 

Environmental GBEP PROSUITE LEEAFF U.S. ORNL 

Greenhouse 
Gases 

GHG lifecycle emissions Impact on Natural 
Environment 
(climate change) 

Change in CO2e 
(CO2, CH4, N2O) on 
lifecycle basis - 
decrease in value is 
positive; 
comparison with 
non-bio-based 
product - the lower 
value of bio-based 
product is positive 

 CO2e  
(CO2, CH4, 
N2O) 

Air Quality Emissions of non-GHG air 
pollutants, including air 
toxics 

Ozone depletion, 
acidification, 
photochemical 
ozone formation) 

Change in Criteria 
Air Contaminants 
or Emissions that 
are Locally of 
Concern  

Tropospheric 
ozone; carbon 
monoxide; 
particulate 
matter 

Water Quality Pollutant loadings 
attributable to fertilizer 
and pesticide application; 
pollutant loadings 

attributable to bioenergy 
processing 

Impact on 
freshwater 
environment 
(climate change, 

eutrophication, eco-
toxicity); impact on 
marine environment 
(eutrophication, 
eco-toxicity) 

Change in 
Regulated Water 
Quality Parameters 
for surface water 

and ground water; 
Quality parameters 
that are of local 
concern 

Stream nitrate 
concentration; 
stream 
phosphorus 

concentration; 
Stream 
suspended 
sediment 
concentration; 
Stream 
herbicide 
concentration; 

Soil Quality % of land for which soil 
quality, in particular SOC 

is maintained or improved 

Impact on 
terrestrial 

environment (land 
use) 

Change in Soil 
Quality 

Parameters; 
Quality parameters 
that are of local 
concern; Soil 
erosion; Soil 
Organic Carbon; 
Soil Compaction; 
Nutrients 

Total organic 
carbon, Total 

nitrogen, 
Extractable 
phosphorus, 
Bulk density 

      Environmental 
Benefits;  Soil 
remediation - 

reduction in soil 
contaminants in soil 
is positive; Ability 
of product to be 
bio-degraded or 
composted 

  

Biodiversity % of area of high 
biodiversity value 
converted to bioenergy 
production; % of area 

used for bioenergy 
production where invasive 
species are grown; % of 
area used for bioenergy 
production where 
conservation methods are 
used 

Impact on 
terrestrial 
environment 

Change in 
Biodiversity 
Indicators or 
Species that are 

Locally of Concern; 
increase in value 
over time is 
positive  

Taxa of 
special 
concern 
(presence, 

habitat area) 
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Biomass Use Annual harvest by volume and % of 
net growth or yield; % of harvest 
used for bioenergy 

  Biomass 
availability 
(yield, current 
and long term 

average and 
biomass 
consumption) 

  

Water Use  Volume of water withdrawn for 
feedstock production; volume of 
water withdrawn for bioenergy 
production 

Impact on 
freshwater 
environment; 
impact on 
marine 
environment 

Water 
availability 
(current and 
long term 
average) and 
water 
consumption) 

Storm flow; 
minimum 
flow; 
Consumptive 
use 
(agriculture, 
biorefinery) 

Non-
Renewable 
Resource Use 

  Impact on 
mineral 
depletion; 
Impact on fossil 
depletion 

Fossil fuel 
consumption; 
consumption 
of other major 
non-renewable 
resources 

Resource 
conservation 
(Depletion of 
non-
renewable 
resources; 
Fossil energy 
return on 
investment) 

Acceptability   Social well-
being 
(Autonomy; 
Equality; 
Safety, 
Security, 
Tranquillity; 
Participation 
and Influence) 
and Human 

Health 

Company; 
Industry 
(intra); 
Industry 
(inter); 
Community; 
Consumers; 
Risk Tolerance 

Social 
acceptability 
(Public 
opinion; 
Transparency; 
Stakeholder 
participation; 
Risk of 
Catastrophic 
event) 

Land Use and 
Land Use 
Change 

% of total land area used for 
bioenergy; Biomass sources of 
bioenergy; Net annual rates of land 
conversion  

  Land use 
efficiency, land 
use change 

  

Allocation and 
Land Tenure 

% of land used for bioenergy 
production allocated via (1) legal 
instrument or domestic authority; 

(2) due process is provided and 
procedures are followed for 
determining land title 

 Social well-
being  

Land 
ownership, 
land use 

conflicts, 
unresolved 
land claims 

  

Labour rights Social Social well-
being: 
Autonomy 
(child labour, 
forced labour)  

    

Food security Effects of bioenergy use and 
production on the price and supply 
of a food basket 

    Social well-
being 
(Change in 
food price 
volatility) 

Change in 
income 

Change in income from wages paid 
in bioenergy sector and net income 
of self-employed households from 
the sale, barter and own 
consumption of bioenergy 

Social well-
being: Equality 
(regional 
income 
inequalities; 

global 
inequalities) 

  Social well-
being 
(Household 
income) 
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Employment in 
bioenergy 

Net job creation; total number 
of jobs in bioenergy sector; % of 
jobs adhering to recog-nized 
labour standards 

Social well-
being: Safety, 
Security and 
Tranquillity 

(total jobs; 
knowledge 
intensive jobs) 

Job creation, 
job retention, 
job type 

Social well-being 
(Full time 
equivalent jobs) 

Unpaid labour Change in unpaid time spent by 
women and children to collect 
biomass 

      

Access to 
bioenergy 

Total amount and % of 
increased access to modern 

bioenergy; total number and % 
of house-holds and businesses 
using bioenergy 

      

Mortality and 
Disease 
Attributed to 
Indoor Smoke 

Change in mortality and burden 
of disease attributable to indoor 
smoke 

      

Occupational 

injury, illness, 
fatalities 

Incidences of occupational 

injury, illness and fatalities in 
the production of bioenergy in 
relation to other sectors 

Impact on 

Occupational 
Health 

Occupational 

Health and 
Safety 

Social well-being 

(Work days lost 
to injury) 

Productivity Measured as (1) productivity of 
bioenergy feedstock; (2) 
processing efficiencies; (3) 
amount of bioenergy per ha per 
year; (4) production cost per 
unit of bioenergy 

Impact on 
Prosperity: 
(Labour 
productivity; 
Capital 
productivity; 
Resource 

productivity; 
Impact on 
novelty) 

Resource 
efficiency, 
energy 
efficiency 

Above ground 
net primary 
productivity 

Net Energy 
Balance 

Ratio of energy used in 
bioenergy value chain over 
energy used in other energy 
value chains 

 Energy 
efficiency and 
GHG lifecycle 
emissions 

  

Gross Value 
Added 

Gross value added per unit of 
bioenergy produced; gross value 
added as % GDP 

     

Economic 
Sustainability 

  Impact on 
Prosperity 
(Micro analysis 
-  CAPEX, OPEX 
and End of Life 
Expenditure, 
Direct and 

Indirect 
Labour) 

Investment 
costs; Return 
on investment; 
Net present 
value 
Wages; Taxes 
Incentives, 

Subsidies 

Return on 
investment; Net 
present value 
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Macroeconomic 
Impact 

  Impact on 
Prosperity 
(Macro analysis 
- 

Pervasiveness, 
Import 
Dependency, 
Structural 
Index, Financial 
Risk, Capital 
Productivity, 
Labour 
Productivity, 
Resource 
Productivity, 
Novelty, GDP) 

    

Market Demand   Impact on 
Prosperity 
(Macro 
analysis): 
includes 
market analysis 
and 
assessment of 
novelty 

Demand 
growth for 
bio-products; 
existing or 
new 
products; 
existing or 
new markets; 
potential 
threats 

External 
trade (trade 
volume, 
terms of 
trade) 

Change in 
Consumption of 
Fossil Fuels 

% substitution of fossil fuels 
with bioenergy; % 
replacement of traditional 
biomass use with modern 
bioenergy 

Impact on 
Exhaustible 
Resources 
(impact on 
fossil 
depletion) 

Fossil fuel 
consumption; 
energy 
consumption;  
% renewable 
energy 

  

Training and 

requalification of 
workforce 

% of trained workers in the 

bioenergy sector workforce; 
% of re-qualified workers  

 Education 

level, New 
Training, Job 
retention 

  

Energy diversity Change in diversity of total 
primary energy supply 

 Energy type,  
% renewable 

Energy security 
(Energy security 
premium; Fuel 
price volatility) 

Infrastructure and 

logistics for 
distribution of 
bioenergy 

Number and capacity of 

routes for critical distribution 
systems 

      

Capacity and 
flexibility of use of 
bioenergy 

Ratio of capacity for using 
bioenergy with the actual 
use; flexible capacity that can 
use bioenergy or other types 
of energy 
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6.6 Governance issues to meet sustainability criteria and facilitate 

mobilisation 

Additional economic and social opportunities arise, together with environmental concerns when 

crop residues are collected. This includes particularly issues related to the soil, for example 

conservation of soil organic matter and nutrients, soil erosion and water runoff, wind erosion, soil 

water issues. 

6.6.1 Natural resource policy and regulation in the agricultural sector 
In the EU, the cross-compliance principles of the Common Agricultural Policy (CAP) were 

introduced in 2003. Cross-compliance is a mechanism that links agricultural subsidies with the 

farmers’ compliance with basic standards concerning the environment, food safety, animal and 

plant health, animal welfare, and maintaining land in good agricultural and environmental 

condition (Europan Commission 2009). It varies among Member States in which form the 

requirements have been implemented; in Denmark 105 requirements have been formulated under 

the cross-compliance requirements (Ministeriet for Fødevarer 2015). 

Except for straw recommended as an option for mandatory bedding in animal farming, only one of 

the EU cross-compliance requirement concerns straw in prohibiting its burning in open fields. The 

requirement contributes to fulfilling overall criteria such as protection against soil erosion, and 

maintenance of soil organic matter and soil structure. In the U.S. and some parts of Canada, 

excess crop residues can be burned to facilitate seeding.  However, this is the exception rather 

than the rule, and permits are required.  The Province of Ontario, the location of the Canadian 

case study, has a ban on open burning.  As in Europe, most crop residues are chopped and 

reincorporated into the soil. 

Agricultural producers in the United States generally are subject to only few mandatory 

conservation measures (Endres 2010), but agricultural policies do include incentives to set aside 

lands for conservation purposes. The Conservation Reserve Program (CRP), established by the 

1985 Farm Bill, is for example the largest conservation program in the United States by acreage 

and expenditures. Later programs focus more on conservation through management practices, 

and it has become an option to participate in “working lands” environmental enhancement 

programs such as the Conservation Security Program (CSP, initiated with the 2002 Farm Bill, with 

substantial changes in 2008), The Environmental Quality Incentives Program (EQIP, initiated 

1996), and the Agricultural Management Assistance (AMA). Other such programs have existed, for 

example The Wildlife Habitat Incentives Program (WHIP), which was repealed in 2014, with parts 

of its contents rolled into EQIP. The Biomass Crop Assistance Program (BCAP), introduced with the 

2008 Farm Bill, and reauthorized with modifications by the 2014 Farm Bill, provides direct financial 

support for energy biomass cropping, and require sustainable practices in both agriculture and 

forestry (Endres 2010). These programs, however, do not specifically address crop residue 

removal. 

In Canada, agriculture producers are encouraged to have environmental farm plans which identify 

their specific environmental risks and outline their mitigation plan. Provincial and federal 

environmental regulations related to waterways, pesticide application, etc. must be adhered to. 

6.6.2 Best management practices in the agricultural sector 
In Denmark the extension services provide comprehensive information and advice on several 

issues around straw removal, including handling, logistics and economy. They also inform and 

advice about possible impacts on soil carbon contents, even if Best Management Practice 

guidelines (BMPs) have not yet been established. The basis for guidance to farmers is the so-

called Dexter-index (the ratio between clay and soil carbon), which has been suggested as a way 

to assess when and where soil carbon contents are critical to maintenance of appropriate soil 

physical properties. It builds on the observation that SOM effects on soil physical properties 
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depend on the size of the clay fraction of the soil, with SOM increasing significantly at a Clay/SOC 

ratio below 10 (Dexter et al. 2008).  

Comprehensive BMPs for management of crop production have been elaborated in the U.S. and 

Canada by universities, extension services, and government bodies, such as the U.S. Department 

of Agriculture (USDA), often in collaboration. Such BMPs commonly address residue management 

as a measure of soil conservation (e.g. USDA Natural Resources Conservation Service and 

University of Wisconsin - Extension (2000), (Government of Alberta: Agriculture and Forestry 

2004). Crop residue harvesting is rarely considered in these BMPs, but scattered specific 

guidelines do exist that explain the conservation issues that need to be considered (Wortmann et 

al. 2012). No quantitative guidance is given on the amount that can be removed in different 

conditions, and such assessments must rely on the farmers own experiences. In the future, more 

specific guidelines for the quantities of residue that can be harvested without soil degradation can 

perhaps be based on knowledge on functional relationships for example between soil loss and rain 

fall, runoff, slope steepness, soil erodibility, cover-management, slope length and supporting 

practices, or between wind erosion and soil erodibility, soil ridge-roughness, climate, unsheltered 

travel distance of wind across a field, and the vegetative cover (U.S. Department of Energy 2011). 

Compensation measures are also addressed in guidance to farmers, both in Denmark and North 

America. Such measures include addition of organic matter with manure (Christensen 2002), even 

if this cannot reduce evaporation and trap snow like crop residue (Wortmann et al. 2012, Neary 

2015). Another mitigation measure is the use of cover crops that can also replace carbon 

removals, improve water management and act to protect the soil against erosion and damage to 

soil structure (Christensen 2002, Wortmann et al. 2012, Neary 2015). Finally, an increased 

number of years with grasses/clover in crop rotation systems will also contribute to soil carbon 

conservation.  

The European Bioeconomy Panel and the Standing Committee on Agricultural Research Strategic 

Working Group (EBP/SCAR 2014) generally considers that adoption of existing and new innovative 

best practices around the world has huge potential to increase productivity and thus the biomass 

supply, without increasing the demand for land. In this regard, crop residue harvesting may be a 

low-hanging fruit, if scientifically and practically sound BMPs for efficient and sustainable 

harvesting can be established. 

In Canada, statistics are reported through the Farm Environmental Management Survey which 

tracks the use of no-till practices and recently the use of cover crops. Agricultural producers often 

use cover crops after harvesting a winter wheat crop. Many producers in Ontario are 

experimenting with the planting of cover crops prior to harvesting of soybeans and corn. In 

Ontario, 2016 marks the year of the 25th anniversary of the Environmental Farm Plan (EFP) which 

was developed as a producer risk assessment tool for environmental matters on farm landscape. 

Through government programming under Growing Forward, producers are incentivized to review 

and, if necessary, change their practices to achieve specific environmental outcomes. Since 2016, 

Ontario livestock sector is subject to nutrient management regulations covering storage and 

spreading of livestock manure. 

The Canadian Grains Council initiated the Canadian Roundtable for Sustainable Crops (CRSC) in 

2013 to address the growing global demand for sustainably produced grains, oilseeds and 

agricultural products. The CRSC is currently developing an Assurance Protocol that will be applied 

by the CRSC to verify on behalf of agriculture producers that grain grown in Canada will meet a 

set of core sustainability indicators. A metrics platform is being built that includes tools, datasets 

and pilot testing. The work is expected to be completed in 2018. All major exporting grain and 

food crops growers and grain handlers participate in the CRSC, as well as several ENGOs. 



60 

6.6.3 Regulation in the bioenergy sector 
Apart from agricultural land management sustainability requirements are emerging in energy 

regulation. The U.K. was first in establishing a regulatory scheme that requires carbon and non-

carbon sustainability of both transportation biofuels (Renewable Transport Fuels Obligation 

(RTFO), electricity and heat (Renewables Obligation (RO), Domestic and Non-domestic Renewable 

Heat Incentive (RHI). The environmental principles and criteria of the RTFO include ecosystem 

carbon conservation (above and belowground stocks), biodiversity and soil conservation, 

sustainable water use, and air quality, while the social principles include workers’ and land rights.  

The EU followed with the Renewable Energy Directive in 2009 (European Parliament and the 

Council 2009), which include sustainability criteria for transportation and liquid biofuels. These 

criteria address greenhouse gas emission (GHG) savings, biodiversity and prohibition of 

conversion of land with high carbon stocks, and compliance with cross-compliance requirements of 

CAP. Similar to the cross-compliance principles from agriculture, energy producers receive 

subsidies only if they show compliance with sustainability criteria/conservation requirements. In 

the U.S., the Renewable Fuels Standard (RFS) mandates that transportation fuel sold in the United 

States contains a minimum volume of renewable fuel. RFS include minimum threshold 

requirements for GHG emission reductions, but no non-carbon requirements (Endres 2010, U.S. 

Environmental Protection Agency 2015) 

In Europe, the documentation that sustainability criteria are met relies on a meta-standard 

approach, where various verification measures can be used; sometimes in combination. The exact 

requirements for verification depend on the specific legislation, but may include reporting GHG 

balance using provided calculation tools, private certification, or similar documentation assessed 

from case to case (Endres 2010, Stupak et al. 2016). The verification of compliance with CAP 

takes place through CAP legislation that again relies on a large complex of other legislation for 

implementation and documentation.  

Energy from crop residues relatively easily fulfil threshold values for GHG emission reductions 

(21–58 % for cereal straw), but there are critics claiming that current methodologies, e.g. of the 

EU Renewable Energy Directive, do not adequately take account of impacts on soil carbon stocks, 

and that this may shift emission reductions from positive to highly negative (Whittaker et al. 

2014). 

In North America, initiatives such as the Clean Power Plan in the U.S. and climate change planning 

at the state-province levels in both countries are expected to clarify the role of biomass, how 

biogenic emissions are to be accounted for and the criteria that need to be met for soil carbon 

sequestration.  

6.6.4 Barriers to regulatory oversight of bioenergy and the bioeconomy 
Bioenergy production involves numerous sectors, ranging from waste production, land 

management, energy production and transportation. In most countries these policies and 

regulations are shared by different Ministries who are responsible for agricultural, forestry, 

environment, energy, manufacturing, and regional economic development. With the increasing 

emergence or shift to the use of crop residues in integrated and cascading production of various 

biomaterials, biochemicals and different bioenergy forms, even more sectors become involved. 

The oversight of these new bio-economic value chains become highly complex, with relevance and 

probably overlap of existing regulation from different sectors (Det Nationale Bioøkonomiudvalg 

2014, EBP/SCAR 2014). This increases the need for comprehensive coordination among sectors 

and the associated ministerial responsibilities. Sometimes the regulation of one sector might 

unintentionally prevent policy goals from being achieved in another sector, with consequences in 

relation to deployment of the bio-economy. 
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A survey in Denmark (NaturErhvervstyrelsen 2015) identified such regulatory barriers, including 

application requirements when introducing new technologies (Algae - ‘blue’ biomass), and 

classification of residue/waste products may hinder new uses (waste from meat production - ‘red’ 

biomass), including use of waste products for soil amendment Barriers in energy legislation 

includes the absence of mandated use of second generation biofuels (straw – ‘yellow’ biomass), 

with the National Bioeconomy Panel recommending a mandated blending requirement of 2.5%, 

valid until 2030, to kick-off a hesitating bio-refining industry, that is currently seeking to develop 

their business potentials in other countries. Other legislation with strict requirements to 

organization and municipal participation in heat production projects furthermore makes it difficult 

to obtain loans for investments with state or municipalities guarantees. This kind of challenges 

likely exists also in other countries. 

Part of the challenge is developing a bio-economy based on sound and sustainable environmental, 

social and economic principles that are well aligned for all biomass and all its end-uses. Especially, 

legal requirements for certain biomass production systems in the land use sector should not 

depend on an end-use that does not influence the biomass production. It is also important that 

there is level competition on sustainability parameters for those products with which the bio-

economy competes (Det Nationale Bioøkonomiudvalg 2014), even if it may still be desirable to 

have private regulatory mechanisms for showing excellence in sustainability performance above 

other actors in the market, in order to meet different consumer priorities. 

The verification of biomass sustainability continues to be a challenge (Stupak et al. 2016). The 

European Bioeconomy Panel and the Standing Committee on Agricultural Research Strategic 

Working Group recognize the value of existing regulation and certification systems to document 

sustainability of the biomass, but also consider that creating more of the same may not be the 

best way forward (EBP/SCAR 2014). In line with approaches being developed e.g. by the U.K. and 

the private certification system Sustainable Biomass Partnership (SBP), they propose that a 

system for issuing certificates of origin from so-called Sustainable Biomass Regions are 

established. They consider that a regional/urban approach may be more useful for further 

promoting and ensuring sustainable forestry, agriculture and marine/aquatic practices. Like 

others, they suggest that the approach can reduce costs and administrative complexity and ease 

commitment of primary producers, while at the same time being able to account for shifts in 

demand and divergent natural or social circumstances and needs.  

With respect to agricultural residues, they are a by-product of grain production and dedicated for 

bioenergy production.  That is agriculture producers are managing their land to grow the grain 

crop to meet the requirements of the global wheat or corn markets.  Food and feed companies are 

increasingly requiring evidence of sustainable production, and a number of schemes have emerged 

(e.g. Unilever, Cargill, etc.).  It is envisioned that the end result will be market-driven, end-user 

requirements for best management practices to meet a number of environmental and social 

indicators.  At present, residue removal is not explicitly described in these emerging schemes for 

sustainable agriculture.  There is growing unity among world scale retailers and food service 

providers to adopt meaningful sustainability criteria that are both suitable for their supply chains 

as well as supporting public policy on governments’ commitments to meet GHG targets and other 

environmental goals. 

7 Case studies - Sustainability analysis of 

bioenergy supply chains 

This section presents three case studies of sustainability analysis of bioenergy supply chains based 

on agricultural residues. The case on Denmark covers the use of straw for combined heat and 

power production (CHP) and bioethanol and applies the GBEP framework. The U.S. case 

generically describes the application of the framework developed by Oak Ridge National 
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Laboratory. Lastly the Canadian case looks at the use of corn stover for high value bio-products 

and bioenergy. 

7.1  Cereal straw for CHP and bioethanol in Denmark 

The case study on Denmark applies the GBEP methodology to evaluate two different supply 

chains: 1) cereal straw for combined production of heat and electricity (CHP), which has been an 

operational business case for more than 20 years, and 2) cereal straw for 2nd generation ethanol 

production, which has taken place on demonstration scale since 2009. 

10 of 24 sustainability indicators were selected for the study. Indicators were omitted for reasons 

of lack of sufficient data (indicators 6, 16, 19, 21, 23 and 24) or lack of relevance to the specific 

context (indicators 3, 5, 8, 9, 10, 13, 14, and 15). See Figure 25 above for a description of the 

indicators. The three pillars of sustainability are not equally represented in the analysis; there is 

an overweight of indicators from the environmental and economic pillars. 

In line with the GBEP methodology the geographical scope is the nation of Denmark (excluding the 

Faroe Islands and Greenland). With regards to the temporal scope the methodology is expanded 

to calculate, where possible, a development in indicator values instead of a value for a specific 

year. The GBEP methodology does not apply threshold values or specific targets for each indicator, 

and we find the development in indicator values more informative than specific values. For this 

analysis the reference year is 2000 and the period of interest the following 10-12 years. 

7.1.1 Indicator 1: Lifecycle GHG emissions 
Indicator 1 quantifies lifecycle greenhouse gas emissions from bioenergy production and use. This 

quantification is based on a review of current literature. A number of LCA studies have been made, 

which include scenarios relevant to this evaluation. 

A recent consequential LCA with the functional unit of 1 kWh of electricity from straw fired CHP 

(Nguyen et al. 2013a) found an energy output of 1005 kWh electricity and co-product output of 

8.7 GJ heat per ton straw. GHG emissions (GWP) were assessed to 0.35 kg CO2eq kWhel
-1. Fossil 

reference scenarios yielded 0.976 kg CO2eq kWhel
-1 with coal as fuel, and 0.423 kg CO2eq kWhel

-1 

with natural gas as fuel (Table 9). The marginal benefit of straw to CHP is 0.626 kg CO2eq kWhel
-1 

when displacing coal and 0.073 kg CO2eq kWhel
-1 when displacing natural gas. Nguyen et al. 

(Nguyen et al. 2013a) also looked at the attribution of GHG emissions (and other impacts) to 

different processes in the straw to CHP supply chain and found that straw removal and the 

subsequent reduction in soil carbon is the main contributor. The utility company Vattenfall  

(Vattenfall 2013) has made an LCA based product declaration of various energy production 

systems in the Nordic countries. The straw to CHP production system is based on data from one of 

the largest straw fired plant in Denmark (Amagerværket). Vattenfall use the same functional unit 

1 kWh electricity) as (Nguyen et al. 2013a) but apply an attributional LCA methodology and 

different system boundaries. GHG emissions are assessed to 0.1 kg CO2eq kWhel
-1  i.e. 

considerably lower than (Nguyen et al. 2013a). An explanation for this large difference may be 

found in methodological approach (consequential vs. attributional LCA), but probably the main 

reason relate to changes in soil carbon that was not included in the Vattenfall study. Straw 

removal and subsequent changes in soil carbon accounts for approximately 80% of GWP in 

Nguyen et al. (2013a). Another recent LCA study including a straw to CHP supply chain (Parajuli et 

al. 2014) corroborate the findings of (Nguyen et al. 2013a) in terms of attribution of GHG 

emissions to soil carbon loss being the main contributor. The findings on GHG emissions are not 

directly comparable between the two studies as one has electricity from GHP as functional unit 

(Nguyen et al. 2013a), while the other has heat from CHP as the functional unit (Parajuli et al. 

2014).  
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For the second scenario in this assessment, straw to ethanol, Møller et al. (Møller et al. 2014) and 

Slentø et al. (Slentø et al. 2010) find straw to ethanol capable of reducing GHG emissions by 33% 

relative to the fossil reference, petroleum based gasoline. The assessment is based on 

consequential LCA but the system boundaries are not comparable to the straw to CHP study by 

(Nguyen et al. 2013a) as changes in soil carbon is disregarded. GHG emissions are estimated to 

0.202 kg CO2eq MJEtoh
-1  for straw to ethanol and 0.304 kg CO2eq MJEtoh

-1 for the fossil reference 

(Slentø et al. 2010). The benefit of displacement is 0.102 kg CO2eq MJEtoh
-1. 

As input to the GBEP analysis, data from the most comprehensive LCA reports were used, i.e. 

Nguyen et al. (2013a) for straw to CHP and Møller et al. (2014) for straw to ethanol (Table 9). 

Table 9. GBEP indicator values for indicator 1, life cycle greenhouse gas emission. 

Indicator Name Unit Reference 
year 

Straw to CHP Straw to EtOH 

    Value Change Change 
yr-1 

Value Change Change 
yr-1 

1 
  

GHG 
emissions 

kg CO2eq 
kWhel

-1   
~2010 0.35 - -      

Kg CO2eq 
MJEtoh

-1 
2008    0.202 - - 

 

7.1.2 Indicator 2: Soil quality 
Indicator 2 quantifies the percentage of land for which soil quality, in particular in terms of soil 

organic carbon, is maintained or improved out of total land on which bioenergy feedstock is 

produced. 

Straw left in the field is partially oxidized and most of the carbon stored in straw is eventually 

released to the atmosphere. The fraction of carbon immobilized and stored in the soil is estimated 

to between 15% (Christensen 2004) and 21.3% (Petersen et al. 2013) in a 20 year perspective. 

Correspondingly impaired soil carbon sequestration caused by straw removal is estimated to 57 - 

86 kg C per ton of straw (15% MC) removed (Christensen 2004, Olesen et al. 2012, Petersen et 

al. 2013). Other studies that include changes in soil carbon from straw removal in Denmark 

assume amounts in the above range. Nguyen et al. (Nguyen et al. 2013a, Nguyen et al. 2013b) 

assume impaired soil carbon sequestration to 80 kg C per ton straw removed, Parajuli et al. 

(Parajuli et al. 2014) assume 39 kg C per ton straw removed, but in a 100 year time perspective. 

Tonini et al. (Tonini and Astrup 2012) assume 90 kg C per ton straw removed. However the 

assumption by Tonini et al. (Tonini and Astrup 2012) build on Austrian agricultural data. 

The amount of straw harvested for energy purposes has increased from 1.061 million tonnes in 

the reference year 2000 to 1.737 million tonnes in 2012 (Figure 29). The area affected by straw 

removal for energy has increased as well (Figure 30) and data on harvest intensities for the last 

12 years do not suggest a significant change in the amount of straw harvested per area unit 

(Figure 29). 
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Figure 29. Harvest intensities of straw to energy purposes in Denmark 2000 - 2012. Data from 

(Danmarks Statistik 2015). The weak trend (blue line) in increased harvest intensities over time is 

not significant (shaded area indicate 95 % confidence interval). 

 

In 2012 straw removal affected additionally 185,000 ha in comparison to the reference year 2000. 

This area makes up 42% of the current area, where straw removal for energy takes place. As such 

58% of the current area harvested has not changed status since 2000. As the harvest intensity 

hasn’t changed significantly in the period 1997-2012 the area already in utilization in 2000 is 

assumed having the same status in 2012 as in 2000.  

The total amount of soil carbon lost due to energy production in 2012 is estimated to 99.5 - 148.7 

thousand tonnes C (Figure 30).  
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Figure 30. Area affected by straw removal (lines) and estimated loss of soil carbon (shaded areas) 

as a consequence of energy production from cereal straw in total (upper left display), to CHP 

(lower left display) and for bioethanol (lower right display). Notice that the Y-axis scale on the 

lower right display is 1/10 of the left displays. 

 

The agricultural statistics does not contain information whether harvest intensities of straw depend 

on the subsequent use of straw for e.g. CHP or district heating. Assuming they do not, the fraction 

of straw for energy used for CHP in 2000 corresponds to straw from 71,700 ha (26%) of the total 

amount of straw used for energy. In 2012 the corresponding figures were 210,700 ha (48%). Of 

the 210,700 ha currently harvested for CHP production, 71,700 ha (34%) has not changed status 

(Table 10). 

For bioethanol production the figures started from zero hectares in 2000 and to arrive at 8,353 ha 

(2.0%) being harvested in 2011. As such all of the current area changed status and the indicator 

value becomes 0%.  

 

Table 10. GBEP indicator values for indicator 2, soil quality. 

Indicator Name Unit Reference 
year 

Straw to CHP Straw to EtOH 

    Value Change Change yr-1 Value Change Change yr-1 

2 Soil 
quality 

% 2012(11) 34 - - 0 - - 
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7.1.3 Indicator 4: Non-GHG emissions to air 
Indicator 4 quantifies emissions of non-GHG to the air from bioenergy production systems; ideally 

attributed to 4.1) feed stock production, 4.2) processing/conversion, 4.3) transportation and 4.4) 

use. Quantification of this indicator is to some extent hampered by data availability and only the 

overall supply chain (indicator 4) and sub-indicator 4.2 (processing/conversion) is quantified 

(Table 11). Primary data sources are green accounts for individual plants, which are available to 

the general public for most plants. Due the operating conditions and configurations of individual 

plants only a very limited number of green accounts can be used. Some plants co-combust straw 

together with other feedstock and emissions attributable to the straw feedstock cannot be 

identified. Other plants operate a number of boilers in parallel with their straw fired boiler, but 

report emissions for the plant in total; thus emissions attributable to straw firing cannot be 

identified. 

Secondary data sources can be technology catalogues (Danish Energy Agency 2010, Danish 

Energy Agency and Energinet.dk 2012, Energistyrelsen 2013, Evald et al. 2013) or LCA studies on 

these particular production systems (Nguyen et al. 2013a, Vattenfall 2013). While these data are 

more generic and constitute averages over time and across operators and as such do not report 

variability in space and time, they may be more robust estimators of an emission than a single 

entry in a single green account.   

For straw to CHP a number of references are available. The utility company Vattenfall (Vattenfall 

2013) reports emission to air from straw to CHP (primary data). Data are based on LCA work on 

one plant (Amagerværket) in Denmark: 0.36 g SO2 kWhel
-1 and 1.13 g NOx kWhel

-1. Nguyen et al. 

(2013a) estimate (secondary data) non-GHG emissions to air for the total supply chain of 680 g 

SO2/tonnes straw (0.61 g SO2 kWhel
-1), 1900 g NOx /tonnes straw (1.91 g NOx kWhel

-1), 1.92 g 

PM10/tonnes straw (1.91 mg PM10 kWhel
-1), and 1.48 g PM2.5/tonnes straw (1.48 mg PM2.5 kWhel

-1).  

The Danish Energy Agency (Danish Energy Agency and Energinet.dk 2012) report (secondary 

data) emissions relating to straw conversion (indicator 4.2) of CHP to 49 g SO2/GJfuel (0.61 g SO2 

kWhel
-1) and 125 g NOx/GJfuel (1.55 g NOx kWhel

-1). 

For the total life cycle of straw to ethanol production the Danish Energy Agency (Energistyrelsen 

2013) report non GHG emissions to air of 2 g SO2 MJEtoh
-1, 429 g NOx MJEtoh

-1, and 1.7 g particles 

MJEtoh
-1. 

Table 11. GBEP indicator values for indicator 4, non-greenhouse gas emissions from the total supply chains 
and processing step in the supply chains. 
Indicator Name Unit Reference 

year 
Straw to CHP Straw to EtOH 

    Value Change Change 
yr-1 

Value Change Change 
yr-1 

4 Non-GHG emissions, 
supply chain 

g SO2 kWhel
-1 2010 0.36-0.61 - -    

g NOx kWhel
-1 2010 1.13-1.91 - -    

mg PM10 kWhel
-1 2010 1.91 - -    

mg PM2.5 kWhel
-1 2010 1.48 - -    

g SO2 MJEtOH
-1 2020    2 - - 

g NOx MJEtOH
-1 2020    429 - - 

mg PM MJEtOH
-1 2020    1700 - - 

4.2 Non-GHG emissions, 
processing 

g SO2 kWhel
-1 2010-15 0.61 - -    

g NOx kWhel
-1 2010-15 1.55 - -    

 

7.1.4 Indicator 7: Biological diversity in the landscape 
Indicator 7 quantifies the area and percentage of lands of high biodiversity value converted to 

bioenergy production (7.1), area and percentage of lands where recognized invasive species are 

cultivated to bioenergy (7.2) and area and percentage of lands, where nationally recognized 

conservation methods are used. Bioenergy production from agricultural residues in Denmark is a 
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part of industrialized and highly mechanized agriculture. It is believed not to have implications for 

areas of high biodiversity value (7.1). Straw used for energy is predominantly based on cereal 

species (wheat and barley), which aren’t considered invasive in Denmark (7.2). As straw 

production and harvest is part of the agricultural practice it takes place on land under active 

management i.e. not under nature conservation (7.3). All sub-indicators are summarised under 

the overall indicator 7 (Table 12). 

The impact categories included in the GBEP framework must be broad to cover the national scope. 

On a finer scale biodiversity impacts of straw removal are likely to occur as straw removal can be 

seen as an intensification of land management (Pedroli et al. 2013).  

Table 12. GBEP indicator values for indicator 7, biological diversity in the landscape. 

Indicator Name Unit Reference 
year 

Straw to CHP Straw to EtOH 

    Value Change Change yr-1 Value Change Change yr-1 

7 Biological 
diversity 

Ha 
  

2000 0          

2012 0 0 0 0 0 0 

% 2000 0   0   
2012 0 0 0 0 0 0 

 

7.1.5 Indicator 11: Change in income 
Indicator 11 quantifies wages paid for employment in the bioenergy sector (11.1) and net income 

from sale, barter or own consumption of bioenergy products (11.2). 

Based on a selling price of straw of DKK413 tonne-1 straw5 (€55.4) Dubgaard et al. (2013) find 

that increased mobilisation of straw generates positive income for the farmer in the order of 

DKK159 tonne-1 straw (€21.3). Compensatory measures to re-sequester carbon in soils reduce the 

economic benefit for the farmer to DKK82 tonne-1 (€11) (Table 13).  

Taking into consideration taxes and economic incentives to further mobilisation of straw it is also 

found to be of economic benefit to the energy consumer (DKK258 tonne-1 straw), to the utility 

sector (DKK269 tonne-1 straw), while the state loses income worth DKK339 tonne-1 straw (ibid.). 

 

Table 13. GBEP indicator values for indicator 11, change in income. 

Indicator Name Unit Reference 
year 

Straw to CHP 

    Value Change Change yr-1 

11  Change in income € tonne-1  

straw 

2013 11-21.3   

 

7.1.6 Indicator 12: Jobs in the bioenergy sector 
Indicator 12 quantifies net job creation as a result of bioenergy production and use. 

National statistics do not identify bioenergy as a sector in Denmark. The bioenergy supply chains 

studied here directly affect the agricultural, transportation and utility sectors, and indirectly affect 

                                                 

 

 

5 All economic values in this section are expressed as net present value in 2013 of a straw mobilization 
campaign running from 2013 to 2042. 
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a number of sectors as machinery production, service and maintenance, oil-refineries, engineering 

and construction.  

Since 2008 The Eur’ObservER has reported annually on jobs in renewable energy production in the 

European Union. The supply chains evaluated here cannot be separated from other supply chains 

in the EurObserv’er reports. Employment figures (Figure 31) express full time equivalents of the 

economic activity in the sector and do not directly express the number of jobs created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Jobs in the solid bioenergy and liquid biofuel sectors in Denmark 2008-12. Based on 

(EurObserv’ER 2009, EurObserv’ER 2010, EurObserv’ER 2011, EurObserv’ER 2012, EurObserv’ER 

2013). 

7.1.7 Indicator 17: Productivity 
Indicator 17 quantifies productivity in primary feedstock production (17.1), in the conversion of 

biomass feedstock to energy services by mass (17.2) and area (17.3), and finally quantifies 

production cost per unit of bioenergy. 

7.1.7.1 Sub-indicator 17.1: Feedstock productivity 
The national average productivity of cereal straw for energy has remained fairly constant over the 

last 12 years (Figure 29). In 2012 the national average amount of cereal straw collected for 

energy was 3.9 tonnes per hectare (3.3 tonnes dry biomass). There are geographical differences 

across the country accounting for a variation of approximately ± 15 % on average. In the 

reference year 2000 3.8 tonnes (3.2 tonnes dry biomass) were collected per hectare for energy. 

There is no evidence of an increasing trend in productivity over time (Figure 29), and the average 

amount of straw harvested for energy over the 12 year period is 3.74 tonnes ha-1 (Table 15). 
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7.1.7.2 Sub-indicator 17.2: Processing productivity by mass 
The first purely straw fired CHP plant started operation in 1989 and at the end of 2010 9-10 plants 

were in operation (Sander and Skøtt 2007). Basic operation characteristics and nominal 

efficiencies are listed in Table 14 below. For comparison the installed electricity generation 

capacity on thermal plants was 8,160 MW in 2013 (Table 15).  

Table 14. Straw capacities, operation characteristics and efficiencies of straw fired plants in 
operation in Denmark .The conversion efficiency of co-combustion plants expresses the total 
efficiency of all fuels combined. 
Plant Year in  

operation 
Capacity 
 

Co-
combustion 

Steam  
temp. 

Steam 
pressure 

Electricity 
capacity 

Electricity  
efficiency 

Total 
efficiency 

t straw 
yr-1 

 OC bar MW 

Haslev 1989 - 26,000 - 455 67 5.0 0.19 0.88 

Greenaa 1992 - 40,000 Coal 505 92 19.6 0.22 - 

Rudkøbing 1990 - 14,000 - 450 60 2.6 0.22 0.89 

Slagelse 1990 - 30,000 - 450 67 11.4 0.25 0.89 

Masnedø 1996 - 40,000 Wood chips 522 92 9.0 0.25 0.88 

Ensted 1998 - 2010 120,000 Wood chips 510 210 - 0.41 0.92 

Maribo 2000 - 45,000 - 540 93 10.6 0.29 0.88 

Avedøre 2001 - 150,000 Nat. gas, oil, 
wood pellets 

545 310 275.0 0.49 0.94 

Studstrup 2005 - 130,000 Coal 540 250 700.0 0.42 - 
Fynsværket 2009 - 150,000 - 540 110 35.0 0.33 0.93 

 

Co-combustion of straw is applied in a number of plants to reduce the corrosion by combustion 

reactants. The relatively high mineral content of straw leads to corrosion and clogging of heat 

exchangers. These effects can be reduced through co-combustion with a ‘purer’ fuel or by 

reducing the steam temperature. Nominal plant efficiency in terms of electricity generation 

efficiency has generally increased over time primarily as a function of increased steam 

temperature (Carnot principle).  

Production statistics for individual plants using straw made available by the Danish Energy Agency 

mirror to some extent the information given in Table 14. Biomass use efficiency, expressed as the 

weighted total fuel efficiency (Figure 32) show an increasing trend from 2000 to 2012, indicating 

that the utility gained from the straw resource is increasing. 
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Figure 32. Weighted mean total fuel efficiency and electricity generation efficiency of CHP plants in 

Denmark using straw as fuel. Mean values are weighted with the individual plants total production 

of heat and electricity as the plants differ greatly in annual production. Error bars indicate one 

standard error from the mean.  

Ethanol production was not in operation in 2000. Based on the current development of the Inbicon 

plant it can be estimated that one tonnes of straw can be processed to 4,000 MJ ethanol (Larsen 

et al. 2012, Evald et al. 2013).  

7.1.7.3 Sub-indicator 17.3: Processing productivity by area 
The development in area based productivity of CHP production is a function of plant efficiency only 

as feedstock productivity is assumed constant. In 2000 the average electricity output from straw 

fired plants corresponded to 4,667 kWhel ha-1 and the total energy output to 48,800 MJtotal ha-1. In 

2010 the productivity had increased to 5,583 kWhel ha-1 and 49,900 MJtotal ha-1 respectively. 

The 2010 area based productivity of ethanol production is estimated to 14,960 MJEtOH/ha (Table 

15). 

7.1.7.4 Sub-indicator 17.4: Production cost 
The Danish Energy Agency (Danish Energy Agency and Energinet.dk 2012) estimates the initial 

investment cost of straw fired CHP plants to €4-5.8 million per MW in capacity. Small plants with a 

capacity of 8-10 MW have the highest relative investment cost, while medium sized plant, with 

capacity of 10-50 MW fall in the lower end of the cost spectrum. Operation and maintenance cost 

are estimated to €40,000/MW/year (fixed) and €6.4/MWh (variable) (Danish Energy Agency and 

Energinet.dk 2012). Fuel costs are a significant part of the production costs, and for straw the 

price paid by the utility company has increased from €3.7 GJ-1 in 2000 to €5.0 GJ-1 in 2011 

measured in real prices (Dansk Fjernvarme 2012). 

For bioethanol production the total cost for a Inbicon plant type is estimated to ~€0.9 liter-1 EtOH 

for plants located in North-Western Europe (Larsen et al. 2012) corresponding to ~€0.043 MJEtOH
-1 

(Table 15).  
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Table 15. GBEP indicator values for indicator 17, productivity. 

Indicator Name Unit Reference 
year 

Straw to CHP Straw to EtOH 

    Value Change Change  
yr-1 

Value Change Change 
 yr-1 

17.1 
  

Feedstock  
productivity 

t ha-1 yr-1 
  

2000 3.8     3.8     
2012 3.9  ns ns 3.9  ns ns 

17.2 Processing  
Productivity 
by mass 

kWhel t-1 2000 1,249      
2010 1,490 241 21.9    

MJtotal t-1 2000 13,050      
2010 13,340 290 26    

MJEtOH t-1 2010    4,000   
17.3 Processing  

Productivity 
by area 

MJel ha-1 2000 4,667      
2010 5,583 916 83,3    

MJtotal ha-1 2000 48,807      
2010 49,892 1,085 99    

MJEtOH ha-1 2010    14,960   
17.4 Production cost EUR MJEtOH

-1 2010    0.043   

 

7.1.8 Indicator 18: Net energy balance 
Indicator 18 evaluates the net energy ratio of bioenergy supply chains in individual process steps 

18.1) production, 18.2) processing into bioenergy feedstock, 18.3) bioenergy use or 18.4) for the 

whole supply chain.  

1.1.1.1 Sub-indicator 18.2: Processing (harvest) 
Energy consumption for straw collection (baling and handling) is estimated to be 53.2 - 81.8 

MJ/ton straw (Dalgaard et al. 2001) including combustion of the diesel itself and energy for 

extraction, refining and distribution. An average is suggested to be 65.4 MJ/ton straw (Dalgaard et 

al. 2001), which is also applied in newer studies (Nguyen et al. 2013a, Nguyen et al. 2013b). The 

average net energy ratio is calculated as 1-(65.4/14,500 6) = 0.995. Data is not available to 

support an assumption on significant development over time (Table 16).  

1.1.1.2 Sub-indicator 18.3: Use 
Resource use efficiency, expressed as the straw capacity weighted average, has increased from 

~0.31 in the reference year 2000 to ~0.37 in 2010 (Figure 32). The total efficiency has increased 

slightly in the same period from 0.90 to 0.92. 

Bio ethanol production on cereal straw came into demonstration scale operation in 2009 with the 

Inbicon plant in Kalundborg. Demonstrated energy efficiency developments over time are not 

available. The conversion efficiency on plant level is estimated in a recent study made for the 

Danish Energy Agency (Evald et al. 2013). Assuming C6 fermentation they find an energy ratio 

(energy out/energy in) of 0.74. A study made on the demonstration plant reports an energy 

balance on the plant to 0.71 (Larsen et al. 2012). Considerable efficiency gains are expected in 

future plant due to process development of pre-treatment, increased dry matter content and 

enzyme efficiency (Table 16). 

1.1.1.3 Sub-indicator 18.4: Life cycle energy balance 
A number of life cycle based energy balance studies have been made on bioethanol production on 

agricultural residues in Denmark. Results are difficult to compare due to methodological 

differences, assumption and system boundaries. Of particular importance is the energy values 

                                                 

 

 

6 Lower heating value of straw is 14,500 MJ tonnes-1. 
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attributed to different inputs and by-products. If straw is considered a waste product and not 

attributed an initial energy value (Slentø et al. 2010) then a life cycle energy balance may exceed 

parity. Also the feedstock transformation during processing and fermentation may yield by-

product with improved characteristics that in turn may displace more energy intensive products. 

E.g. the lignin residue from straw pre-treatment is a more valuable fuel per energy content that 

straw due to the lower mineral content and higher energy density. Hedegaard et al. (2008) found 

the LCA energy balance of the Danish IBUS concept based on corn stover to be 0.74. Bentsen et 

al. (2009), providing worst case scenarios, showed energy balances of wheat straw to ethanol 

production to be 0.36 (0.29-0.45) assuming C6 fermentation and 0.42 (0.33-0.51) assuming 

fermentation of C6 and C5 sugars. The study by Bentsen et al. (2009) is methodologically 

different than others referenced here as it uses an area of land as functional unit and not a 

quantity of fuel or distance driven on that fuel (Table 16). 

 

Table 16. GBEP indicator values for indicator 17, productivity. 

Indicator Name Unit Reference 

year 

Straw to CHP Straw to EtOH 

    Value Change Change 
yr-1 

Value Change Change 
yr-1 

18.2 
  

Net energy 
balance,  
harvest 

Ratio 
(0-1) 

2000 0.995      0.995      
2012 0.995  0 0 0.995  0 0 

18.3 CHP,  
electricity  

2000 0.31      
2010 0.37 0.06 0.005    

CHP,  
total  

2000 0.90      
2010 0.92 0.02 0.002    

EtOH, total 
(C6)  

2015    0.74   

18.4 CHP 
electricity 

 

2010 0.94      

EtOH, C6 2005    0.74   

 

7.1.9 Indicator 20: Change in fossil fuel consumption 
Indicator 20 quantifies the change in consumption of fossil fuels and traditional use of biomass 

caused by deployment of (modern) bioenergy. 

Although this indicator should be applicable to industrialized supply chains and countries, the 

indicator is methodologically weak on a national scale. On project or plant level i.e. in retrofitting a 

plant from a fossil feedstock to biomass the immediate displacement effect may be quantified. 

However, changing feedstock may change the selling price of energy products from the plant and 

in turn change the capacity factor and thus the experienced displacement. York (2012) has 

demonstrated that deployment of renewable energy sources doesn’t displace fossil resources one 

to one measured in energy content, and Mathiesen et al. (2009) demonstrate the uncertainties in 

identifying marginal energy technologies in LCA work.  Ripple effects as described predominantly 

account for electricity production as electricity is traded within and across borders. In district 

heating production the displacement effect is more easily assessed as heat customers (usually) 

haven’t got alternative supplies.  

Not only have the amounts of straw used for energy changed over time. Also the use pattern has 

changed (Figure 33). Initially straw was used for individual heating of farm buildings and houses. 

The advent of energy policies encouraging or even mandating the use of biomass for energy has 

shifted the balance towards distributed energy generation rather than individual. The use of straw 

for individual heating would normally displace fuel oil, while straw for district heating would 

displace natural gas, oil or wood. In CHP production straw would normally displace natural gas, 

coal or other renewable energy sources. 
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Figure 33. Pattern of straw allocation to energy purposes over time from 1975 to 2011. 

As a part of the Danish government’s most recent climate and energy strategy (Regeringen 2011) 

a comprehensive analysis of the economic impact of a number of greenhouse gas mitigating 

initiatives for agriculture has been conducted (Dubgaard et al. 2013). The analysis builds on the 

assumption that additionally 350,000 tonnes straw from 100,000 ha could be used for CHP. The 

direct displacement effect of deploying that amount (5.08 PJ) is calculated to 4.44 PJ coal, 0.51 PJ 

natural gas and 1.27 PJ wood chips (ibid.). Due to differences in electricity generations efficiency 

between these fuels a side effect of deploying 350 kilo tonnes straw for CHP is a reduced 

electricity production of 1 PJ (the reason that 5.08 PJ straw displaces 6.22 PJ other fuels) that 

must be compensated by e.g. trade, power plants in condensation mode run on natural gas or 

coal, or wind power. What actually compensates 1 PJ electricity depends on the hour to hour 

dynamics of the electricity grid. 

Regarding ethanol production the fossil displacement can be reasonably assumed to be petroleum 

based gasoline, however, the displacement ratio is somewhat debated. The energy density of 

ethanol is lower than of gasoline, but the octane number is higher enabling the use of higher 

compression rates in engines designed for ethanol. Slentø et al. (2010) find that deployment of 2nd 

generation bioethanol based on wheat straw reduce the use of fossil resources by 33.5 MJ per kg 

ethanol produced. Hedegaard et al. (2008) assume a one-to-one displacement of gasoline from 

bioethanol based on energy content. 

7.1.10 Indicator 22: Energy diversity 
Indicator 22 measures the change in diversity of total primary energy supply due to bioenergy. As 

a generalized measure of diversity of the energy supply, the normalized Herfindahl index (HHI*) is 

applied.  

𝐻𝐻𝐼∗ =
∑ 𝑀𝑆𝑖

2 −
1
𝑁

𝑁
𝑖=1

1 −
1
𝑁

, 
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with MS = market share of individual agents and N = the number of agents. HHI is traditionally 

used in economic sciences to describe competition or concentration in a market. Values close to 1 

indicate monopolistic situations with one or few dominating agents, here energy supply sources. 

Values close to 0 indicate a market with equally strong agents, here understood as high levels of 

energy diversity. The steady decrease in HHI* show a general trend towards a more diversified 

energy supply in Denmark (Figure 34). The Dutch GBEP study reports a HHI* of the Dutch energy 

supply of 0.37 in 2010 (NL Agency 2012). In comparison the Danish energy sector HHI* was 0.21 

in 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Normalized Herfindahl index of the Danish energy supply from 1990 to 2012. Data from 

national energy statistics (Energistyrelsen 2016). 

The Danish energy supply has changed significantly over time due to strong development in off 

shore oil and natural gas production after the oil crises in 1973 and 1978-79, and to a political 

desire to develop a renewable energy sector and support energy self-sufficiency since 1986. Until 

the mid-1990s coal and oil held strong positions in the Danish energy supply (Figure 35). In later 

years the penetration of natural gas and a diversity of renewable sources e.g. wind, biomass and 

waste incineration has increased. The diversity index is calculated as supply = production + import 

- export of 41 energy carriers in the national energy statistics aggregated to 12 categories relative 

to total primary energy supply (TPES). Stock changes have been disregarded. 
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Figure 35. Diversity index of 12 supply sources to the Danish energy mix 1990-2012. Data from 

(Energistyrelsen 2016) 

Since the late 1990s the diversity index of bioenergy has increased almost constantly (Figure 36), 

but biomass covers a lot of different sources. Figure 36 shows that the diversity index of straw to 

energy has increased from 0.014 in the reference year 2000 to 0.028 in 2010, and with a 

subsequent decrease to 0.022 in 2012 (Table 17), while other biomass sources compiled has 

shown a diversity index increment from 0.055 in 2000 to 0.150 in 2012. Energy from imported 

wood pellets is one of the main contributors to biomass’ increased index. The corresponding 

indices for the scenarios evaluated here are for straw to CHP 0.004 in 2000 and 0.010 in 2012, 

and for straw to bioethanol 0.0 in 2000 and <0.001 in 2011 (Figure 36) (Table 17).  
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Figure 36. Energy diversity index of biomass, straw, straw to CHP and straw to ethanol in the 

Danish energy supply. 

Table 17. GBEP indicator values for indicator 22, energy diversity. 

Indicator Name Unit Reference 
year 

Straw to CHP Straw to EtOH 

    Value Change Change 
yr-1 

Value Change Change 
yr-1 

22 
  

Energy 
diversity 

Index (0-1) 
 

2000 0.0037     0     

2012 0.0105 0.0068 5.23E-04 0.0009 0.0009 6.92E-05 

 

7.1.11 Discussion 
Based on the GBEP analysis of straw to energy supply chains it can be summarized that straw 

used for CHP or ethanol can reduce GHG emissions, improve income generation for the rural 

population, reduce the use of fossil fuels and increase the diversity of the national energy supply. 

The critical point from a sustainability point of view is the potential impact on soil carbon derived 

from straw harvest. Straw harvest will in most cases lead to loss of soil carbon, which again can 

reduce soil productivity and friability (Dexter 2004, Schjønning et al. 2012). To sufficiently ensure 

environmental sustainability large scale deployment of straw to energy should be based on locally 

adapted best management practices. 

The analysis does not allow for a direct comparison between the use of straw for CHP or for 

ethanol. The result indicate that the energy efficiency and GHG benefits is better using straw for 

CHP. Such a conclusion, however, does not take into consideration differences in energy quality 

between different energy carriers (Bentsen and Felby 2013) (2nd law efficiency).  
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7.1.11.1 Evaluation of the assessment framework 
Gamba and Toop (2013) evaluated the application of the GBEP framework, based on ongoing work 

in the pilot studies and found the following for the framework in general. 

 Attribution of data to bioenergy is challenging, especially since data may be monitored 

already, but not specifically related to bioenergy (e.g. data related to agriculture or jobs). 

 The appropriate geographical scope of the indicator is not always clear, especially when 

data crosses country boundaries (e.g. a watershed) or involves imported feedstock. For 

individual indicators, it should be explained when and how imported feedstock, 

intermediates and bioenergy carriers should be included. 

 Further guidance would be valuable on how to deal with data gaps and how to reduce the 

uncertainty of the indicators. 

 Some indicators were found to be too focused on agricultural feedstock, or lacking in 

specific details on how to treat, for example, residue feedstock.  

7.1.11.2 Data availability 
Data availability or the lack of same is a key constraint in sustainability assessments. This case 

study is based only on data already gathered and made available, no new data were generated. To 

meet the methodological requirements of the GBEP framework data should ideally relate to a 

national scale and be based on measurements/experiments, censuses, surveys or national 

statistics. For this case study a number of otherwise relevant indicators had to be omitted due to 

the lack of relevant data. Lack of data is predominantly attributable to bioenergy not being a 

specific sector in the Danish economy. E.g. for indicator 12, jobs in the bioenergy sector, jobs 

related to bioenergy would be a subset of jobs in industry (machine manufacturing), agriculture 

(production and harvest of residues), transport and the utility sector (energy generations and 

distribution). To illustrate the different scales and origins of data used in this case study we 

developed a data quality barometer (Table 18) for the data included. 
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Table 18. Origin and scale of data used in the analysis of GBEP indicators. 

Data from measurements, national statistics, censuses, surveys     

Data from technology catalogues, life cycle assessments, analyses     

No data available     

Not included, considered irrelevant  to the context     

Scale O
p

e
r
a
tio

n
 

R
e
g

io
n

 

N
a
tio

n
a
l 

G
lo

b
a
l 

Indicator     

1. GHG emissions     
2. Soil quality     
3. Harvest level of wood     
4. Non-GHG emissions to air     
5. Water use efficiency     
6. Water quality     
7. Biological diversity in the landscape     
8. Land use and land use change     
9. Allocation and tenure of land for bioenergy     
10. Price and supply of a national food basket     
11. Change in income     
12. Jobs in the bioenergy sector     
13. Change in unpaid time spent by women and children     
14. Bioenergy used to expand access to modern energy services     
15. Change in mortality and burden of disease attributable to 
indoor smoke 

    

16. Incidence of occupational injuries, illness and fatalities     
17. Productivity     
18. Net energy balance     
19. Gross value added     
20. Change in fossil fuel consumption     
21. Training and requalification of work force     
22. Energy diversity     
23. Infrastructure and logistics for distribution of bioenergy     
24. Capacity and flexibility of use of bioenergy     
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7.1.11.3 Methodology issues and suggestions 
This case study highlights to some degree the same methodological challenges in using the GBEP 

framework as reported by Gamba and Topp (Gamba and Toop 2013).  

Attribution of environmental impacts to a specific supply chain is challenging when analysing a 

multiple input-multiple output system. There are a number of ways to allocate environmental 

burdens to co-products either by value, mass, energy or economic driver. In consequential life 

cycle assessments the allocation challenge is diminished through system expansion (allocation 

issues are moved from the centre to the periphery of the analysed production system). However, 

only a few of the GBEP indicators builds on a life cycle approach. 

The import/export challenge also reported by (Gamba and Toop 2013) was not an issue in this 

case study as straw is not subject to cross border trade in Denmark. Everything used has a Danish 

origin. Including wood chips and wood pellets in the analysis would have highlighted the 

challenge. Import of wood pellets has increased over the years and in 2013 imported wood pellets 

made up 95% of the total supply. The corresponding figure for wood chips was 34%. Wood pellets 

and chips are sourced from more than 20 different countries on different continents (Bentsen and 

Stupak 2013) making it very difficult and time consuming to acquire relevant and covering data 

for the national supply of these resources.   

The GBEP framework does not operate with indicator specific thresholds or targets to be met. By 

not having thresholds the GBEP framework seems applicable and relevant to wide variety of 

national and regional situations. Specific thresholds may be relevant to only a limited political or 

geographical area and determination of a threshold cannot be based on science alone. On the 

downside the numerical value of an indicator bears little relevant information in itself. Even though 

the methodology is well defined and described there is a considerable methodological operating 

space for the analysts making comparisons between GBEP studies in different countries and 

regions questionable. One solution to overcome this potential lack of relevance and information 

could be the approach applied in this assessment providing a development over time of indicator 

values. 

7.2 USA 

The situation in the U.S. is different from Denmark in that there is little tradition for using 

agricultural crop residues for energy purposes. Still a lot of research and information is available 

to assess sustainability issues for crop residue to energy supply chains. An assessment of U.S. 

agriculural residue potential with the GBEP indicator list was not available at the time of writing. 

Research has been done at U.S. level to define categories for indicators of environmental and 

socioeconomic sustainability (McBride et al. 2011, Dale et al. 2013a, Efroymson et al. 2013). The 

respective core indicator set has been applied to a case study with switchgrass, but not yet to 

agricultural residues. At the same time, soil quality aspects have been analyzed as part of other 

studies (Muth and Bryden 2013).  

7.2.1 ORNL framework on environmental and socioeconomic sustainability 
The ORNL framework identifies a number of quantitative indicators of environmental sustainability 

of bioenergy, along with associated management pressures and environmental effects expected to 

be captured by each indicator (Table 19) (McBride et al. 2011). 
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Table 19. Environmental indicators for bioenergy sustainability and associated management 

pressures and environmental effects to be captured by each indicator (McBride et al. 2011). 
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Table 20 below identifies the various socioeconomic categories and the measurable indicators that 

apply.   

Table 20. Socioeconomic sustainability indicators of the ORNL framework (Dale et al. 2013a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some proposed indicators are more complex and costly to measure than others but it is believed 

that these costs become manageable if broad agreement to focus on a limited set of measures can 

be reached. Collectively, the proposed suite of socioeconomic and environmental indicators forms 

a hypothesis of how effects on sustainability may be assessed. We submit that this suite of 

indicators could serve as a starting point to be adapted as necessary to address priorities for 

assessment in a specific place and time. The next step would be to test this hypothesis in diverse 

bioenergy systems and a variety of locations. The list of potential indicators should be reassessed 

as new information, technologies or data-collection techniques come online (Dale et al. 2013a). 

7.2.2 SMAF for assessment of soil quality under residue management 
Soil erosion is consistently identified as a critical process for soil quality. Significant loss in 

productivity and soil quality will occur if soil erosion losses consistently exceed soil formation 

rates. The USDA Natural Resources Conservation Service (NRCS) has developed standard 

approaches and tools for evaluating soil erosion levels to compare to established tolerable loss 

levels at the soil survey map unit scale. This project has incorporated the NRCS methods into the 

integrated framework, and all targets will include criteria that restrict simulated soil erosion levels 

to less than established tolerable soil loss levels. 

In addition to soil erosion, soil quality is represented by a range of biological, chemical, and 

physical indicators of soil health. In collaboration with partners in the DOE Regional Biomass 

Feedstock Partnership it was determined that for this milestone the more appropriate and 

comprehensive soil quality evaluation approach is the Soil Management Assessment Framework 

(SMAF) (Andrews et al. 2004). Table 21  below represents the soil quality indicators and scoring 

criteria that are included in the SMAF tool. 
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Table 21. Soil quality indicators related to environmental, management, and productivity goals 
used in SMAF. Adapted from (Andrews et al. 2004). 

Soil Function Indicator a Criteria for Selection of 
Indicator b 

Reference for use as 
a Soil Quality 

Indicator 

Biodiversity and habitat 
(environmental goal) 

MI Large spatial area of 
interest 

(Bongers 1990, Linden 
et al. 1994, Blair et 
al. 1996)  

qCO2 Environmental 
management goal or C 
change assessment 

(Gregorich et al. 1994, 
Sparling et al. 1997) 

Filtering and buffering  

(waste management and 
environmental goals) 

Db Manure management goal (Larson and Pierce 1991, 
Doran and Parkin 1994, 
Arshad et al. 1996) 

Test P Environmental goal or 
manure applied  

(Harris et al. 1996) 

TOC Always suggested under 
this function 

(Larson and Pierce 1991, 
Doran and Parkin 1994, 
Elliott et al. 1994, Sikora 
et al. 1996) 

Nutrient Cycling 
(all goals) 

MBC C change assessment or 
alternative to PMN 

(Gregorich et al. 1994, 
Turco et al. 1994, Rice et 
al. 1996) 

PMN Always suggested under 

this function 

(Doran and Parkin 1994, 

Needelman et al. 1999) 

Soil pH Always suggested under 
this function 

(Doran and Parkin 1994, 
Karlen et al. 1996, Smith 
et al. 1996) 

Test P Organic amendment 
comparison or southern 
region + productivity goal 

Listed Above 

Physical Stability and 

Support (environmental 
and productivity goals) 

AGG Always suggested under 

this function 

(Arshad et al. 1996, 
Harris et al. 1996, Karlen 

et al. 1996) 

Db Clay texture + practice 
comparison 

Listed Above 

Soil pH Arid region Listed Above 

Resistance and 
Resilience  
(all goals) 

Soil Depth Environmental or 
productivity management 
goal 

(Arshad et al. 1996, 
Grossman et al. 2001, 
USDA-NRCS 2001) 

TOC Comparisons over time or 
C change assessment or 
organic amendment 
comparison 

Listed Above 

Water Regulations (all 
goals) 

AWC Always suggested under 
this function 

(Larson and Pierce 1991, 
Lowery et al. 1996) 

Db Tillage comparison Listed Above 

EC Arid regions or manure 
management goal 

(Smith et al. 1996) 

SAR Selected in arid regions (Andrews et al. 2002a, 
Andrews et al. 2002b) 

Soil pH Arid region or manure 
management or fertilizer 

comparison + water 
quality. 

Listed Above 

a – MI, nematode maturity index (used as an endpoint measure instead of a MDS indicator, see 
text); qCO2, metabolic quotient (a proportion of soil respiration and microbial biomass); Db, bulk 
density; test P, soil test P; TOC, total organic C; MBC, microbial biomass C; PMN, potentially 
mineralisable nitrogen (aerobic incubation); AGG, macro-aggregate stability; AWC, available 
water capacity; EC, electrical conductivity; SAR, sodium absorption ratio. 
b – When the stated criteria are met under a given function, the corresponding indicator is 
suggested as a potential minimum data set component. 
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While the SMAF database contains in excess of eighty indicators for determining soil quality as 

related to function, eleven of these indicators are of principal interest for communicating the 

achievement of landscape management targeted towards residue availability or the production of 

dedicated energy crops. Locally managed indicators include soil pH, potentially mineralized 

nitrogen (PMN), and soil test phosphorus (test P), and are to a large extent determined by a land 

manager’s agronomic practices. The relationship between each of these indicators is complex as 

the level of interaction between the three is high, and respect must be paid to each if 

management of one is to be undertaken. For example, soil pH impacts the availability of nutrients 

and activity of microorganisms which in turn limits a plant’s productivity and the soil’s ability to 

cycle organic matter and minerals. Acidic nitrogen fertilizers lower the soil’s pH, and the potential 

to mineralize nitrogen from the soil’s N-pool is determined by pH dependent biotic and abiotic 

factors. Phosphorus management must be balanced with nitrogen management, as the ratio of P 

to N available to a plant heavily impacts plant productivity and pollution risks. Counterproductive 

feedback between these factors dictates that proper balancing is critical to maintain soil health 

and site productivity. Because of this, active management is required on a site specific basis. 

Secondary indicators focus primarily on soil physical and chemical properties. As with the locally 

managed indicators, many of the secondary indicators interact with one another. In a broad 

sense, the physical properties of water stable aggregation (AGG), plant-available water holding 

capacity (AWC), and soil bulk density (Db) are appropriately discussed within the context of one 

another. Soil bulk density is the measure of a soil’s mass within a specified volume, typically 

represented as g cm-3, and is representative of soil compaction. Furthermore, depending on soil 

texture (composition of sand, silt, and clay) the bulk density of a soil will influence the soil’s pore 

space which, in addition to its importance in gas exchange, is important in terms of infiltration rate 

and water holding capacity. An increase in soil bulk density decreases free air space in the soil, 

limiting gas exchange, root growth, and water relations. On the latter, water holding capacity is 

the measure of the quantity of water contained in a soil that is available for plant uptake (that is, 

not too tightly bound to soil particles due to an unfavourable fraction of micro-pores versus 

macro-pores as would be the case in a compacted soil). Reduction of a soil’s plant-available water 

holding capacity increases the likelihood of plant desiccation in xeric conditions and may require 

additional management or resource use to maintain productivity. The stability of aggregates in a 

soil is indicative of the soil’s organic carbon quantity and quality, as healthy soils with biotic 

decomposition of organics promotes the formation and stability of aggregates. The presence of 

aggregates in turn influences both the soil bulk density and water holding capacity; as large pore 

spaces are created that allow water infiltration and absorption of moisture into the aggregates 

themselves. Poor soil health related to these three indicators poses an interesting challenge, as 

poor bulk density, low aggregates, and low water holding capacity will result in poor stand 

production and increased rill and sheet erosion, but the most easily applied remedy to reducing 

soil compaction is tillage; which increases the soil’s susceptibility to wind erosion. In whole, the 

proper management of these secondary indicators is ultimately reflected in soil erosion potential.  

Soil chemical properties being classified as secondary indicators include electrical conductivity 

(EC), microbial biomass carbon (MBC), and sodium absorption ratio (SAR). The ability of a soil to 

conduct electricity is a common measure often used to describe soil physical properties (i.e., soil 

texture and moisture) and chemical characteristics (i.e., soil organic carbon, salinity, and pH). In a 

healthy soil system, electrical conductivity is greater in soils with smaller particles sizes (a greater 

fraction of clays versus sand) and thus inferences can be made to the soil’s water holding 

capacity, pore space, and organic content. However, the sodium absorption ratio of a soil can have 

a great influence on soil EC, as sodium is highly conductive. A high sodium absorption ratio (a 

comparison of sodium ions present in a soil to those of calcium and magnesium) may develop in 

irrigated soils and is often associated with poor soil structure, inference with plant-water uptake, 

and reduce the soil’s microflora. To this extent, the quantity of soil carbon derived from fungus 
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and bacteria is reduced in a poor quality soil. In addition to a decreased pool of nutrients that 

would be provided by fungal biomass, the reduced microbial community will not provide the 

benefits of nutrient cycling and turnover (largely nitrogen availability that results from the 

breakdown of detritus by fungi) to the same magnitude as in a healthy soil system. 

As discussed the soil quality indicators included in the SMAF are comprehensive, but they can be 

organized hierarchically for the targets developed in this report. For the purpose of setting soil 

sustainability targets, two primary indicators have been chosen: soil erosion and total organic 

carbon (TOC). Although soil erosion is not handled by SMAF, all of the locally managed and 

secondary indicators discussed have an impact on a soil’s erosion potential. By focusing 

sustainability goals on a soil erosion factor, the influence of an immense amount of soil quality 

indicators is built-in to the processes’ objective, focusing primarily on physical indicators. Total 

organic carbon is similar in nature and largely encompasses a great deal of influence from soil 

biological and chemical properties. With these interactions noted and respected, the development 

of soil quality targets will rely strongly on the primary indicators and will incorporate the 

secondary indicators as a means of quantifying the long-term benefits of energy crop production.  

 

7.3 Canada  

Currently there is no crop residue to energy/bioproduct business case in operation in Canada, but 

a lot of interest in developing such. In contrast to Europe the development of business cases in 

Canada is driven by the business it-self, farmers, farmer organisations and biorefineries. 

The sustainability assessment work of the Canadian case of the partial harvest of corn stover in an 

existing agricultural area of Southwestern Ontario and conversion into biochemicals and 

coproducts, that could include bioenergy, began by reviewing the GBEP framework. A GBEP 

suitability assessment was completed by representatives of the Ontario Federation of Agriculture, 

La Coop fédérée and Agriculture and Agri-Food Canada in October 2013. The results, shown in 

Table 22, note, as in the Denmark case, that some of the GBEP indicators were not relevant. Also, 

the GBEP framework would have to be applied at a much smaller, regional scope, instead of 

national, for the results to be meaningful. Finally, many of the GBEP indicators apply to “land on 

which bioenergy is produced“. As agriculture residues are produced as a by-product of grain 

production and they are not dedicated crops, this raised the question of what should the 

appropriate geographic area be for sustainability assessment where a portion of a managed land 

system is used for bioproducts. 
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Table 22. Evaluation of the GBEP framework’s applicability in a Canadian context with corn 
stover as feedstock for liquid fuel and bio-materials.  

Environmental pillar GBEP Indicators Corn Stover Canadian Case 

1 Lifecycle GHG 
emissions  

Lifecycle greenhouse gas 
emissions from bioenergy 
production and use 

YES; could be quantified using 
GHGenius (nationally accepted 
methodology) 

2 Soil quality Percentage of land for which 
soil quality, in particular soil 
organic carbon, is maintained 
or improved 

YES - very important indicator; 
modelling of change in soil organic 
carbon at SLC; soil organic carbon 
and particulate organic matter 
measured over the long term. 

3 Harvest levels of 
wood resources  

Annual harvest of wood 
resources by volume and as a 
percentage of net growth or 
sustained yield, and the 
percentage of the annual 
harvest used for bioenergy. 

YES; ag residue harvest rates 
known (once operational); crop 
yield data; stover yield calculate 
from grain yield and harvest 
index. 

4 Emissions of non-
GHG air pollutants, 
including air toxics 

Emissions of non-GHG air 
pollutants, including air toxics, 
from bioenergy feedstock 
production, processing, 

transport of feedstocks, 
intermediate products and end 
products. 

YES (particulate matter emissions 
related to feedstock harvest and 
baling at SLC); YES (regulated air 
emissions for processing); Refer 

to provincial air regulations and 
emissions permit. 

5 Water use and 
efficiency feedstocks 
per unit of bioenergy 
output, 
disaggregated into 
renewable and non-
renewable water 

sources. 

Water withdrawn from 
nationally determined 
watershed(s) for the 
production and processing of 
bioenergy feedstocks. 

ZERO - the ag land under 
question is not irrigated. 

Volume of water withdrawn 
from nationally determined 

watershed(s) used for the 
production and processing of 
bioenergy. 

YES; once operational; Refer to 
water intake permit and 

regulations. 

6 Water quality Pollutant loadings to 
waterways and bodies of water 
attributable to fertilizer and 
pesticide application for 
bioenergy feedstock 
cultivation. 

Not possible to estimate at a farm 
scale nor to allocate to specific 
crop; risk of water contamination 
by N can be modelled for SLC 
polygon; risk of P contamination 
can be modelled by watershed 

that has more than 5% 
agriculture; risk of surface water 
contamination by pesticides in 
SLC polygon. 

  Pollutant loadings to 
waterways and bodies of water 
attributable to bioenergy 
processing effluents. 

YES; once operational; processing 
operations would be required to 
be below regulated discharge 
standards; Refer to operating 
permit. 
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7 Biological 
diversity in the 
landscape  

Area and percentage of nationally 
recognized areas of high biodiversity 
value or critical ecosystems 
converted to bioenergy production. 

ZERO; agricultural land is 
used, there is no land 
conversion; index of habitat 
capacity available by SLC 

polygon 
  Area and percentage of the land 

used for bioenergy production where 
nationally recognized invasive 
species, by risk category, are 
cultivated. 

ZERO; agricultural land is 
used, the crops grown on this 
land (corn-soybean-winter 
wheat) are not invasive 
species 

  Area and percentage of the land 
used for bioenergy production where 
nationally recognized conservation 
methods are used. 

ZERO; agricultural land is 
used; information on tillage 
practices, integrated pest 
management, etc. would have 
to be collected. 

8 Land use and 
land-use change 
related to 
bioenergy 
feedstock 
production. 

Total area of land for bioenergy 
feedstock production. 

ZERO; agricultural land is 
used; land is used for grain 
and oilseed production; the 
primary markets for the grain 
are food and feed; there is no 
dedicated bioenergy feedstock 
production. 

Percentages of bioenergy from yield 
increases, residues, wastes and 
degraded or contaminated land. 

YES; sources of biomass could 
be identified and quantified, 
once operational. 

9 
 

Allocation and 
tenure of land for 
new bioenergy 
production  

Percentage of land – total and by 
land-use type – used for new 
bioenergy production where:  
a legal instrument or domestic 
authority establishes title and 
procedures for change of title; 
the current domestic legal system 
and/or socially accepted practices 
provide due process and established 
procedures are followed for 

determining legal title 

ZERO; in this case, no 
agricultural land is converted 
to bioenergy production 

10 Price and supply 
of a national food 
basket 

Effects of bioenergy use and 
domestic production on the price 
and supply of a food basket, which 
is a nationally defined collection of 
representative foodstuffs, including 
main staple crops  

Not relevant; Market Basket 
Measure (MBM) thresholds are 
available for rural communities 
and small communities under 
30,000 for each province; It 
would not be possible to see 
the  effect of use of biomass 
for bioenergy or bio-products 
on the MBM. 

11 Change in income  Contribution of the following to 
change in income due to bioenergy 
production: 

 

wages paid for employment in the 
bioenergy sector in relation to 
comparable sectors; 

Yes - once operational; data 
more likely accessible at the 
sector (vs project) scale. 

net income from the sale, barter 
and/or own consumption of 
bioenergy products, including 
feedstocks, by self-employed 

households/individuals. 

No; unlikely to collect 
information from self-
employed 
households/individuals. 
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12  Jobs in the 
bioenergy sector 

Net job creation as a result of bioenergy 
production and use, total and 
disaggregated (if possible) as follows: 1) 
skilled/unskilled; 2) temporary/indefinite. 

YES; once operational; 
could collect info on 
types and numbers of 
jobs created 

Total number of jobs in the bioenergy 
sector and percentage adhering to 
nationally recognized labour standards. 

Sector level information 
needed; bioenergy or 
bioproducts would have 
to be identified as a 
stand-alone sector that 
would be tracked 

13  Change in unpaid 
time spent by 
women and 
children collecting 

biomass  

Change in average unpaid time spent by 
women and children collecting biomass as 
a result of switching from traditional use 
of biomass to modern bioenergy services. 

Not applicable 

14 Bioenergy used to 
expand access to 
modern energy 
services 

Total amount and percentage of increased 
access to modern energy services gained 
through modern bioenergy. 

Not applicable 

Total number and percentage of 
households and businesses using 
bioenergy. 

Although possible, if 
data sources are 
available; Indicator is 
not considered relevant 
to the regional case 
study 

15 Change in 
mortality and 

burden of disease 
attributable to 
indoor smoke  

Change in mortality and burden of disease 
attributable to indoor smoke from solid 

fuel use, and changes in these as a result 
of the increased deployment of modern 
bioenergy services, including improved 
biomass-based cook stoves. 

Not applicable 

16 Incidence of 
occupational 
injury, illness and 
fatalities 

Incidences of occupational injury, illness 
and fatalities in the production of 
bioenergy in relation to comparable 
sectors. 

YES; once operational; 
but likely only at the 
sector level. 

 

17 Productivity Productivity of bioenergy feedstocks by 
feedstock or by farm/plantation. 

YES; biomass yield 
information can be 
calculated from grain 
yield using harvest 
index. 

Processing efficiencies by technology and 
feedstock. 

YES; processing yield 
should be available once 
operational; however 
information might be 
treated as business 

confidential. 
Amount of bioenergy end product by 
mass, volume or energy content per 
hectare per year. 

YES; could be calculated 
from yield info. 

Production cost per unit of bioenergy. YES; production costs 
will be available once 
operational; information 
will likely be confidential 
to business. 

18 Net energy 
balance 

Energy ratio of the bioenergy value chain 
(as a whole and individual stages) with 
comparison with other energy sources. 

Can be calculated as 
part of GHG lifecycle 
assessment. 

19 Gross value added  Gross value added per unit of bioenergy 
produced and as a percentage of gross 
domestic product. 

YES; once operational; 
gross valued could be 
calculated, but likely 
business confidential. 
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20 Change in the 
consumption of fossil 
fuels and traditional use 
of biomass 

Substitution of fossil fuels 
with domestic bioenergy. 

Not applicable for a new 
operation; Could be calculated 
for an existing facility if fossil 
fuel were substituted with 

bioenergy. 
Substitution of traditional 
use of biomass with modern 
domestic bioenergy 
measured by energy 
content. 

Not applicable; assume 100% 
modern energy use in Canada. 

21 Training and re-
qualification of the 
workforce  

Percentage of trained 
workers in the bioenergy 
sector out of total bioenergy 
workforce. 

YES; once operational; employee 
training records for operation. 

Percentage of re-qualified 
workers out of the total 
number of jobs lost in the 
bioenergy sector. 

YES; once operational; 
potentially available for the 
facility; more readily available at 
the sector scale. 

22 Energy diversity Change in diversity of total 
primary energy supply due 
to bioenergy. 

YES; energy mix of operation; 
source of purchased electricity 
mix is variable. 

23 Infrastructure and 

logistics for distribution 
of bioenergy  

Number and capacity of 

routes for critical 
distribution systems. 

YES; potential market outlets 

and distribution networks could 
be identified; but information 
would likely be business 
confidential. 

24 Capacity and flexibility 
of use of bioenergy 

Ratio of capacity for using 
bioenergy compared with 
actual use for each 
significant utilization route 

YES; however market capture 
information would likely be 
business confidential 

Ratio of flexible capacity 
which can use either 

bioenergy or other fuel 
sources to total capacity. 

YES; If data source could be 
identified; would be easier for 

bioenergy or biofuels. 

 

As separate work, the Canadian team had been following the development of the international 

standard ISO 13065 on Sustainability Criteria for Bioenergy with the hope that this standard could 

provide a useful framework that had international recognition.  However, the final product is a 

type of management standard that guides users on what sustainability indicators should be 

identified and addressed with a management plan. The principles, criteria and indicators provide 

high level guidance on what should be included in a sustainability assessment, and what indicators 

should be managed. 

The EU’s FP7 framework supported a very ambitious integrated sustainability assessment project 

called PROSUITE. The development of PROSUITE and its application to bio-based projects was also 

followed to see if it would be useful tool for the assessment of new bio-product pathways. 

PROSUITE builds on a life cycle approach and brings together many sustainability indicators for an 

integrated assessment and discussion of trade-offs.  It requires a fairly specific, quantified 

understanding of the new technology as well as a reference system for comparison. Such 

technology and process details were not yet available for the Southwestern Ontario case study, so 

PROSUITE could not be used but it could serve as a valuable tool when such information is 

available. 

The LEEAFF framework, used in qualitative mode, was found to be the most practical tool to 

provide a holistic view of the corn stover to bio-chemicals value chain that is being explored. Table 

23 provides a summary of the information provided by value chain stakeholders on each of the 6 

LEEAFF categories. A new system based on partial corn stover removal added to corn grain 

harvest was compared with an existing corn grain only harvest.  The exercise showed that neither 
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system was without some issues or sensitivities. A corn stover system could likely provide benefits 

for some categories of sustainability, such as land use efficiency, broad acceptability, GHG 

emission reduction, and employment.  However, the corn stover feedstock supply chain would 

have to be financed, built and optimized.  The technology would have to be shown to be financially 

profitable at scale, and there are unknowns to address regarding nutrient addition and long term 

soil health. 

This 360° lens perspective developed by stakeholders can be used to further develop the 

discussion on sustainability, and set goals and priorities. This qualitative assessment provides 

stakeholders with a first sense of the project viability from the perspective of 6 aspects - land use, 

environmental impacts and benefits, employment needs, acceptability, financial impacts and 

investment needs, and feedstock availability.   It can be used to collectively build a new value 

chain that incorporates a comprehensive concept of sustainability from the start, potentially 

increasing the level of shared comfort with this new project. 

In the early stages of development, a LEEAFF assessment helps to clarify what is not known and 

needs to be addressed.  As quantitative information becomes available it can be added to the 

LEEAFF assessment.  The framework respects the multi-dimensionality and complexity of 

sustainability, and encourages simultaneous development of understanding in each of the six 

aspects. 

Table 23. LEEAFF Sustainability Framework: Corn Stover to Bio-products Value Chain. 

Impact 
Category 

Description Evaluation of Partial Corn Stover Harvest 
for Production of Bio-chemicals and 
Bioenergy 

Land Use Issues related to the land used for 
biomass feedstock production 

including land ownership, 
historical land use and land use 
change, current land use conflicts, 
land use efficiency, and broader 
context questions such as food 
security. 

Use of existing agricultural land for feedstock 
production; Increased land use efficiency; 

Logistics need to be developed so the 
operation does not impact current grain 
production. 
No land use change is anticipated; Corn 
yields are continuing to increase; Expansion 
of corn acreages (on existing ag land) is 
possible in the eastern Canada clay belt and 
in the crop-growing areas of the Prairie 
provinces. 

Environment Environmental impacts related to 
feedstock production and product 
including greenhouse gas 
emissions, air emissions, water 
emissions, soil sustainability, 
biodiversity 
Environmental benefits: carbon 
sequestration, remediation 

Anticipated benefits: Fewer GHG emissions 
are released from ethanol derived from corn 
stover when compared with grain-derived 
ethanol ( Tools: GHGenius LCA, HOLOS); 
general rule applies for almost all bio-
products, but GHG reduction depends on the 
specific biochemical and product it replaces 
Partial stover removal could include P 
removal and mitigate water pollution in area 

Potential env issues: 
Loss of Soil organic matter, soil organic 
carbon 
Less nutrients (N, P, K) available to next year 
crop 
More Soil Compaction 
Additional Air Emissions (PM) 
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Employment Issues related to all stages of the 
product lifecycle including job 
creation or retention, job type, 
wages, educational requirements, 
new skills development, 
employment equity 

Additional employment is expected to occur 
in agricultural sectors; construction 
(temporary), manufacturing, and 
transportation sectors. 
Agriculture sector employment impacts:  
additional on farm labour and record keeping; 
additional soil sampling and env mgmt; 
stover harvest, storage and transport; 

equipment maintenance; stover cleaning and 
grading 

Acceptability Acceptability by all stages of the 
lifecycle including the company 
(internal), community, intra-
industry, inter-industry, public; 

Risk Perception and Tolerance 

Producer – YES - if it fits with farming 
operations; if it does not impact core 
business - production for food and feed 
markets; if it does not affect long term soil 

productivity 
ENGOs – Y or N; potential concern for soil 
erosion, long term soil productivity, and 
possibly biodiversity Public – Expect Y; 
preference for use of non-food biomass and 
no land use change; 
Government – expect Y; but unable to 
provide mandate as done for biofuels 
Investors – Lack of existing supply chain 
infrastructure for residue collection and 
storage + Lack of information on quality 
needs and cost + Lack of experience 

operating technology at commercial scale = 
Significant risk 

Financial Information on size of investment, 
operating costs, profitability and 
return on investment, projected 
markets for biorefinery products, 

government mandates, incentives 
& subsidies, tax revenues 

Capital investment needed for feedstock 
collection and storage;  
Capital investment needed for cellulosic sugar 
facility; 

Agriculture Producer – potential for additional 
net revenue associated with partial stover 
removal; potential for greater yields in crops 
grown in the subsequent year 
Feedstock price point – still to be identified 
Technology to be proven at scale; risk 
Alternate markets for off-spec stover; 
Markets for the process co-products and by-
products to be identified 
No dedicated programs or funding at this 
time; new programs expected for climate 

change, clean tech 

Feedstock Renewable and non-renewable 
resource use including biomass, 
water, energy and chemicals; 
supply and cost information 

Sufficient residue volumes for biorefinery are 
theoretically available, with a good buffer; 
high density baling equipment has been 
identified and tested; the feedstock supply 
chain is not yet operational 

A producers cooperative has been formed to 
explore logistics, improve efficiencies to lower 
cost of production 

 

8 Synthesis 

High energy costs and societal and political goals for GHG mitigation and energy security have 

given rise to the mandate to use straw for heat and power production in Denmark. The first 

generation biofuels industry has since emerged, providing lower carbon transportation fuels. 

Concerns over land use, population growth and social equity, have led to greater interest in using 

crop residues from existing agricultural land. Investment in new technologies to deconstruct 
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lignocellulose and convert its constituents into marketable products has given rise to new 

opportunities for the production of renewable energy, fuels and chemicals.  

The technology for converting wheat straw and corn stover into liquid biofuels (primarily ethanol) 

has been under development for two decades. Both biochemical and thermochemical technologies 

have now reached commercial scale but are still more costly than first generation production. They 

need to be optimized and sufficient value needs to be derived from their co-products.  

The three country reports cannot be directly compared as they differed with respect to the timing 

of the value chain development, the types of bio-based products they produce, and the 

frameworks used to assess their sustainability. Nevertheless the findings shared a lot in common. 

Economic sustainability is strongly influence by feedstock costs, energy prices and the frameworks 

supporting such development (i.e. existence of energy or environmental goals, mandates, 

programs, etc.).  The current low fossil energy prices, and reduced cost of solar and wind energy 

installations make it hard to develop a business case for bioenergy (for electricity). 

Regardless of the end-product, the removal of crop residue needs to be profitable for the 

agricultural producer and the processor or user of the residue, and not harm but hopefully benefit 

the environment. The risk of mining soil carbon has been identified as a priority area in all three 

countries. Locally adapted best management practices (BMPs) could be developed to guide the 

individual farmer on sustainable removal rates taking into consideration a number of other factors 

influencing soil quality as e.g. soil type, precipitation, crop rotation, agronomic and geological 

history, and management practices. 

Also, society needs to recognize this development as a contribution to sustainable innovation and 

not as a potential danger.  

The following sections summarize the constraints to further mobilization and ways to overcome 

these hurdles. This work will be elaborated on in the next triennium. 

8.1 Constraints and barriers to further mobilisation 

Kretschmer et al. (2012) identified five key types of barriers that currently affect the functioning of 

the straw supply chain, from agricultural producers on one end of the chain and the processors on 

the other end. These are: 

 Underdeveloped markets (no existing supply chains) and lack of market information. 

 The competing existing uses of straw. 

 Lack of guidance on optimal use of straw as a soil improver and associated farming 

practices, to ensure that the utilisation is sustainable with regards to sustained soil quality 

and yields. 

 Lack of infrastructure (experience, equipment, market etc.), and in some parts of the 

world, the skills to use the equipment. 

 Variability of straw supply in quantity and quality from year to year and from region to 

region 

Most of these factors reflect the early stage of development of crop residue use at a large scale 

(Kretschmer et al. 2012). In countries that have an abundance of forest biomass and large forest 

products industries, agricultural crop residue harvest and collection systems for bioenergy and/or 

bio-products are just being established. In addition to having the existing infrastructure for woody 

biomass harvest and collection, wood is generally a better fuel to convert into heat and power due 

to its lower ash content and fewer air emissions upon combustion. Therefore, there are technical 

as well as economic reasons for the later stage of development of agricultural residue supply for 

bioenergy in countries such as Canada. 
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Also, agricultural residues have competition from other biomass feedstocks such as municipal solid 

waste, and in the future, CO2 in flue gas.  Recently, INEOS and Enerkem have started up waste to 

energy production in North America.  These facilities have their own feedstock challenges, but 

they are usually considered to provide greater overall environmental benefits when compared with 

agricultural or forest residues. Therefore, a hierarchy of biomass types exists with waste use 

generally followed by processing or crop residues that don’t entail land use change. 

8.1.1 Denmark 
Cost: High feedstock costs are a main challenge to diversifying straw use for biorefining in 

Denmark (Jorgensen 2013). Straw is already extensively used in CHP, and with its low bulk 

density and high transportation costs competition from emerging supply regions is limited. With a 

strong market and limited suppliers, costs as high as DKK550 (~US$80) per tonnes are not 

uncommon. 

Fuel quality: There are technical issues associated with straw use in CHP, including a high ash 

and mineral content that can cause corrosion of super heaters, slagging and fouling as well as 

deterioration of catalysts for NOx reduction. It is therefore a political challenge to encourage fuel 

source flexibility and the use of wood and other sources of biomass for CHP production in 

Denmark. According to the Biorefining Alliance (2012), a rapid shift to second generation biofuels 

will only be possible if Denmark institutes a mandatory blend to encourage supply chain 

development.  

8.1.2 USA 
On the production side, there are still difficulties with respect to the conversion technology, which 

have not yet been fully addressed for the industry to take off. Constant feed-in rates and 

feedstock quality have been identified by the pilot plants as critical parameters to maintain high 

conversion efficiencies and output rates. Biomass is inherently bulky, not homogeneous, difficult 

to transport, subject to degradation and susceptible to loss due to weather events. These barriers 

can only be partly addressed in the current feedstock supply chain design, where feedstock is 

procured through contracts with local growers, harvested, locally stored, and delivered in low 

density format to the conversion facility. These supply uncertainties tend to classify the biomass 

industry as a high risk investment and limit the biorefinery concept from being broadly 

implemented. 

Feedstock cost and availability: The cellulosic biofuel industry is projected to be rooted in 

specific regions with concentrated resource supplies (e.g., high corn producing areas of the 

Midwest). Outside of these regions biorefineries may be prohibited in size and scale unless they 

are linked to a feedstock supply system that draws from a portfolio of resources. 

Feedstock quality: Current feedstock supply chain systems only address feedstock quality 

indirectly through passive controls, e.g., resource selection and best management practices. The 

lack of feedstock homogeneity and quality however has proven to be a limiting factor for a 

continuous plant operation. Active quality control will be required in future, large-scale supply 

systems. 

Economics and project finance: Probably the most critical barriers for the continuous expansion 

of the U.S. cellulosic biofuel industry are related to economics and project finance. The industry is 

seen as a high risk investment, partly due to technical barriers and policy uncertainty, but also in 

comparison to other possible investments (and thus opportunity costs for investors) and 

uncertainty about the projects’ profitability.  

Market uncertainty: Biomass supply and demand is subject to changing market factors (e.g. 

fluctuating markets for primary products such as corn and wheat, competing uses, and prices of 
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alternative raw material). Even in highly productive agricultural areas, supply and demand, costs 

and prices can be unpredictable. As is the case for grain production, (companion) markets need to 

exist for crop residue streams that help establish supply chains which can support a growing 

biofuels industry. 

Investment gridlock: There is still a chicken-and-egg situation that impedes investment, i.e., 

processors want to build a facility if there is a guaranteed, consistent supply of crop residue while 

residue providers require a more constant market demand, e.g., from a processor. Residue 

processors seek flexibility with respect to feedstock procurement and can appear to be indifferent 

to the type of feedstock as long as quality and cost specifications are met. On the other hand, 

agriculture producers need assurances that there will be buyers for their residue before making 

significant investments. 

Framework conditions: Absence of a stable policy framework for investments, e.g., duration of 

renewable energy and biofuel mandates, carbon pricing, valuation of GHG reductions from bio-

based systems, etc. and dedicated strategies that support new value chain development from R&D 

through commercialisation.  

8.1.3 Ontario, Canada 
Using agricultural residues for biorefining is an industry still very much in its infancy in Ontario. 

Until recently, the situation often referred to as the chicken and egg conundrum existed. Without 

reliable markets and a buyer of the crop residue, agricultural producers will not harvest their 

residues; and without a reliable source of biomass and offtake agreements, the investors will not 

take the risk. The recent announcement of Comet Biorefining to build a facility in this area makes 

the opportunity real. 

Competing fuels and renewable energies: Affordable domestic energy sources such as natural 

gas, falling costs of wind and solar energy, and an abundance of woody biomass are all barriers to 

the development of bioenergy supply chains based on agricultural feedstocks. The focus in 

Southwestern Ontario is therefore on deriving chemicals and higher value products from crop 

residues. 

Optimised supply chain (from field to the processor): An agricultural residue supply chain 

needs to be built, tested, and optimised. This will require capital investment, as well as BMPs for 

producers based on their soil types, tillage practices and rotations, and optimization work to lower 

the cost of production, etc. 

Investment in Technology Scale-up and System Integration: Substantial investment is 

required to scale up the lignocellulosic conversion technology and to develop an efficient 

integrated biorefinery. Generally, this is done via a public-private partnership. Until recently there 

were few sources of public funding that directly targeted this type of investment.  New clean tech 

and climate change funding could provide new opportunities.  

Markets for Co-products: Marketable uses of the biorefinery co-products are needed to make a 

strong business case. This includes the valorization of hemicellulose, lignin and ash streams to 

become significant sources of revenue.  

Lack of information: Other barriers typical of an emerging industry include a lack of information 

on such things as profit margins, market prospects, and how much residue to leave on different 

soil types to maintain long-term soil productivity. 
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8.2 Solutions for supporting further mobilisation of agricultural 

residues 

Large-scale residue removal needs to make economic sense, be environmentally sustainable and 

fit with the agricultural practices in a given area. The residue supply needs to be off sufficient 

quality, consistent quantity and delivered at a cost that enables the processor to generate an 

acceptable profit to attract investment.  The establishment of an agricultural residue supply chain 

that meets the criteria of diverse clients will require the following: 

 A consistent and stable policy framework that supports investment in the bioenergy and 

products made from renewable biomass and wastes innovation continuum. 

 The availability of credible and transparent knowledge on technologies, costs and 

sustainability aspects (e.g., for farmers, energy producers and other stakeholders along 

the supply chain). 

 Developments in residue harvesting, transportation, processing that improve the 

efficiencies, and reduce the cost of bioenergy and bio-based products.  

 Long-term feedstock supply contracts and offtake agreements (or mandates) for products 

to increase investor stakeholder confidence. 

 Incentives for agricultural producers to bear the initial investment risk (e.g., grants, 

subsidies or credits for GHG offsets and energy security enhancements). 

 Tools to provide confidence to processors (residue users) of consistent biomass supply, 

regardless of weather conditions. 

 Best management practices for a variety of soil types and operating conditions that 

ensure crop residue removal is not detrimental to soil health over the long term. 

 Credible sustainability guidelines that provide sufficient assurances but are not overly 

burdensome to agricultural producers. 
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10  Appendix A - Canadian Regional Case:  

Southwestern Ontario 

 

Charles Lalonde, CJ Agren Cosulting, Ontario, Canada 

 

In Southwestern Ontario, a major agricultural region and the heart of the province’s biorefinery 

research and development network, assessments show that the capacity and resources exist to 

support two integrated biorefineries based on a bio-facility processing volume of 250,000 to 

300,000 dry tonnes of corn stover and wheat straw. Value-added products, such as 

biocomposites, bio-based chemicals and high quality animal feeds, are at the heart of the region’s 

emerging bio-economy.  Due to the availability of lower cost energy sources and other types of 

renewable energy, agricultural residues will most likely be converted in a regionally-based cascade 

manner where bioenergy is a co-product of the production of higher value bioproducts. 

 

 

 

 

 

 

 

 

 

 

Figure A-1.  Southwestern Ontario, Canada 

 

10.1.1 Introduction 
Southwestern Ontario has been identified as an area of high potential for the development of a 

corn stover supply chain for the following reasons: 

It is an area of high corn yields (grain yields exceeding 150 bushels per acre) that could support 

supply of 500,000 tonnes per year; Corn grain yields have been increasing and expect to continue 

to grow, indicating that the supply of stover is also expected to increase over time; In typical 

years, there is no competing use for corn stover; Corn is grown in rotation with winter wheat that 

could provide an additional source of residue; Both switchgrass and miscanthus can be grown 

(with good yields) in this region and could provide an additional source of residue; Transportation 

infrastructure exist – road, rail and ship; Industrial infrastructure exists in terms of Sarnia-

Lambton industrial Park; Sarnia is also headquarters of a bioproducts cluster (Bioindustrial 

Innovation Centre); Three first generation corn ethanol plants exist in the region. 

People of Sarnia are committed to sustainable economic development (Bluewater Sustainability 

Initiative; past experience with petrochemical industry clean-up). 

Southwestern Ontario is a region with both 

manufacturing industries and agricultural 

production that borders the US states of Michigan 

via the Great Lakes. It is also home to the corn 

grain processing plant – Ingredion (London, 

Ontario), three corn grain ethanol plants – Suncor 

St. Clair Ethanol Plant (Sarnia), Greenfield Specialty 

Alcohols (Chatham), Integrated Grain Processors 

Cooperative (Aylmer) and several biodiesel plants. 

The BioAmber bio-succinic acid plant has started 

operation  
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New conversion technologies and industrial development in the US have created interest in 

exploring partial stover removal for the purposes of producing bioenergy and/or bioproducts. From 

an operational perspective, some reduction in straw residue is believed to improve spring seeding 

operations as the soil can warm up more quickly. This could be particularly advantageous in areas 

where no till has been practiced for numerous years, especially as crop yields continue to increase. 

Some of the first questions that need to be answered are what is the future demand for bioenergy 

and or bioproducts, how much residue, of what quality, can be physically removed on a consistent 

basis, for what price can it be sold and how can residue removal be carried out so as not to effect 

the long term productivity of the soil. 

The regional case study of a corn stover for bioproducts value chain under development in 

Southwestern Ontario follows.  Much of this work has been led by the Ontario Federation of 

Agriculture (OFA) who has conducted studies on behalf of its agriculture producers to assess the 

potential to develop new corn stover supply chain to furnish an emerging bioenergy and 

bioproducts industry. Sustainable development has been at the core of this investigation, and 

entailed reviews of the conversion technologies, markets for bioproducts and bioenergy, biomass 

availability, agriculture producer interest and operational issues, and potential environmental 

impacts. These reports can be downloaded from:  http://www.ofa.on.ca/issues/overview/biomass  

10.1.2 Goal  
The development of sustainable crop residue supply chains will need to address financial, 

operational, environmental and social aspects that can be both site and time specific. From a 

financial perspective, stover removal must be profitable for the agriculture producer and 

sufficiently affordable for the downstream processor to attract investment. The supply chain needs 

to deliver sufficient quantity at specified quality to the processor, and not negatively impact the 

agriculture producers operations, especially site productivity. From an environmental perspective, 

the quantity and frequency of straw removal from an area, that will not increase erosion or disrupt 

the carbon and nutrient balance, will depend on site specific factors such as soil type, topography 

and crop rotation. Finally, the new practice must be accepted by consumers and the broader 

public, and be seen to be sustainable. 

While the feedstock supply chain needs to be sustainable, it is important to keep in mind that it is 

one part of a much larger system. That is, the whole value chain needs to be considered when 

discussing sustainability.  What products are derived from the biomass and the societal context 

matter. 

10.1.3 Historical Context 
Past policy decisions of the Ontario Government to close down coal fired electricity generation by 

the end of 2014 resulted in interest on the part of agricultural producers to supply agricultural 

biomass as a replacement fuel. As two of the large coal fired facilities scheduled for closure were 

situated in South Western Ontario, an area coinciding with a major agricultural grain production, 

studies were initiated to assess the potential to supply a million tonnes of agricultural biomass to a 

local facility. In a study conducted by the University of Guelph (Kludze et al.) for the Ontario 

Federation of Agriculture (OFA), it was estimated that 5% of agricultural lands would need to be 

converted to miscanthus and switchgrass to generate the required amount of biomass.   

Oo et al. examined where land could be available to grow purpose grown energy crops while 

mitigating impacts on food production. Based on a declining cattle population creating access to 

marginal pasture lands and availability of semi-dormant hay lands, Oo et al. estimated the 

availability of 350,000 ha, most of which is located in low grain producing areas. If all this land 

area were to convert to purpose grown biomass production, 3.3 million tonnes of agricultural 

biomass could be produced with sustainable carbon balance. In a study conducted for the OFA, the 

Delta Research Corporation reported on crop residue availability and characteristics for bioenergy 

http://www.ofa.on.ca/issues/overview/biomass
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use. The use of crop residue superimposed on food production creates a win/win scenario for 

producers and consumers as it eliminates competition for land use. 

The OFA examined the competitive position of agricultural biomass as an energy source through 

combustion compared to other fuel sources. In a report to the OFA, Oo et al. concluded that 

biomass sources could not compete with natural gas as a fuel source in electricity generating 

stations. Biomass, however, could be used in regional settings where natural gas availability was 

non-existent and consumers relied on propane, electricity or transportation fuels as an energy 

source for heating. In instances where natural gas was not accessible, CHP units could become 

feasible to support industry. Obstacles to CHP units included the write-off of existing capital 

investments in heating systems ahead of schedule and knowledge of alternative biomass based 

systems. Accordingly, investment into new boilers based on biomass was impeded and has yet to 

materialize. 

An alternative pathway to supplying energy to the marketplace is through conversion of 

agricultural residue, food waste and manures from livestock through anaerobic digesters into 

biogas which is then converted by generators to electricity for commercial distribution.  Most of 

the technologies used in Canada originate from Europe, however Canada’s biogas network is very 

small compared to the EU. Nevertheless, there are viable projects across the country and in 2013 

these projects produced over 17 MW of electricity. There is also emerging opportunities to convert 

methane into transportation fuel. 

Beginning in 2010, the developments of shale gas production in North America disrupted biomass 

supply opportunities as Ontario gained access to large quantities of natural gas delivered through 

existing pipelines at competitive prices to coal. Historically, coal represented the cheapest source 

of energy for electricity generating stations. In 2013, public policy in Ontario shifted in favor of 

establishing regional peak energy natural gas plants for electricity generation. These plants 

supplement base load and are situated along existing natural gas pipelines. Furthermore, during 

this period, purpose grown biomass was facing land use competition from grain crops due to 

record grain prices.  Consequently, the development of the purpose grown biomass industry in 

Ontario for combustion purposes remains underdeveloped. 

10.1.4 Commercialization of Lignocellulose Conversion  
As the opportunity for residue to supply large scale power generation faded, crop residue sources 

were assessed to determine the feasibility of using agricultural biomass in smaller regional energy 

scenarios and other bioeconomy applications.  This coincided with developments in the conversion 

of lignocellulose, in the form of agricultural residues, into advanced biofuels and valuable 

bioproducts. 

With the commercialization of cellulosic ethanol technologies, opportunities now exist to convert 

crop residues into cellulosic sugars that can produce ethanol or bio-based chemicals. The 

profitability still needs to be shown and the US leads with three key cellulosic ethanol projects in 

the US Midwest. 

The biochemical conversion processes used in these first commercial facilities currently combust 

the lignin co-product into bioenergy that is then used to operate the facility with excess energy 

sold as green power. Higher end uses are emerging for lignin, however obtaining consistent 

functionality remains a challenge.  The development of lignin into higher end products will have a 

large positive impact on the economics of a facility. In the interim, using anaerobic digesters to 

convert lignin and bioprocessing residues through anaerobic digesters to electricity is a viable 

opportunity. 
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10.1.5 Development of a New Value Chain 
Currently in Ontario, logistics supply models are not in place but are under active development. 

Value chain collaborative efforts are underway to support the implementation of a biorefinery in 

Southwestern Ontario. The diagram in Figure A-2 sets out a typical biorefinery to process cellulosic 

materials into sugars and biochemicals.  It is important to cleanly separating the different 

components of lignocellulose (C5, C6 sugars and lignin) to support potential biochemical 

applications. The biochemical route, while more lucrative than ethanol production, has greater 

processing challenges compared to ethanol production based on the extraction of a C5 and C6 

sugar blend and conversion using enzymes and biological cultures to produce ethanol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A-2. Potential Cellulosic Sugar Value Chain (Duffy et al., 2013) 

 

In 2014, two farm stover harvesting demonstrations and an informational seminar were delivered 

to interested agriculture producers to introduce harvesting protocols with the best of farm 

equipment available to handle cornstalks. Cost data were collected and used to update the 

business case on supply logistics using a model developed by Duffy et al. at the Ridgetown 

Campus, University of Guelph (2013). Further studies are underway to assess the efficiencies of 

various technologies to support a business case that includes: supply, storage, aggregation, 

transportation and multi-stage processing for cellulosic sugars.  

The supply chain economics goes beyond providing cornstalk or wheat straw as a commodity. A 

commodity market implies that there is an ample supply for multiple end uses and a pricing 

mechanism based on supply and demand determines the end use. This does not exist for biomass 

and bioprocessors need to develop loyalty of supply by working closely with producers. Some 

agricultural producers would like to get paid on the basis of sugar yield rather than weight.  These 

producers are interested in actively participating in biorefinery development as a means of 

securing a greater share of the value chain benefits.  A producer co-operative model is under 

consideration. 
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For this pricing model to work, residue purchasing standards must be precise in order to calculate 

the value of the cornstalk supply based on sugar yields. These standards must specify moisture 

tolerance levels and ash content of the biomass. Producers expect the best of conversion 

technologies to recover the maximum available cellulosic sugars. The theoretical yields of hemi-

cellulose, cellulose and lignin are shown in Figure A-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-3. Compositional breakdown of three types of biomass. (Lee et al., 2007) 

Several bioprocessors in Ontario who are currently using corn grain for ethanol production or for 

food grade chemicals are currently looking at ways to add on or expand their existing processing 

facilities (based on corn grain) using cellulosic material.  Provided financing can be accessed, at 

least one cellulosic sugar extraction facility could be operational within three to five years. 

10.1.6 Biomass Supply 
Oo et al. reported on the availability of sustainable cornstalk harvest in Southwestern Ontario 

based on feedstock availability within a 100 km of a potential facility. Sustainable crop harvest 

implied 25 % residue removal at a regional level. The methodology used to assess availability was 

based on the USDA assessment reported in the Billion Ton Challenge Report. Furthermore, it is 

recognized that individual producers will be able to harvest higher percentages if corn yields are in 

the 200 bu/ac range or if the producer utilizes livestock manure on the land. 

As shown in Figure A-4, generally corn grain yields in the 4 counties are above 150 bushels/acre, 

similar to yields obtained in Iowa (USA). 
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Figure A-4. Average annual corn yields by county. 

Producers with higher corn yields are required to manage cornstalk residue more aggressively in 

order to prepare land for the following year crop. Excess residue impedes the yields for the 

following crop as the cornstalk layer insulates the soil from the sun and hence delays early spring 

planting. In addition, nutrients such as N and P are needed to decompose the cornstalk and 

compete with living plants for valuable nutrients. Hence yields are reduced. Accordingly, producers 

have expressed great interest in supporting a biorefinery with cornstalk harvesting. 

Figure A-5 presents the crop acreages available in the four key grain producing regions of Ontario.  

A closer analysis of corn stalk availability was conducted on these four counties to determine 

sustainable harvest levels. The potential availability (dry metric tonnes) is shown in Figure A-6.  

Based on this analysis, Southwestern Ontario has the ability to support two biorefineries with an 

annual biomass supply in the order of 300,000 tonnes of corn stalks and wheat straw. 
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Figure A-5. Corn, soybean and wheat acres harvested in the 4 county region. 
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Figure A-6. Amount of sustainably harvestable corn stover (dry metric tonnes). 
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11  Appendix B - Framework for Selecting and 

Evaluating Sustainability Indicators 

11.1.1 Define the goals   
Goals for bioenergy projects or programs can include moving toward environmental, economic, or 

social sustainability targets; meeting regulatory or policy standards; conducting research; meeting 

expectations for land use; meeting logistical needs; or other goals (Figure 28).   

Setting the goals is strongly determined by the stakeholders who are involved and the context of 

analysis. Different stakeholders often have different perspectives about goals and assessment 

scale. For example, a federal agency may target the sustainability of a nationwide deployment of 

bioenergy technologies. A farmers association might be interested in farm level price stability of a 

particular crop. A state agency may want to determine the suitability of different sites or land 

conditions for growing perennial crops, while industry may focus on profitability and compliance 

with regulations. Non-governmental organizations typically focus on specific interests of their 

communities and opportunities to increase support. Ideally an assessment would include all key 

stakeholders and would be led by an entity that all participants accept as impartial. The network of 

22 Landscape Conservation Cooperatives (LCCs) across the U.S. is an example of multi-

stakeholder participation to define goals in a structured environment. The LCCs are self-directed 

partnerships between federal agencies, states, tribes, NGOs, universities, and other entities that 

collaboratively define science needs and jointly address issues within in a defined geographic area. 

11.1.2 Define the context   
Context is important for prioritizing sustainability indicators for biofuels (Efroymson et al. 2013). 

This step in the framework includes identification of the socioeconomic, cultural, institutional, 

political, and regulatory environments and the spatial and temporal extent for consideration. For 

analyses at the regional or local scale, the context includes historical and alternative land uses. If 

a community has particular concerns about its prospects for economic development (e.g., a 

dominant industry has moved away from the community) or experience threats to its environment 

(e.g., water quality is poor), these concerns are part of the context of bioenergy sustainability and 

influence the goals. While the need to describe contextual details may seem obvious, failure to 

frame a particular situation in this way can result in unintended biases in the selection of 

indicators (Efroymson et al. 2013), such as spatial and temporal biases (Karlsson et al. 2007).   

Context includes spatial and temporal scales and must be defined in conjunction with sustainability 

and other goals (Figure 28) because the scope of the goals determines the relevant spatial and 

temporal boundaries for the analysis. Consideration must be given to the geographic extent and 

the time periods encompassed by the sustainability analysis. Some indicator efforts can be 

designed to evaluate the status and trends of particular regions, watersheds, fuel sheds (areas 

providing feedstock), or national programs, while a global scope may be appropriate for some 

analyses, such as those designed to consider climate impacts, national or multi-national policies, 

and issues related to cross border trade and energy security associated with shifting from fossil 

energy to bioenergy. Many environmental analyses of bioenergy have used global-scale models to 

quantify impacts of e.g. indirect land-use change or climate change. The results are highly 

uncertain (Kline et al. 2011) and provide little useful guidance to decision makers on the trade-

offs with the many other aspects of sustainability. Furthermore, questions about how and where to 

produce bioenergy, effects on welfare and the local influence are best considered at a regional, 

watershed, or fuel-shed scale and in accordance with the scale of investment and management 

decisions and where effects on many ecosystem and social parameters are more readily 

evaluated. 
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11.1.3 Identify and consult stakeholders 
Stakeholders may be defined as individuals, groups, businesses or organizations that can affect or 

be affected by a process or project under consideration (definition adapted from ISO 13824; 

2009). Some environmental organizations may take this concept even further by representing 

specific, often threatened, endangered or charismatic species as stakeholders. Some sustainability 

standards have indicators requiring that all stakeholders be “engaged”, meaning that they are 

provided adequate opportunity to learn about and comment on the proposal, and that the parties 

responsible for the proposal demonstrate their responsiveness to legitimate issues raised by 

stakeholders. Establishing processes and providing evidence of free, prior and informed consent of 

local stakeholders is required by some sustainability certification standards and some developing 

countries that are exploring large bioenergy projects. E.g. in Mozambique with regulations for 

rural development and land leases. 

Stakeholder values, perspectives, and information needs constrain the goals, time frame and 

underlying assumptions of the decision-making process (Johnson et al. 2013). A key concern is 

the determination of who decides about which stakeholders, sustainability goals, and issues are to 

be involved in indicator selection and who legitimately represents stakeholder groups. Who leads 

the process and applies this framework is crucial, and ideally the leader is recognized by all as a 

non-partial, honest broker. While land managers, policy makers, community organizations, and 

others with a stake in bioenergy sustainability could identify indicators that meet their own needs; 

these indicators are unlikely to lead to viable decisions unless other stakeholders are also offered 

the opportunity to articulate their own goals, and the cost and feasibility of measurement may 

require multiple stakeholders to be involved. Including diverse stakeholders early in the process is 

crucial (Jolibert and Wesselink 2012), because each represents a unique epistemic community and 

brings different values, priorities and meanings to the process of selecting indicators. While 

considerable emphasis is put on the credibility or scientific accuracy of indicators, it is equally 

important to address the legitimacy of indicators, which entails “the process of fair dealing with 

the divergent values and beliefs of stakeholders”(Rickard et al. 2007). As an example, farmers 

and scientists have differing perceptions of sustainability (Sydorovych and Wossink 2008), and 

also, scientists can have a different purpose in mind for indicators than decision makers (Turnhout 

et al. 2007). Some indicators tend to be dominated by the concerns and priorities of industrialized 

countries (Karlsson et al. 2007) or by specific agency mandates. If a project includes non-

industrialized regions, stakeholders representing those regions should be involved. It is also 

important to acknowledge that the definition of credibility or scientific accuracy can vary, as 

cultural contexts vary, and as perceptions of expertise range from indigenous knowledge to 

Western notions of the scientific method (Wynne 1992). Consequently, a broad selection of 

stakeholder goals should be considered as part of indicator development (Schwilch et al. 2012). 

Stakeholder goals may not be aligned but rather competing. Meeting regulatory requirements or 

guidance is a common obligation that may overlap with sustainability goals. In contrast, jobs, 

income generation, environmental protection and production targets often conflict or involve 

trade-offs among subsets of stakeholders. For example, a proposed project may improve incomes 

and enhance environmental conditions for some people while shifting burdens to others. Very 

importantly, stakeholder needs, goals and priorities are not static but change over time, and the 

context and individual conditions evolve over time.   

11.1.4 Identify and assess necessary trade-offs   
Whenever goals are articulated by multiple parties, it is likely that some goals may conflict, or 

resources may be inadequate to evaluate information pertinent to all goals. A transparent 

participatory process is recommended for assessing potential conflicts, negotiating trade-offs and 

making decisions (Dale et al. 2013a). Sustainability goals and requirements within one jurisdiction 

can compromise sustainability goals in another area (Acosta-Michlik et al. 2011). Similarly, 
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focusing on one element of sustainability (e.g., environmental considerations) may jeopardize 

another aspect (e.g., social needs). If efforts to achieve one target, result in prohibitively high 

costs for bioenergy, then other environmental, social and economic sustainability targets are 

compromised. Similarly, if efforts to develop a profitable operation result in social and 

environmental costs, sustainability is also compromised. Trade-offs are often inherent when 

comparing goals associated with different bioenergy technologies (e.g., reducing carbon emissions 

versus reducing oil imports). Whereas some sets of indicators may be relevant to multiple goals 

(e.g., regulatory and sustainability goals), they may not be able to accommodate all goals.   

11.1.5 Determine Objectives for analysis 
The objectives for a particular sustainability analysis will determine its scope, spatial and temporal 

scales, relevant comparisons, and required data. Objectives flow from overarching goals but differ 

from them in defining the types of analyses that are conducted. Regulatory analyses may require 

comparisons between fuel types, comparisons to standards, or comparisons against baseline 

conditions or reference scenarios (Efroymson et al. 2013). As an example, the California Air 

Resources Board requires comparison of energy technologies. Assessments may be retrospective 

and focused on data collection and assimilation, or they may be predictive and be based on 

modelling. An objective may be to evaluate the long-term capacity of land to support yields under 

different management options. Assessments of trends may focus on a variety of ecosystem, 

economic, or social attributes. For example, Roundtable of Sustainable Biomaterials proposes two 

principles that require the assessment of trends through measurement or modelling:  contribution 

to the social and economic development of local, rural, and indigenous peoples, and mitigation of 

climate change. 

Scientists and policymakers often need to differentiate between effects resulting from bioenergy 

from effects resulting from previous or alternative activities. Hence, an objective for analysis is to 

determine baseline conditions, trends, and likely future developments. An option is to make 

informed projections based on historical and empirical evidence. This approach is, however, only 

feasible for those regions, where historical data are available for proposed indicators. Moreover, 

significant uncertainty always applies to future developments and to “alternative pasts.” Adequate 

historic data are lacking for many aspects of environmental, economic, and social sustainability in 

many geographic regions. A business-as-usual reference scenario – assuming that current 

observed conditions continue into the future – may be preferred although it is a simplification, and 

could be more accurate than informed projections in some situations (Buchholz et al. 2014). A 

significant drawback to any informed projection is a reliance on behavioural aspects (Olander et al. 

2006). For example, these comparisons do not allow effects to be attributed unambiguously to 

bioenergy where unanticipated but significant shifts in land or water management have occurred. 

11.1.6 Determine selection criteria for indicators 
Selection criteria are developed and implemented to determine the particular suite of indicators to 

use. This step is a critical and challenging aspect of bioenergy sustainability assessment and is 

central to the indicator selection framework. The importance of indicator selection cannot be 

overemphasized since any long-term monitoring program will only be as effective as the indicators 

chosen (Cairns et al. 1993). This step of the framework involves modifying general selection 

criteria for indicators in a context-specific way, specifying criteria that are appropriate to 

objectives for particular sustainability analyses, and considering the set of potential indicators in 

relation to goals and objectives holistically.  

The general criterion of legitimacy to stakeholders as discussed above is also important. These 

general selection criteria are universally applicable to all indicators; however, their meaning varies 

with context and according to specific assessment goals. For example, what may be cost-effective 

in one situation may be cost-prohibitive in another. 
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Many of the concerns that impede the use of ecological indicators (Olander et al. 2006) are useful 

in guiding selection of sustainability indicators for bioenergy.  These include (Landres et al. 1988): 

 oversimplification resulting from the selection of only one or few indicators,  

 unclear or ambivalent goals that can result in the measurement of incorrect variables for 

the place and time under study, and  

 difficulty in validating information provided by indicators . 

The clear articulation of goals and objectives for analyses provides means for considering the 

selection of criteria for indicators. This filter ensures that irrelevant criteria (and therefore 

irrelevant indicators) are disregarded. Information and indicators are only useful if they guide 

people in meeting desired standards or outcomes (McNie 2007). 

Analyses of bioenergy sustainability may involve widely differing goals and objectives, and 

indicators and criteria for their selection should reflect these objectives. For instance, objectives 

involving trend analysis require indicators that are measurable on a regular basis, but they do not 

require land managers or program managers to attain specified targets. Other approaches such as 

GBEP aim to support specific development goals and best practices and therefore recommend that 

indicators be linked with locally determined targets. If the objective of an analysis is to identify 

bioenergy supply chains that meet pre-defined performance thresholds, then indicators should be 

selected that provide useful information about these targets for environmental, economic, or social 

sustainability. If the objective of an analysis is to determine whether progress has been made 

toward a sustainability goal, then priority should be given to indicators that are sensitive enough 

to provide data on changes relative to the goal. If the objective is to compare alternative crops at 

any scale, the indicators must measure relevant properties for each crop studied. Comparisons of 

alternative planting locations or management routines must include indicators that are 

measureable at local scale and are sensitive to differences at the plot scale. Indicators that are 

meant to compare life-cycle effects of alternative energy or fuel policies must apply to a broadly 

defined scale rather than to only farm production or bioenergy utilities or to properties of only one 

fuel type. Historical information is often needed to understand trends in indicator values, and the 

availability of that information affects the selection of indicators. Defining baselines requires that 

potential indicators are measurable for appropriate historical periods. Yet most work on developing 

indicators, even very comprehensive schemes, do not address the need to document reference 

scenarios, baseline conditions, and trends for sustainability analyses.  

If the objective of an analysis is to assess the sustainability of future bioenergy production, the 

indicators must be able to be modelled or statistically projected. If the goal is to conduct life-cycle 

assessments for bioenergy, the indicators should be measurable with respect to the stages of the 

life cycle where effects are significant. The uncertainty associated with indicator values intended to 

contribute to regulatory policy for bioenergy should be known or measurable.  

Selection criteria that are applicable to a set of indicators may be different from those applicable 

to individual indicators (Niemeijer and de Groot 2008). The interpretations of individual indicators 

may depend on the entire set of which they form a part, and therefore, interpretation varies as 

the set is modified to meet particular goals. Together, the set of indicators should be able to 

integrate sustainability information to meet various objectives. 

11.1.7 Identify and rank indicators meeting the selection criteria 
In selecting indicators for assessing bioenergy sustainability, the land managers, regulators, or 

others conducting analyses determine the set of indicators that as a group best meets the 

selection criteria. Each individual indicator should be evaluated according to its intended purpose 

within a particular set. For example, GBEP proposes that technical experts rate each potential 

indicator on scientific merit (i.e., established relationship between the indicator and goal); that 

decision makers rate each indicator for practicality and utility (usefulness for decision making); 
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and that all stakeholders rate the indicators for relevance to their values (GBEP 2011). Moreover, 

stakeholders should be involved in developing clear and concise indicator definitions. 

Ranking indicators may require several iterations.  The first pass may result in several set of 

indicators that meet the selection criteria. Subsequent passes may involve determining which of 

the set fits within budgets and is best suited to the goals and objectives for analysis. The process 

may be enhanced by devising a scheme that facilitates ranking according to a variety of 

perspectives or through query and response check lists. Past experiences underscore the need to 

budget for the costs of developing and applying monitoring and evaluation systems up front and to 

assure that data collection and analysis balance what is feasible with available funds and what is 

wanted in terms of outcomes.  

11.1.8 Identify gaps in ability to address goals and objectives 
After the assessment is complete, the users of the assessment framework should evaluate 

whether the specific objectives for analysis are achievable with the selected indicators, existing 

data, and resource constraints. If measuring a set of indicators requires resources that are not 

attainable, it may be necessary to revise goals or objectives and revisit the criteria and indicator 

selection process (Figure 28). Similarly, an examination of data may show that large spatial or 

temporal gaps in data negate the value of the indicator. Testing the validity and ability of 

indicators to perform as planned is a critical step that should be completed before too much time 

and effort is used on data collection. While policy makers may desire data representations and 

conclusions that are easy to communicate to a larger audience (Dale et al. 2013b), Scientists may 

require a higher level of granularity. The general public may need visual displays that are readily 

understandable, and producers may need to be assured about economic impacts. 

11.1.9 Determine whether objectives are achieved 
It is important to get feedback on the effectiveness of indicators as information is provided to 

stakeholders. Evaluating the achievement of stated objectives using pre-established criteria is 

fairly straightforward while trying to gauge whether broader goals were achieved may be 

challenging. If stakeholder feedback reveals perceptions of ineffectiveness, the user of the 

indicator selection framework should attempt to determine the reason for that perception. Are the 

indicators themselves disputable, or was the manner in which data were collected, interpreted and 

presented inappropriate (e.g. too little detail or too much)? Or perhaps the spatial or temporal 

scale was believed to be inappropriate for the goal of the assessment. At this point, decision 

makers may find it necessary to revisit the goal definition step and modify the objectives or the 

indicators. 

As data are collected and evaluated, it is not unusual to discover that some indicators are 

unnecessary or even detrimental to the assessment goals. Care must be taken to assure that 

indicator sets provide information in support of objectives and constructive decisions. The 

development literature is filled with case studies demonstrating that emphasis on reaching specific 

indicator targets (e.g. trees planted or schools built) undermined achievement of the overall goals 

(e.g. forest ecosystem services and education). 

11.1.10 Assess lessons learned and identify good practices   
Periodic assessment is highly important. Too often participants scatter, when the stakeholder 

engagement stage is completed, or a specific project is finished, and valuable lessons are lost. 

Even when goals are met successfully, stakeholders are able to identify aspects that they would 

approach differently if they were to repeat the process. Also crucial at this stage is the 

documentation of significant success factors and good practices for applying the indicator set. 

While the term ‘best management practices’ is common, it actually means ‘good practices that can 

be continually improved’ (Rossi 2012). Sustainability is not a fixed state but an aspirational goal, 



121 

and mechanisms for continual improvement are an essential part of the framework supporting 

assessment of sustainability of bioenergy systems (Lattimore et al. 2009).   

 

 

 



 

 

Further Information 

IEA Bioenergy Website 

www.ieabioenergy.com 

Contact us:  

www.ieabioenergy.com/contact-us/ 
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