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a  b  s  t  r  a  c  t

Restoration  interventions  to combat  land  degradation  are  carried  out  in arid and  semi-arid  areas  to
improve  vegetation  cover  and  land  productivity.  Evaluating  the  success  of an  intervention  over time  is
challenging  due  to  various  constraints  (e.g.  difficult-to-access  areas,  lack of long-term  records)  and  the
lack of standardised  and affordable  methodologies.  We  propose  a semi-automatic  methodology  that  uses
remote sensing  data  to provide  a rapid,  standardised  and  objective  assessment  of  the  biophysical  impact,
in  terms  of  vegetation  cover,  of restoration  interventions.  The  Normalised  Difference  Vegetation  Index
(NDVI)  is  used  as  a proxy  for vegetation  cover.  Recognising  that  changes  in  vegetation  cover  are  natu-
rally  due  to environmental  factors  such  as seasonality  and  inter-annual  climate  variability,  conclusions
about  the  success  of  the  intervention  cannot  be  drawn  by focussing  on the  intervention  area  only.  We
therefore  use  a comparative  method  that  analyses  the  temporal  variations  (before  and  after  the  inter-
vention)  of  the  NDVI  of the  intervention  area  with  respect  to multiple  control  sites  that  are  automatically
and  randomly  selected  from  a set  of  candidates  that  are  similar  to the  intervention  area.  Similarity  is
defined  in  terms  of class  composition  as  derived  from  an ISODATA  classification  of  the  imagery  before
the  intervention.  The  method  provides  an  estimate  of  the magnitude  and  significance  of  the  difference  in
greenness  change  between  the  intervention  area  and  control  areas.  As  a case study,  the  methodology  is
applied  to  15 restoration  interventions  carried  out  in  Senegal.  The  impact  of  the interventions  is  analysed

using  250-m  MODIS  and  30-m  Landsat  data.  Results  show  that  a  significant  improvement  in vegetation
cover  was  detectable  only  in  one  third  of the  analysed  interventions,  which  is  consistent  with indepen-
dent  qualitative  assessments  based  on  field  observations  and  visual  analysis  of high resolution  imagery.
Rural  development  agencies  may  potentially  use the  proposed  method  for  a  first  screening  of  restoration
interventions.

© 2017  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article under  the  CC  BY license
∗ Corresponding author. Tel.: +39 0332 78 6429; fax: +39 0332 78 5162/9029.
E-mail address: michele.meroni@ec.europa.eu (M.  Meroni).

ttp://dx.doi.org/10.1016/j.jag.2017.02.016
303-2434/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Desertification, defined as land degradation in arid, semi-arid

and dry sub-humid areas resulting from various factors, including
climate variation and human activities (UNCCD, 1994), repre-
sents a major threat to populations and ecosystems (Low, 2013;
Reynolds et al., 2007). Besides physically affecting ecosystems, land
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egradation causes various socio-economic problems, such as food
nsecurity and conflicts (Mbow et al., 2015). Restoration interven-
ions are among the strategies that can be put in place to combat
and degradation. Restoration actions often involve the improve-

ent of vegetation cover (Zucca et al., 2015), through the planting
f appropriate species (e.g. Niang et al., 2014) or through improved
oil, water and land management.

The definition of “effectiveness” of a restoration action may
over different aspects of the intervention, ranging from the purely
iophysical to the ecological and socio-economic ones (Shackelford
t al., 2013). With respect to the biophysical impact, guidelines
or the ecological evaluation of restoration interventions focus
n the comparison between the restoration and reference sites
or a number of attributes measured in the field, ranging from
pecies composition, to ecosystem function and stability, and to
andscape context (Society for Ecological Restoration International
cience & Policy Working Group, 2004). Although comprehensive,
his approach is expensive and requires extensive field operations.

Independent assessment of the success of restoration projects
s often challenging because interventions may  be located in areas
hat are difficult to access and have poor infrastructure. Additional
hallenges refer to the lack of affordable and standardised method-
logies/criteria and the difficulty of obtaining long-term data to
onitor the effect of an intervention outside the project’s times-

an. Verification performed by the implementing agent is also
requently not available. For example, in a recent survey of restora-
ion projects in the Mediterranean Basin conducted by Nunes et al.
2016) among restoration professional practitioners, restoration
uccess was not evaluated in 22% of the projects and evaluated only
n the first year after the plantation in 19% of the projects. When
onducted, the evaluation was based on plant cover and diver-
ity (69% of the projects) and plant vitality (48%). Lack of funds,
ogether with capacity constraints and lack of knowledge, were
dentified as obstacles to project monitoring by restoration practi-
ioners in South Africa (Ntshotsho et al., 2015) and can be assumed
o represent common limitations in other rural areas across the
ontinent.

The lack of evaluation and dissemination of the results of
estoration still represent a constrain on the application of the best
echnologies and approaches available (Bautista et al., 2010). As a
esults, there is widespread consensus on the need for innovative
pproaches for the systematic evaluation of the effectiveness of
estoration actions (Bautista et al., 2010; Benayas et al., 2009; Birch
t al., 2010; Papanastasis et al., 2015).

Remote sensing (RS) can help cope with the widespread lack
f timely, long-term, reliable, and homogeneous ground informa-
ion, especially in African drylands. Few examples of the use of RS
ata to assess restoration interventions are available. The Food and
griculture Organisation – Somalia Water and Land Information
anagement project (FAO-SWALIM) uses commercial very high

esolution (VHR) imagery to visually appraise the implementation
f surface run-off control infrastructures in Somalia (e.g. rock dams,
abions, water catchments) operated by various contactors (FAO,
015). In this way, however, it is the implementation of the infras-
ructure that is scrutinised, not its impact or success with respect
o vegetation dynamics. Photointerpretation of time series of aerial
hotography was used by Rango et al. (2002) to qualitatively eval-
ate the long-term effectiveness of restoration interventions in
ew Mexico in terms of persistency in time of recognisable struc-

ures such as terraces, grubbing patterns, revegetated areas, etc.
ecently, the Openforis initiative of the FAO provided a free and
pen-source tool, named Collect Earth, which facilitates the visual

nterpretation of VHR time series imagery of Google Earth and

icrosoft Bing for point sampling and land use change detection
Bey et al., 2016). Despite their usefulness, the results of the anal-
sis are prone to interpretation errors as all of these examples
bservation and Geoinformation 59 (2017) 42–52 43

make use of photointerpretation. A quantitative evaluation of a
restoration intervention using Atriplex nummularia plantations in
Morocco was instead performed by Zucca et al. (2015) utilising
SPOT5 imagery and ground-based biomass measurements to derive
the dry biomass yield of the plantations in Morocco as compared
to known references. Land cover classification and spatial pattern
metrics have been analysed by Fava et al. (2015) to study the impact
of restoration actions in Mediterranean rangelands.

Vegetation indices such as the Normalised Difference Vegeta-
tion Index (NDVI; Rouse et al., 1974) can be used as proxies to
monitor the fraction of vegetation cover, i.e. the fraction of ground
covered by green vegetation (Carlson and Ripley, 1997). However,
evaluating the “greening” of a restoration intervention presents
a challenge, because the direct comparison of the NDVI of the
area before and after the intervention would not be informative.
In fact, vegetation cover will change over time independently of
the restoration project. Two  main sources drive the temporal vari-
ability of vegetation status: the annual seasonal development cycle
(one or more) and the inter-annual climate variability. Both fluc-
tuations hamper the possibility of making a direct comparison.
In fact, even in the absence of disturbances (e.g. fires, pests), a
difference in NDVI between two observations taken before and
after the intervention could be due to the intervention itself, the
stage of development of the vegetation at those particular times of
observation, and the weather conditions experienced by the vege-
tation in the weeks/months preceding the observations. Assuming
that climatic conditions are rather homogeneous in the neighbour-
hood of the restoration project, the problem can be approached by
comparing the conditions of the restoration area before and after
the intervention with those of similar areas nearby, as in Zucca
et al. (2015). The rationale is that the anthropogenic intervention
will cause a different pattern of change from before to after the
intervention compared with natural changes in undisturbed and
similar areas. This concept forms the basis of the before/after con-
trol/impact (BACI) sampling design (Underwood, 1992), originally
developed in ecology to assess the impact of a stress (typically
induced by industrial activities) on the environment. BACI has been
successfully applied to statistically evaluate potential environmen-
tal and ecological impacts (Smith, 2002), but has not been used by
the RS community so far.

In this study we make use of the BACI design to develop a method
to assess the impact of a restoration intervention on vegetation
fractional cover solely based on RS information (i.e. NDVI). The
method is intended to perform a cost-effective verification of the
effectiveness of the restoration intervention that may  be used as
a first screening, usable to plan additional field verification cam-
paigns, and as a medium- to long-term impact monitoring tool
when applied repeatedly over time. It is acknowledged that the
proposed method is suited to restoration interventions that involve
an increase in vegetation cover, which is not the case for a num-
ber of intervention types (e.g. a green landscape of invasive species
where the restoration would aim to change the plant community
composition; soil conservation measures such as rock dams to stop
gully erosion).

To illustrate the approach we  apply it to a case study in Sene-
gal, where a number of restoration interventions were performed
in the context of the Great Green Wall for the Sahara and the Sahel
Initiative (GGWSSI), a pan-African initiative to combat desertifi-
cation (African Union & Pan-African Agency of the Great Green
Wall, 2012). The biophysical impact was assessed using RS data
at two  different spatial resolutions, namely the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) at 250 m and Landsat at

30 m,  and compared with qualitative information from field obser-
vations and photointerpretation of VHR imagery. The pros and cons
of using MODIS and Landsat data are discussed.
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Table 1
Acquisition date and sensor of Landsat data used (path 204 and row 49).

Sensor Date

Landsat 7 ETM+ 19/07/2003
Landsat 7 ETM+ 16/09/2007
Landsat 7 ETM+ 13/09/2012
4 M. Meroni et al. / International Journal of Applied 

. Study area

The test case-study encompasses several interventions con-
ucted in the Linguère department of the Louga region and in
he Ranerou department of the Matam region of northern Sene-
al (Fig. 1). The relatively flat study area belongs to the Sahelian
cacia savannah ecoregion (Olson et al., 2001), and is charac-
erised by a hot arid desert climate (BWh) according to the updated
öppen–Geiger climate classification (Peel et al., 2007). Mean
nnual temperature and precipitation in the study area range from
7 to 28 ◦C (ECMWF  ERA-Interim over the period 1990–2014; Dee
t al., 2011) and from 270 to 390 mm (CHIRPS rainfall estimates
ver the same period; Funk et al., 2015). The majority of precipita-
ion falls during the rainy season, which occurs between July and
eptember, and is related to the West African Monsoon (Nicholson,
013). In the area, several restoration projects, including refor-
station and improved forage production, have been implemented
etween 2007 and 2011 in the context of the GGWSSI by the
reat Green Wall agency under the responsibility of the Senegalese
inistry of Environment. However, the technical rationale for the

election of projects and the complete description of the projects
where, what, how, success rate, etc.) is, to our knowledge, not
vailable.

. Data

.1. Remote sensing

The analysis was performed on freely available satellite imagery
t two different spatial scales: 250-m MODIS NDVI product and 30-

 surface reflectances from the Landsat missions. For the moderate
esolution, we used the eMODIS product provided by the United
tates Geological Survey (USGS) and based on MODIS data acquired
y the Terra satellite. The product is a 10-day maximum value
DVI composite (Jenkerson et al., 2010) temporally smoothed with

he Swets algorithm (Swets et al., 1999). Composites are produced
very five days, resulting in six temporally overlapping compos-
tes per month. Here we only used the composites for days 1–10,
1–20, and 21-last day of each month. Both the time series of 10-day
bservations and the maximum annual NDVI value, representing
egetation peak development, were used in the analysis.

Inspection of MODIS multi-annual temporal profiles for the
ntervention areas permitted us to determine the period of vegeta-
ion growth, which roughly ranges from June to September, with

aximum development reached in late August. Cloud-free Land-
at imagery was selected during this period. Landsat 8 Operational
and Images (OLI) data are available since 2013; before then we
ad to rely on Landsat 5 Thematic Mapper (TM) and Landsat 7
nhanced Thematic Mapper Plus (ETM+) data. However, Landsat 7
TM+ imagery collected after 31/05/2002 has data gaps due to the
can Line Corrector failure (SLC-off; Andrefouet et al., 2003). The
ssue does not prevent the analysis but has to be properly treated,
s explained in the methods section.

Although not strictly required, the BACI design benefits from
aving multiple time observations before and after the time of

ntervention. Whereas gathering multiple MODIS observations is
traightforward, it is very challenging for Landsat 5 and 7 in these
eographical settings where the availability of cloud-free images
uring the growing season is very limited. For instance, a large data
ap exists between 2003 and 2007 and between 2007 and 2012,
hen not a single cloud-free image is available in the period of

aximum vegetation development. The list of the Landsat images

sed in the analysis is presented in Table 1.
Landsat-based NDVI was computed using the red and near

nfrared bands of surface reflectance products (USGS, 2016a, 2016b)
Landsat 8 OLI 24/09/2013
Landsat 8 OLI 11/09/2014

retrieved from the United States Geological Survey. Largely cloud-
free imagery was  selected, and the CFmask band of the surface
reflectance product was  used to mask sparse clouds and cloud
shadows.

In summary, MODIS and Landsat-based analyses differ in three
aspects: i) the spatial resolution (250 m vs. 30 m),  ii) the RS vari-
able used (maximum seasonal NDVI vs. NDVI at a specific, and data
availability-driven, date during the season), and iii),  the temporal
period covered before and after the intervention (up to five years
of acquisitions vs. a single acquisition).

Finally, to check the consistency of BACI results, VHR imagery
from Google Earth (GE) was  used for the qualitative and visual eval-
uation of the restoration interventions. The visual analysis of VHR
imagery before and after the intervention date aimed to spot signs
of interventions, ranging from signs of tractor ploughing to visible
patterns of regular plantations and the growth of new trees. When
imagery before the intervention was not available in GE (8 cases
out of 15), the assessment of the intervention was performed on
the imagery only after the intervention, and was based on a com-
parison of the vegetation cover inside the intervention area with
that of the area outside, with obvious limitations on the possible
interpretation.

3.2. Field missions and analysed interventions

The outline of the project polygons and the main project infor-
mation (type and year of intervention) were obtained during three
field visits (2014–2015) performed by the French National Centre
for Scientific Research (CNRS) and supported by the Senegal State
Service of Water and Forests. As a centralised and public record
of restoration projects does not exist, the location of the interven-
tion projects to be visited was  defined with the staff of the Senegal
State Service of Water and Forests and the Senegalese National
Great Green Wall Agency. This preliminary information was com-
plemented by visual interpretation using VHR satellite imagery
from GE before the field campaigns and interviews with local com-
munities during the campaigns. Project areas were then delineated
in the field using GPS.

Restoration interventions mainly involved tree plantations
(Acacia nilotica, Acacia senegal, Acacia seyal and Balanites aegypti-
aca), the fencing of plots to enhance the natural regeneration of
woody species and restore rangeland grasses, and the combina-
tion of the two. Tree planting usually occurred in August, during
the rainy season. Activities were designed to improve land produc-
tivity over the long run under the hypothesis that the increase in
vegetation cover due to the intervention would restore soil fertility
and at the same time provide relevant ecosystem services for local
communities (e.g. gum arabic production from Acacia Senegal,  fruits
from Balanites aegyptiaca,  and grass straw to be harvested at the end
of the season and either used or sold). Restoration interventions
were implemented by the Senegalese National Great Green Wall
Agency within the framework of a cash-for-work programme. It is

noted that one of the interventions considered in the test case (i.e.
project no. 81 of Fig. 1) does not belong to the GGWSSI, but refers
to an Acacia Senegal plantation implemented by a private company
for the production of gum arabic.
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Fig. 1. Location of the interventions considered in the case study (green polygons and identification number, details in Section 3.2). Areas with insufficient documentation
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bout  the timing of the intervention, interventions smaller than 0.25 km2, and areas 

he  boundaries of the Landsat imagery used. Background imagery is a true colour co
he  reader is referred to the web version of this article.)

To test the proposed methodology, from the list of identified
ntervention sites we selected those with the following character-
stics: i) having documentation of the period of intervention, ii)
overed by Landsat path 204 and row 49, iii) implemented after year
002, and iv) with an area greater than 0.25 km2 (i.e. a minimum
f four MODIS pixels). This resulted in a total of 15 interventions
green polygons in Fig. 1). Interventions without such characteris-
ics and an area subjected to natural conservation (grey polygons
n Fig. A) were excluded from the control site search algorithm
escribed in the methods section. A brief description of the var-

ous projects, including the time and type of intervention, field
ission and VHR analysis evaluation, is presented in the results

ection (Table 3).
A qualitative evaluation of the success of the intervention is

vailable for five sites that were visited in October 2015 and August
016. Various elements were taken into account in this evalua-
ion: presence and health status of newly planted trees, tree and
erbaceous cover difference with respect to surroundings, informal

nterviews with locals. This information, together with the visual
nterpretation of VHR imagery, was used to carry out a consistency
heck with the results of the proposed methodology.

. Methods

In BACI design, to account for natural changes, the NDVI of the
estoration intervention area (i.e. the “impact” site) is compared

o another site, which is referred to as the “control” site (Smith,
002). The use of multiple control sites (i.e. BACI with multiple sites)
xtends this idea and avoids the criticism that the results of the
ACI experiment are solely due to a poor choice of the control site.
ted to other intervention types (i.e. conservation) are in grey. The red box delineates
te (source: Esri). (For interpretation of the references to colour in this figure legend,

The location of controls is selected randomly among sites that are
similar to the impact site (details in Section 4.1).

4.1. Spatial sampling

With respect to the impact site, a control area should have the
following characteristics:

i) similar land cover before the intervention;
ii) relatively close in space in order to experience the same weather

variability;
ii) not subjected to anthropogenic changes during the whole

before–after period being analysed;
iv) randomly selected.

In addition, even if not strictly required by the BACI design, we
opted for selecting control areas with a size similar to that of the
impact area to ensure a more balanced sampling size. Similarity in
soil characteristics, known to be important determinants of veg-
etation in arid systems, is expected to be implicitly ensured by
condition i.

In order to fulfil these requirements, we proceed as follows for
each of the impact sites. When different settings are used for the
MODIS and Landsat analysis, this is explicitly mentioned in the text
and reported in Table 2. Some of the intermediate products of the
analysis for the Landsat data and impact site number 9 are shown

in Fig. 2 as an example.

First, we restrict the area from which controls are selected to
a circular area centred on the centroid of the impact site. Pixels
affected by cloud contamination and SLC-off in either the before
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Fig. 2. Example of intermediate results of the described processing for project no. 9 (yellow polygon, other projects in red). Landsat images are from the following dates:
19/07/2003 (before), 13/09/2012 (after). (A) near infrared false colour composition Landsat image before; masked pixels (i.e. outside search area, SLC-off, detected as clouds
or  cloud shadows in the before or after imagery) are in black, s̈tripes” are originated by SLC-off affected pixels; (B) five classes ISODATA classification of the valid pixels;
(C)  class composition RMSE with respect to the intervention area; RMSE of the window assigned to the central pixel; pixels whose window would overlap other projects
are  masked out (black); (D) green square polygons are the selected controls; NDVI differe
colour  in this figure legend, the reader is referred to the web  version of this article.)

Table 2
List of MODIS- and Landsat-specific parameters used in the analysis.

MODIS Landsat

Ratio r between search and impact area 600
Number n of ISODATA classes 5
Similarity threshold s 0.9
Number of controls randomly

extracted (nc)
20

Target variable Maximum annual
value of smoothed

NDVI

NDVI of
within-season

imagery

o
c
“
c
t
s
t
i
s
r
o

Additional cloud screening None Visual analysis
Temporal sampling (before and after) 5 + 5 samples 1 + 1 sample

r after imagery are masked out (Fig. 2A). The restriction to such a
ircular area has the objective of fulfilling condition ii, i.e. defining
a neighbourhood” where climatic conditions should not signifi-
antly change. The extent of this area is defined as a multiple of
he impact area size (search area/impact area = r). We  made the
earch area proportional to the size of the impact area to ensure
hat it contains a roughly constant number of potential controls,

ndependent of the impact area size. The ratio r was set for this
tudy to 600. If the impact area had a circular shape, this would cor-
espond to a ratio between the area searched and the impact radius
f 24.5. In the case study, this resulted in an average search radius
nce (value after–before) in the background. (For interpretation of the references to

of 25 km (range = 9–61 km), where similar climatic conditions can
be reasonably expected.

Second, we  use the images acquired in the period before the
intervention (Fig. 2A) to perform an iterative self-organised unsu-
pervised clustering algorithm (ISODATA) with n classes spatially
restricted to the search area (Fig. 2B). With a trial and error process
based on the qualitative comparison of the ISODATA classification
map  and VHR imagery, we  set n = 5 in this study. A larger number
of classes can be selected if the landscape is more heterogeneous.
To fully compare the results gathered with the Landsat and the
MODIS analysis, we perform the classification using either Landsat
or MODIS data for the two types of analysis, implying that different
control sites are selected. For the Landsat analysis, all the bands in
the reflected domain of a single image are used for the classifica-
tion, whereas for MODIS we follow the approach proposed by de Bie
et al. (2011), using the multi-temporal NDVI trajectory instead of
the multispectral information. The classification is thus performed
on a five-year multi-temporal dataset of 10-day composites end-
ing the year before the implementation of the restoration action.
After this classification stage, the fractional class composition of the

impact area is computed.

Third, we define a generic control as a square spatial window
with the same area of the impact site. The population of potential
controls is thus formed by all the possible and overlapping win-
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ows centred on each of the pixels belonging to the search areas.
otential controls that overlap other impact sites or excluded areas
the area subject to environmental conservation in our case study)
re excluded. Potential controls having more than 50% of invalid
ixels (as they are covered by the cloud and shadow mask) are also
xcluded. Then, the fractional class composition is computed for
ach potential control.

Fourth, the land cover similarity between each potential con-
rol and the impact is defined as the complement of the root mean
quare error between the fractional compositions and one, i.e. sim-
larity s = 1–RMSE (Fig. 2C). Values close to one thus indicate nearly
dentical overall class composition of a potential control and the
mpact. Note that the similarity of NDVI values before the inter-
ention is not considered here as the BACI design does not require
imilar levels of the variable of interest.

Fifth, we subsample the population of potential controls by dis-
arding those with a similarity smaller than s (0.9). At this point
e have a sample of potential controls that fulfil conditions i and

i. From this sample we randomly extract nc control sites (nc = 20 in
his study, Fig. 2D). Random extraction is executed using probability
roportional to size sampling (Lohr, 2010), in which the selection
robability for each element is proportional to its similarity to the

mpact site. In this way, the most similar controls have a higher
robability of being selected. Once a control is extracted, all its
verlapping potential controls are excluded for further selection
nd the random extraction is repeated until all the required con-
rols are selected. It is noted that this procedure does not guarantee
hat all desired nc controls are actually available. If the number of
elected controls is considered to be insufficient, one may  increase
he search area or reduce the required similarity s to increase the
opulation of candidate controls and thus the number of selected
ontrols.

Once the location of the controls is established, the NDVI is
xtracted for all valid pixels belonging to the impact and control
reas for the period before and after the intervention. The selection
rocess described so far was implemented in IDL (Harris Geospatial
olution, Inc.) and fully automatised.

Finally, condition iii was tested by visually inspecting the avail-
ble time series of Landsat imagery of the selected control sites. It
s noted that only clear land use changes, for instance from nat-
ral vegetation to cropland or to settlements, are detectable in
uch a way. The possible occurrence of less visible changes, such
s unreported rangeland management practices, can therefore not
e excluded. The impact of the potential selection of such unsuit-
ble controls is expected to be mitigated by gathering a relatively
arge number of control sites.

.2. Treatment of Landsat 7 SLC gaps

An estimated 22% of the Landsat 7 scenes is lost because of the
LC failure (http://landsat.usgs.gov/products slcoffbackground.
hp). The SLC-off effects are most pronounced along the edges of
he scene and gradually diminish toward its centre. The precise
ocation of the missing scan lines varies from scene to scene.
herefore, it is difficult to anticipate the fraction of missing data
or individual impact areas. With our test cases, the fraction of

issing data varied between 0% and 40% and operated as a random
ubsampling with no expected consequences on the following
ACI test. In the presence of this SLC problem, the affected pixels

ere considered as belonging to an additional land cover class,

hus contributing to the similarity measure described above. In
his way we favoured the selection of controls showing a similar
raction of SLC-affected pixels.
bservation and Geoinformation 59 (2017) 42–52 47

4.3. Temporal sampling

Multiple temporal sampling before and after the putative impact
is preferable as it ensures that coincidental temporal fluctuations
in either location do not confound the detection of the impact
(Underwood, 1992). Due to the limited frequency of temporal
acquisition, we could not retrieve multiple observation imagery
before and after the intervention from Landsat, and we conse-
quently applied BACI based on a single couple of before–after
observations and multiple control sites. The closest cloud-free
images before and after the time of intervention were thus selected
for each restoration site. The more robust BACI design, with obser-
vations from multiple dates and sites, was  instead used with the
high temporal frequency MODIS data. That is, up to five annual val-
ues of maximum annual NDVI were extracted from the MODIS  time
series.

4.4. Statistical analysis

A linear mixed-effects model on NDVI site-level averages was
used to test the impact of the restoration intervention as in Schwarz
(2015). In this context, the period (before/after), the site class
(impact/control) and the interaction of site class and period are
fixed effects while the site and the sampling time, being non-
exhaustive samples of the potential sites and sampling times, are
considered to be random effects. Linear mixed-effects models use
maximum likelihood to estimate the parameters of the linear func-
tion containing both fixed and random effects. Output is in the
form of approximate z-ratios or normal deviates, which allows sta-
tistical tests on any linear combination of the fixed parameters
(Pinheiro and Bates, 2000). To evaluate the impact of the inter-
vention we were interested in the interaction of the period and
the site class (the so-called BACI effect) representing the differ-
ential change between impact and control sites compared before
and after the intervention. The (null) hypothesis of no change was
rejected at the conventional 5% significance level.

The BACI analysis provides two important statistics (among oth-
ers): the significance level (i.e. P-value) of the BACI effect test (i.e.
no change null hypothesis) and the BACI contrast. The BACI con-
trast is calculated as the difference (controls vs. impact) between
the mean differences (after vs. before):

BACI contrast = (�CA − �CB) − (�IA − �IB) (1)

Where � is the site-specific spatial mean of the variable selected
to represent the impact (here NDVI); CA, IA stand for Control and
Impact After, respectively; CB and IB for Control and Impact Before,
respectively. By convention, a negative contrast indicates that the
variable has increased more (or decreased less) in the impacted
site with respect to controls in the time period ranging from before
to after the implementation of the restoration project. The BACI
contrast is expressed in the same units of the variable of interest,
here NDVI. In order to highlight the magnitude of the contrast with
respect to the initial conditions, we normalise it by the mean of the
NDVI of the impact area before the intervention took place (�IB)
and express it as a percentage. This derived variable is referred to
as “relative contrast” in the following.

It is noted that, despite the fact that NDVI computed from Land-
sat 7 and 8 (ETM+ and OLI sensors) may  be slightly different because
of the different spectral responses of the bands (Roy et al., 2015) and

different atmospheric correction algorithm, this impacts both the
project site and the controls and hence does not have an effect on
the BACI analysis, which works on the difference between the two
types of area.

http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/products_slcoffbackground.php
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Table 3
Main information of analysed interventions, field mission evaluation, visual interpretation of Google Earth VHR imagery and BACI results on MODIS and Landsat data. n.a.
stands  for not available. The mean of the RS variable is computed as the overall mean extracted before the intervention (all sites, all sampling dates). Green (likely success),
light  green (moderate or ambiguous success) and grey background (likely failure) is used to rank the intervention’s success based on the field mission and VHR qualitative
evaluation. Green background is used in the BACI section to highlight negative BACI contrasts (in bold) that are significant at the 0.05 P-value. Grey background indicates a
non-significant BACI effect.
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The open source statistical software R (R Development Core
eam, 2016) was used to develop a script to automatise the sta-
istical test following Schwarz (2015).

. Results and discussion

Results of the BACI analysis, along with project information, VHR
hotointerpretation and field mission qualitative evaluation, are
eported in Table 3. The number of control sites excluded from the
nalysis after visual inspection ranged from zero to a maximum
f six. The anthropogenic changes detected in the period after the
ntervention mainly refer to appearance of agricultural fields and
ettlements.

.1. BACI analysis

A significantly negative BACI contrast (i.e. improvement in NDVI
ith respect to controls after the intervention) was detected in five

nd four out of 15 sites using MODIS and Landsat data, respectively.
or the majority of sites, the (null) hypothesis of no change could
ot be rejected. For three sites, the contrast was indeed positive,

.e. there was a relative decrease in NDVI in the restoration area.
Focussing on the sites for which a significant BACI effect was

etected, the average relative contrast is −20% and −27% for
ODIS and Landsat data, respectively. Considering NDVI as a rough

pproximation of the fractional vegetation cover, these numbers
ranslate into a significant improvement in the vegetation cover
ith respect to the controls.

As an example of the data used for the BACI analysis, impact
nd control averages are shown in Fig. 3 for four representative

nterventions: no. 9, where a significantly negative BACI effect is
ound using both Landsat and MODIS; no.81, where the negative
ontrast is significant at the 0.05 level for MODIS only (P < 0.1 for
andsat); no. 17 with a positive but non-significant contrast; and
finally no. 4 with a positive and non-significant contrast (P < 0.1 for
Landsat).

In order to gain insights into the difference between the MODIS
and Landsat analyses we focus on the agreement between two rel-
evant BACI statistics (i.e. contrast and P-value). First, Table 3 shows
a perfect match in the BACI contrast sign. That is, both types of anal-
ysis agree in the evaluation of the sign of the intervention, either
re-greening (negative contrast) or degradation (positive contrast)
of the impact site compared to the controls. The magnitude of the
contrast and the mean of the RS variable can be different between
the two types of analysis because the RS variable is different: the
maximum seasonal NDVI for MODIS, and the NDVI value during
the growing season at a specific sampling date dictated by image
availability for Landsat.

Second, large agreement in the detection of a significant re-
greening of the intervention (i.e. negative BACI contrast with
P-value < 0.05) exists between the two types of analysis. Only one
case of minor disagreement is found for site no. 81 (Table 3 and
Fig. 3), for which the visual analysis of Google Earth VHR  imagery
indicates that the plantation was  actually implemented. In this
case both types of analysis compute a nearly identical and nega-
tive BACI contrast (−0.12) whereas they differ in the significance
level attributed. However, the P-value of Landsat (0.058) is not far
from the threshold (0.05) used to reject the (null) hypothesis of no
change. As a result, the change detected using Landsat data has a
lower confidence level (P < 0.10).

Other minor differences (i.e. not leading to different test out-
come) between the results of the two types of analysis refer to
different magnitudes of the P-value. The P-value of MODIS is gen-
erally lower than that of Landsat. Fig. 4 shows the P-value of the
two types of analysis vs . the absolute value of the relative BACI

contrast.

Both types of analysis show a reduction in the P-value with
increasing absolute value of the relative contrast, as the test essen-
tially builds (also) on the magnitude of the BACI contrast. However,
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ig. 3. Temporal profiles of mean NDVI values for selected impact (blue lines) and c
ates  before and after the intervention are separated by the vertical black line. The
eferences to colour in this figure legend, the reader is referred to the web  version o

he MODIS P-values are mostly lower than those of Landsat for sim-
lar relative contrasts. Therefore, the multiple temporal sampling
hat can be achieved using MODIS data appears to be instrumental
n increasing the significance level of the test with respect to the
ingle time analysis of Landsat. This is likely due to three reasons:
) increased sample size for MODIS analysis, ii) better represen-
ation of the overall vegetation cover offered by the maximum
DVI with respect to the single date NDVI, and iii) reduced depen-
ency of MODIS on a specific year and time. Concerning the latter,
ith the MODIS set-up we analyse the control/impact differential

ehaviour in a multi-year time span, making it less sensitive to

ossible year-specific peculiarities that may  affect the single-year
igh-resolution Landsat set-up (see Fig. 3). It is noted that the same
ultiple-period design can be applied to high-resolution freely

vailable data in geographical settings with a higher availability
onding control sites (red lines) for Landsat (left) and MODIS (right) data. Sampling
e (P) and the percent relative contrast (RC) are reported. (For interpretation of the

 article.)

of cloud-free Landsat imagery, or when analysing more recent
projects that can exploit the more frequent availability of Landsat 8
imagery and other recently available instruments (e.g. Sentinel 2).
The uncertainties connected to the use of a single image before and
after the intervention are well exemplified by the temporal evolu-
tion of NDVI for project no. 81 in Fig. 3. A non-significant BACI effect
is detected using the single-image set-up of Landsat (P = 0.058)
despite a quite large negative relative contrast (−27.95%). For the
same site, the MODIS multi-year profile shows a large inter-annual
variability. The Landsat single-image set-up picked up 2007 as the
year “before”, when the control had the third-highest MODIS NDVI.

If a different year were available, for example 2006 when the con-
trol had the second-lowest MODIS NDVI, this may  have resulted in
a different (lower) P-value.
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Project no. 4 (showing degradation with respect to controls)
hows an opposite behaviour: lower P-value (i.e. higher confidence)
or the Landsat analysis. Here, the small size of the restoration area
lays a role, resulting in a poor MODIS spatial sampling, on the one
and by reducing the sample size and the power of the test, and on
he other by making the few MODIS samples less reliable. In fact,
he actual area sensed by the instrument is greater than the nomi-
al spatial resolution, and has an elliptical shape controlled by the
ensor characteristics and observation geometry (Duveiller et al.,
011; Duveiller and Defourny, 2010). Thus, a fraction of the signal

n pixels located at the border of the project area may  originate
rom an area outside. This effect may  be non-negligible when the
roject area is composed of only a few MODIS pixels, as for project
o. 4.

Besides the statistical test result (i.e. rejection of the null hypoth-
sis of no change), the relative BACI contrast can provide additional
nsights into the extent of the success of a given intervention
roject. For instance, with MODIS analysis, this ranges from +6.3%
degradation for project no. 4) to −27.7% (improvement for project
o. 14), indicating a different magnitude of the effect of the different
estoration interventions.

.2. BACI results vs. qualitative information

A general agreement between the qualitative information
xtracted from Google Earth VHR imagery and BACI results is
bserved. In all sites where no signs of interventions or no differ-
nce with the surrounding areas was observed in VHR imagery, the
ACI effect is not significant. In all sites where a pattern of regularly
lanted and established trees were observed, the BACI contrast is
egative and the BACI effect is significant, with the exception of
ite no. 81 which is not significant when Landsat is used. The test
f the BACI effect also agrees with the field qualitative evaluation
vailable for five sites. Among the five sites, two were evaluated as
eing relatively successful and are matched by a significant BACI
ffect (sites no. 14 and 15), and three were negatively evaluated
nd are matched by a non-significant BACI effect (sites no. 9, 16

nd 44). Site no. 5, where the presence of reforestation intervention
as not visible, was instead found to have a significant and negative
ACI. However, the field evaluation did not provide any informa-
ion about the grassland cover that may  have improved after the
bservation and Geoinformation 59 (2017) 42–52

fencing intervention, thus triggering the statistical detection of a
greening effect.

5.3. Applicability of the method to different intervention types

Albeit restoration interventions that do not involve a “green-
ing” cannot be scrutinised using NDVI, the range of applicability
may  be expanded using the same statistical framework with other
RS-based quantitative indicators, when considered relevant for
assessing the success of a specific type of intervention at a given
scale of analysis. For instance, soil erosion processes could be
assessed by detecting erosion features and eroded areas or by
estimating erosion-controlling factors, such as soil moisture and
surface roughness (Anderson and Croft, 2009; Vrieling, 2006). Spa-
tial pattern metrics could support the assessment of restoration
interventions that impact habitat composition, fragmentation, and
connectivity at landscape level, also in relation to land degrada-
tion processes (Fava et al., 2015; Kéfi et al., 2007). As an additional
example, fine-scale quantitative mapping of specific plant species
(e.g. invasive) could be critical to monitor the effectiveness of plant
removal or control efforts (Pysek and Richardson, 2010).

5.4. Applicability of the method to different landscape settings

Topographic variations are not explicitly accounted for in the
described method. Although not an issue in the flat case-study land-
scape, two effects of topography can be envisaged in regions with
significant relief. First, different vegetation types grow in locations
with different elevation, slope and aspect. Thus, controls should
be selected with similar topographic characteristics with respect
to the restoration site. As we expect different vegetation types to
be spotted by the classification of RS imagery, this first effect does
not hamper the proposed method. In addition, in the cases where
such topographic characteristics are expected to be important, they
could be added to the input layers of the classification. The second
effect of topography is on the geometry of the sun-target-sensor
system, and thus on the reflectance. Moderate relief variations are
expected to have a minor impact on the method as the use of a band
ratio such as the NDVI will reduce the topographic effect (Lee and
Kaufman, 1986). In addition, different illumination conditions (at
least those related to the direct light component) can be normalised
using, for instance, slope-aspect corrections (e.g. Teillet et al., 1982).
Thus, topography can be treated and does not limit the applicability
of the method.

The BACI analysis is a comparative method in which the tem-
poral variability due to natural environmental conditions (i.e.
weather) is accounted for using controls. The random selection of
multiple control sites and the visual inspection of their stability
over the analysis period minimises the impact of the selection of
unsuitable controls (i.e. affected by non weather-driven changes in
greenness after the time of intervention). However, if the landscape
around the restoration area is subjected to widespread anthro-
pogenic changes (e.g. agricultural intensification, urbanisation), the
possibility of selecting multiple suitable controls will be severely
limited, affecting the discrimination power of the test. On the con-
trary, possible natural disturbances such as fires or pests can be
accounted for by the test. In fact, a decrease in greenness would be
detected if the disturbance affected only the restoration site while

a relative increase would be more likely to be detected if the dis-
turbance affected several controls. The change in greenness may  be
then interpreted as decreased (or increased) vulnerability to such
disturbances due to the intervention.
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. Conclusions

For the first time, a before/after control/impact (BACI) design
as applied to RS data to evaluate the biophysical impact of restora-

ion projects. Large agreement was found in the statistical test
utcomes using either MODIS or Landsat data. The availability of
requent MODIS observations makes the data of this instrument
ell suited to the most robust BACI design, exploiting multiple con-

rols and multiple observations before and after the intervention.
he use of Landsat data in our test case study was  limited by the
oor availability of cloud-free imagery, compelling the application
f a single-time BACI design and resulting in generally lower con-
dence (i.e. higher significance level, P-value) of the test results.
he analysis of more recent intervention projects will benefit of
he availability of more frequent satellite observations from Land-
at 8 and Sentinel 2 satellites. The combination of high spatial and
emporal resolution offered by sensors such as the Sentinels 2 may
onsiderably increase the potential of the proposed method. In
ddition, for earlier project, the use of commercial satellite (e.g.
POT 4 and 5, Rapid Eye) may  be considered to complement the
ree imagery and increase data availability.

Results of the statistical analysis were in agreement with the
ualitative information provided by field observations and visual

nterpretation of the VHR imagery in Google Earth. The pro-
osed approach can be considered a first screening of restoration

nterventions that may  drive further and complementary in situ
nalyses, thus increasing the cost-efficiency and feasibility of the
valuation of restoration interventions. In addition, the method-
logy can be used for the long-term monitoring of restoration
nterventions, thus allowing the benefits of the initial investment
nd its sustainability to be evaluated.

When NDVI is used, the applicability of the proposed method
s limited to the verification of a biophysical impact in terms of
ariation in vegetation cover. This is not limited to reforestation
nd rangeland improvement but to a range of interventions (e.g.
oil conservation, surface water run-off control, infrastructures for
rrigation, improved land governance and management, etc.) that
lso cause re-greening. The use of other remote-sensing-derived
ariables (e.g. soil moisture, surface roughness, fragmentation, VHR
lant species mapping) may  further extend the applicability of the
tatistical framework to other aspects of restoration interventions.
n situ analyses remain of fundamental importance, not only to
rovide a more detailed set of biophysical indicators targeted at
he specific restoration, but also to consider other key aspects of
estoration related to social perception and economic impacts.
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