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The sessile nature of plants has caused plants to develop

means to defend themselves against attacking organisms.

Multiple strategies range from physical barriers to chemical

warfare including pre-formed anticipins as well as phytoalexins

produced only upon attack. While phytoalexins require rapid

induction, constitutive defenses can impose ecological costs if

they deter pollinators or attract specialized herbivores. In the

model Arabidopsis thaliana, the well-characterized

glucosinolate anticipins are categorized into different classes,

aliphatic and indole glucosinolates, depending on their amino

acid precursor. Using glucosinolates in Arabidopsis as case

study, we will discuss how plants orchestrate synthesis,

storage and activation of pre-formed defense compounds

spatially and temporally.
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Introduction
Specialized plant metabolites are well-known for their

role in interactions between plants and their distinct

biotic environments. Consequently, and as opposed to

general metabolites, specialized metabolites are

restricted to specific taxa. Their enormous diversity in

chemical structures, biosynthetic pathways, and modes of

action [1,2] has evolved under selection pressure imposed

by specific combinations of harmful and beneficial inter-

acting organisms. Chemical defense strategies in plants

range from constitutive accumulation over induced

defenses to activated defense systems. The latter depend

on at least two components—the preformed, inactive

precursor of a bioactive compounds and the activating

enzyme machinery. For the plant to ensure that
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appropriate chemical defenses are present in the right

tissue and at the right time, their biosynthesis, transport

and storage needs to be tightly regulated in space and

time. As different defense strategies underlie different

defense pathways, a general discussion of their spatio-

temporal regulation is troublesome. Thus, this review

focuses on glucosinolates as model for activated chemical

defenses.

As primary chemical defense compounds, Arabidopsis

synthesizes up to 40 different glucosinolates [3]. The

glucosinolates themselves show only very limited biolog-

ical activities, and depend on activation initiated by co-

occurring thioglycosidases called myrosinases. Chemical

and enzymatical rearrangements after myrosinase-cata-

lyzed hydrolysis give rise to a range of products toxic to a

wide range of organisms [1,4]. Depending on the amino

acid-derived glucosinolate side chain and the presence of

specifier proteins, each glucosinolate can be activated to

one or more products with different biological activities

[5]. Variation in the type of glucosinolate hydrolysis

products is observed among different species within

the Brassicaceae, among Arabidopsis accessions and even

among tissues of the same plant [6–8]. Upon herbivory,

glucosinolate levels can be further induced and induction

of the nitrile-specifier protein NSP1 can change the

outcome of glucosinolate hydrolysis and thereby shift a

direct to an indirect defense strategy [9,10]. This under-

lines the versatile and dynamic nature of glucosinolate-

based defense.

Storage of glucosinolates in S-cells and seeds
In the unattacked Arabidopsis plant, glucosinolates are

stored in laticifer-like S-cells within the phloem cap

region outside the vasculature and along the leaf margin

[11–15] (Figure 1). These cells contain >130 mM gluco-

sinolates stored under high turgor pressure. Although

latificer-like cells are known from, for example, rubber

trees it remains an open question whether the localization

of laticifer-like cells (such as the S-cells) in the phloem

cap region is a Brassicales-specific evolution or whether

universally found for other defense compounds.

Other storage sites include the seeds that accumulate

high levels of glucosinolates that are imported into the

seeds that lack de novo biosynthesis [16,17]. Knowledge

about the seed loading process is limited. The so-far only

identified glucosinolate transporters, the plasma
www.sciencedirect.com
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Figure 1
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Spatio-temporal control of glucosinolate-based defense. Like numerous other specialized metabolites, glucosinolates play a key role in plant biotic

interactions, both above- and below-ground. Their presence and activation in the right tissue at the right time is critical for their biological

functions. Glucosinolate profiles characteristic for a given tissue, developmental stage and combination of environmental factors are dynamically

shaped by biosynthesis and transport. Along vascular bundles, rapid activation upon tissue damage relies on close proximity of glucosinolate

storage cells (S-cells shown in yellow in the schematic stem cross section) and myrosin cells (shown in red).
membrane-localized glucosinolate transporter 1 (GTR1)

and glucosinolate transporter 2 (GTR2) importers, are

essential for loading glucosinolates into the seeds as

demonstrated by glucosinolate-free seeds of the gtr1
gtr2 mutant [18]. The level of glucosinolates in a given

tissue is subject to a complex feedback regulation. Plants

overexpressing the MYB28 – a major positive regulator of

aliphatic glucosinolates – accumulated threefold higher

levels of aliphatic glucosinolates in the foliar tissue, while

their seeds showed only a moderate increase [19]. Thus,

independent of the levels of glucosinolates in vegetative
www.sciencedirect.com 
parts, the levels in the seeds appear to reach a certain

maximum. It is currently not known how the plant senses

that the seeds have reached this threshold.

Sinks within the leaves
Glucosinolate concentration in leaves decreases with age

until virtually gone upon senescence [8]. Whether the

glucosinolates are (re)mobilized to sink tissue or turned

over is unknown. It was suggested that leaf glucosinolates

were destined to the seeds based on increased levels in

leaves of gtr1 gtr2 mutant [18]. However, it turned out that
Current Opinion in Plant Biology 2017, 38:142–147
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the overaccumulation in leaves was due to glucosinolates

derived from roots via the xylem [20,21]. This suggests

that upon senescence the leaf-synthesized glucosinolates

are not transported long distance to the seeds, but rather

turned over. How leaf-synthesized glucosinolates are

turned over in the intact leaves upon senescence is a

puzzle, although glucosinolate breakdown independent

of the classical myrosinases thioglucoside glucohydrolase

1 (TGG1) and thioglucoside glucohydrolase 2 (TGG2)

has been shown [22]. By contrast, the root-derived glu-

cosinolates accumulating in leaves in the gtr1 gtr2 mutant

[21] are apparently turned over at much lower rate.

Possibly, glucosinolates that arrive via xylem accumulate

in different sites than the leaf-synthesized ones.

Recently, the cuticular leaf layer was identified as glu-

cosinolate sink [23�]. The surface localization of glucosi-

nolates has been a controversial topic for many years as

various methods have yielded ambiguous results.

Recently, Shroff et al. [23�] used three independent mass

spectrometry methods to elegantly detect and quantify

intact glucosinolates at the surface. In addition to previ-

ous findings, where glucosinolates were shown to accu-

mulate along the major midrib and the leaf margin [24],

the surface-localized glucosinolates represent 1–5% of

total glucosinolates and are evenly distributed across

the epidermis, except for the midrib [23�]. The distribu-

tion between adaxial and abaxial surfaces was found to be

uneven with 15–30-fold more on the abaxial surface. How

glucosinolates get exported out of epidermis to the cuti-

cula is not known. Noticeably, particularly 4-methylthio-

butyl glucosinolate (4MTB) (eightfold) and indole-3-

methyl glucosinolate (I3M) (threefold) are overrepre-

sented in both epidermis [21] and cuticula [23�]. The

significance of this is not known, but the levels are

sufficient to function as oviposition cues [23�].

The rhizosphere is a sink
Recently, intact glucosinolates [25] as well as hydrolysis

products [25,26] were detected in the exudate of Arabi-

dopsis roots, as they have previously been detected in

Brassica root exudates [27,28]. Intuitively, one would

have anticipated that rhizosecreted phytochemicals were

produced in the outer cell layers of the root. However, in

Arabidopsis the route from site of synthesis to the rhizo-

sphere required GTR-mediated import of stele-synthe-

sized glucosinolates into the symplasm [25]. This indi-

cated that glucosinolates must be exported from the cell

in which they are synthesized and that GTR1 and GTR2

might be essential in balancing above- and below-ground

defense in response to environmental challenge. The

effects of Brassica root exudates in suppression of soil-

born pests have primed an interest in use of glucosinolate-

containing plants in pest management, a process termed

biofumigation [29]. The endophyte Piriformospora indica
requires a certain level of glucosinolate hydrolysis to

maintain its status as commensalistic/mutualistic
Current Opinion in Plant Biology 2017, 38:142–147 
endophyte [30], which indicates that the impact of intact

glucosinolates and their hydrolysis products on the micro-

bial community in the rhizosphere represents an inter-

esting future research area.

Are glucosinolates mobilized upon attack?
Until now we have discussed glucosinolates as phytoan-

ticipines that accumulate in various sinks in the unchal-

lenged plant. However, upon attack by biotrophic patho-

gens, for example, Blumeria and Phytophthora species, cell-

autonomous defense linked to indole glucosinolates has

been shown to play role a plant innate immunity [31,32].

Upon such attacks, unmodified indole glucosinolates I3M

produced along the vasculature [33] and stored in the

epidermal cell [21] are modified by the induced enzyme

CYP81F2 to produce 4-methoxy-indole glucosinolate

[34]. It is currently not known whether the epidermal

pool of I3M is being replenished by de novo synthesis in

the epidermal cell or whether the vasculatory synthesis

sites deliver upon attack? Also, where in the unchallenged

epidermal cell is the pre-formed I3M stored? Is it in the

vacuole where glucosinolates are normally stored? If so,

how does it get remobilized to the cytosol to encounter

the endoplasmic reticulum-associated CYP81F2? Future

studies are required to address these questions related to

the orchestration of synthesis and storage as well as

remobilization and replenishment when under attack.

How do plants coordinate development and
defense?
During development, fluxes through metabolic pathways

constantly need to be adjusted to account for changes in

source-sink relations [35,36]. In the winter-annual Arabi-

dopsis, the emergence of the florescence coincides with

the onset of senescence in rosette leaves which marks an

essential development transition. Decreasing levels of

glucosinolates in senescing leaves [8] have been attrib-

uted to the emergence of the inflorescence as a new

source tissue [37], but may as well be a consequence of

changes in general metabolism including reduced avail-

ability of precursors and increased remobilization of nitro-

gen. At the same time, higher levels in young and repro-

ductive tissues and lower levels in senescent tissues

represent a typical developmental pattern for chemical

defenses reflecting re-allocation of resources within the

plant and its impact on the behavior of herbivores as well

as that of pollinators and other beneficial organisms [38].

Thus, the networks controlling development and defense

must be intimately linked to balance metabolic versus

ecological costs and thereby maximize plant fitness. And

indeed, the same phytohormones provide input to devel-

opment, growth and regulate chemical defenses [39]

supporting a view in which plant specialized metabolism

is just another metabolic output of the complex signal

transduction networks driving highly conserved biologi-

cal processes. Despite the metabolic costs associated with
www.sciencedirect.com
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specialized metabolites, the relationship between growth

and defense is not necessarily a tradeoff [40]. Instead,

molecular decisions made to coordinate growth and

defense are determined by the abiotic environment

including the availability of nutrients, in the case of

glucosinolates most importantly nitrogen and sulfur

[41��].

What mediates feedback regulatory effects of
specialized metabolites?
As levels of chemical defenses are strongly intertwined

with developmental processes and seasonal changes in

the biotic and abiotic environment, they can be expected

to provide feedback regulatory input to these develop-

mental processes to maximize the plant’s ability to effi-

ciently utilize the resources available. In line with such a

model, genetic variation in the glucosinolate biosynthetic

alkenyl- and hydroxyalkyl-producing locus (GS-AOP) was

associated with variation in the onset of flowering

[42,43] and one of the genes in the GS-AOP locus,

AOP2, is involved in regulatory loop linking jasmonate

signaling and glucosinolate biosynthesis [44�]. The iden-

tification of gulliver1/superroot2-7 – a weak allele of the

cytochrome P450 CYP83B1 involved in the biosynthesis

of indolic glucosinolates from tryptophan – further

highlighted the established link between indole glucosi-

nolate and indole acetic acid synthesis and hinted at a

checkpoint for the coordination of the two pathways [45].

Even specific glucosinolate structures can have feedback

regulatory effects as illustrated by naturally variable bio-

mass responses in Arabidopsis seedlings specifically to the

methionine-derived allyl glucosinolate, a product of the

enzymatic activity of AOP2 [46�,47]. The molecular

mechanisms underlying structure-specific fine-tuning of

growth and development by glucosinolates and poten-

tially other specialized metabolites remain, however, to

be uncovered.

What are the mechanisms linking circadian
clocks and defense?
A multitude of developmental and physiological pro-

cesses are controlled through cross-talk with molecular

clocks as central regulators. Like any other multicellular

organism, plants have circadian clocks to coordinate their

metabolism with environmental factors by integrating

biotic and abiotic factors [48,49]. In plants, this coordina-

tion is critical for local adaptation because it allows plants

to anticipate predictable fluctuations in the environment

and adjust development and physiology accordingly

through phytohormone signaling pathways [50–53]. Also

pollinators, herbivores, pathogens rely on endogenous

clocks and therefore represent – at least to some extent

– predictable biotic threats, as indicated by the timing of

plant immune responses and increased resistance to her-

bivores and pathogens that coincides with the highest

insect and pathogen activity [54,55].
www.sciencedirect.com 
Depending on temperature, basal levels of root glucosi-

nolates have been reported to show a circadian pattern

[56], however, quantitative changes in glucosinolate

levels are relatively low and it remains to be tested

how much these oscillations contribute to day time-

dependent differences in plant resistance. On the level

of transcriptional control, the circadian clock and gluco-

sinolates show clear interconnectivity, again at least par-

tially mediated by known regulators of glucosinolate

biosynthesis from methionine [43]. Arabidopsis mutants

with altered levels of AOP2 or the transcriptional regula-

tors MYB28 and MYB29 show a significantly altered

circadian period providing yet another example of an

output of the clock functioning as feedback regulatory

input.

Future research should aim at identifying the parameters

that determine whether or not oscillations in transcript

levels translate into changes in metabolite levels.

Whereas circadian control of glucosinolate transcripts

reflects the plant’s ability to anticipate herbivore and

pathogen attack, diurnal changes in signaling pathways

and general metabolism might be decisive factors for

basal and inducible levels of defense compounds and

thereby plant resistance. The central role of clock com-

ponents in integrating biotic and abiotic external signal

with information from internal feedback loops leaves no

doubt about its impact on the dynamics of chemical

defenses, but neither about future challenges in identi-

fying the molecular mechanisms behind.

Biotechnological use of circadian clock to
promote postharvest longevity
The modular design of plants enables individual plant

organs to manifest autonomous functions and continue

aspects of metabolism, for example, respiration, even

after separation from the parent plant. Accordingly, har-

vested vegetables and fruits continue to sense and

respond to diverse stimuli, similarly to intact plants. In

a recent study, circadian clock entrainment with light/

dark cycles during postharvest storage improved plant

tissue performance with respect to tissue integrity, green

coloration, and chlorophyll content, compared to constant

light or darkness [57�]. In the cruciferous vegetables, kale

and cabbage, the levels of the glucosinolates remained at

higher levels when stored under light/dark cycles. This

suggests that sustained circadian clock entrainment may

be a powerful approach to promote postharvest quality

and longevity and thereby reduce yield loss. By applying

this finding to postharvest storage, more food could be

kept for longer without refrigeration.

Conclusion
The complexity of the orchestration of chemical defenses

in plants reflects the complexity of the environments that

have shaped the underlying regulatory networks. To

understand how plants balance metabolic and ecological
Current Opinion in Plant Biology 2017, 38:142–147
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costs to support both development and defense under

fluctuating conditions requires detailed knowledge on the

spatial and temporal dynamics of synthesis, storage, and

mobilization of chemical defenses. We can expect the

same knowledge to inspire future biotechnological strat-

egies for improved food quality.
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