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Abstract

We have established a pig resource population specifically designed to elucidate the genet-

ics involved in development of obesity and obesity related co-morbidities by crossing the

obesity prone Göttingen Minipig breed with two lean production pig breeds. In this study we

have performed genome wide association (GWA) to identify loci with effect on blood lipid

levels. The most significantly associated single nucleotide polymorphisms (SNPs) were

used for linkage disequilibrium (LD) and haplotype analyses. Three separate haploblocks

which influence the ratio between high density lipoprotein cholesterol and total cholesterol

(HDL-C/CT), triglycerides (TG) and low density lipoprotein cholesterol (LDL-C) levels

respectively were identified on Sus Scrofa chromosome 3 (SSC3). Large additive genetic

effects were found for the HDL-C/CT and LDL-C haplotypes. Haplotypes segregating from

Göttingen Minipigs were shown to impose a positive effect on blood lipid levels. Thus, the

genetic profile of the Göttingen Minipig breed seems to support a phenotype comparable to

the metabolic healthy obese (MHO) phenotype in humans.

Introduction

Obesity is defined as excessive accumulation of fat in the body to the extent that it may have a

negative effect on health. According to the World Health Organization (WHO), in 2016 obe-

sity had more than doubled worldwide since 1980. Obesity can be socially stigmatizing, how-

ever, in itself it is not the primary health problem. Rather, it is the co-morbidities such as

cardiovascular disease (CVD) and type 2 diabetes (T2D) which pose the major health prob-

lems. Common to many of the co-morbidities is an unhealthy metabolic profile with insulin

resistance and dyslipidemia characterized by elevated triglycerides (TG) and low-density lipo-

protein cholesterol (LDL-C) levels and by decreased high-density lipoprotein cholesterol
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(HDL-C) concentrations [1]. Approximately 25% of obese humans do, however, not present

the metabolic complications and do not suffer from an increased susceptibility towards obesity

related diseases [2, 3]. These individuals are characterized as ’metabolically healthy obese’

(MHO) [4].

To understand why MHO individuals have a better prognosis than the metabolically

unhealthy individuals it is relevant to elucidate the genetic mechanisms underlying regulation

of blood lipids such as cholesterol and TG.

Cholesterol is a ubiquitous steroid and a vital component of cellular membranes in verte-

brates. But at the same time, subendothelial accumulation of cholesterol is the cause of athero-

sclerotic lesions leading to vascular diseases, heart attacks, aortic aneurysms and peripheral

vascular diseases [5] which, altogether, represent the most frequent causes of demise in the

industrialized world [6].

Cholesterol is transported in plasma in lipoprotein particles. These consist of a major struc-

tural apolipoprotein, peripheral apolipoproteins, structural lipids (phospholipids and choles-

terol) and a cargo of TG and steryl esters. Dietary lipids are absorbed via the small intestine

and packaged as TG into large particles known as chylomicrons (CM) which distribute lipids

throughout the body for direct use and storage. CM remnants return to the liver where the

remaining lipid cargo enters hepatic lipid pathways and a second class of lipoprotein particles

is produced; the very low density lipoproteins (VLDL). Like CM, VLDL distributes TG to the

periphery. As VLDL delivers TG they shrink and shed peripheral apolipoproteins, hence the

proportion of cholesterol increases and VLDL becomes low-density lipoproteins (LDL). Both

VLDL and LDL are characterized by the major structural apolipoprotein APOB. LDL can bind

to cells expressing the LDL-receptor (LDLR) and as such, LDL acts as an efficient cholesterol

delivery system into cells [5].

The reverse transport of cholesterol from the periphery to the liver is mediated by high-den-

sity lipoproteins (HDL) containing the major structural apolipoprotein APOA1. Nascent HDL

particles contain few lipids but collect free cholesterol and phospholipids from peripheral tis-

sues. Different mechanisms enrich the HDL particles with lipids, which ultimately are deliv-

ered to the liver via Scavenger Receptor B1 (SCARB1) for subsequent excretion with the bile

[5].

Heritability for LDL-C and HDL-C levels in humans are estimated to be around 70%.[7]

Large-scale genome wide association studies (GWAS) in humans have discovered over 150

common genetic variants associated with plasma lipids [8]. However, these loci only explain a

small fraction of the total variance in blood lipids [9] and the bulk of genetic factors for dyslipi-

demia are still unaccounted for.

A way to elucidate novel mechanisms involved in blood lipid regulation is to study animal mod-

els. Animal models provide the benefits of a strictly controlled diet and environment which is

impossible in large human studies. Consequently, random noise is greatly reduced and a corre-

sponding increase in power is presumed when animal models are used to study human conditions.

Also, the individual breeds are genetically more homogeneous than humans due to domestication

and artificial selection [e.g. ref. 10]. GWAS [11] and quantitative trait locus (QTL) mapping [12]

have been performed in mice to identify loci in the genome with effect on blood lipids. But more

frequently, spontaneous dyslipidemic and genetically engineered mouse models have been used to

study the effect of specific dyslipidemia associated genes first identified in human GWAS studies

[13]. However, market differences in metabolism and adipose tissue biology exists between rodents

and humans [e.g. ref. 14].

The pig is an animal model with a close similarity to humans in body size, physiology,

organ development and disease progression. It has been widely used as a model for cardiovas-

cular and metabolic diseases [15]. The presence of atherosclerotic lesions in aorta was
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described in pigs as early as 1954 [16]. The close similarity to vascular lesions in human athero-

sclerosis have later been confirmed [17, 18], and the pig has proved its value as a model for this

disease [19].

In the present study, a GWAS aimed at identifying loci with effect on blood lipid levels is

reported. The GWAS was performed in two pig crosses established by using Göttingen Mini-

pig as the parental boar line in both crosses whereas Duroc and Yorkshire production pigs

were used as parental sow lines in the two crosses respectively. The Göttingen Minipig is an

obesity prone pig breed [20] often used in studies of obesity, diabetes and metabolic syndrome

[21–24], whereas Duroc and Yorkshire pigs have been bred for leanness for decades. Haplo-

types were defined around the most significantly associated single nucleotide polymorphisms

(SNPs), and the effect of the haplotypes with the highest additive effects were studied further.

Materials and methods

Experimental animal model, sample collection and blood lipid analysis

Two populations were produced as F2 crosses using purebred Göttingen Minipig (M), Duroc

(D) and Yorkshire (Y) as parental lines (Ellegaard Göttingen Minipigs A/S, Dalmose, Den-

mark; DanBred International, Herlev, Denmark). The Minipig-Duroc (MD) crossbred F1 ani-

mals were founded by seven M boars and seven D sows and 28 F1 MD gilts and 16 F1 MD

boars were used to produce 285 F2 animals. Similarly, the Minipig-Yorkshire (MY) crossbred

F1 animals were founded by seven M boars and seven Y sows and 279 F2 animals were pro-

duced by 26 MY gilts and 13 MY boars (for further information see [25, 26]).

All pigs were raised under controlled environmental conditions and fed the same diet ad

libitum. The project was approved by the Danish Animal Experiments Inspectorate. Animal

care and maintenance were conducted according to the Danish “Act about Animal Hus-

bandry” and “Animal Protection Act” (Act 432, July 9, 2004; Act 1150, Sep. 12, 2015). All pigs

were housed at a regular pig farm, and slaughtered at a commercial slaughterhouse by stun-

ning and bleeding under veterinary supervision.

Blood samples for blood lipid analysis were drawn from the jugular vein at about two

month of age (63 ± 10 days, abbreviated Age1) and at slaughter (242 ± 48 days, abbreviated

Age2). Plasma lipid levels were assayed by standardized techniques using a Konelab 20 Clinical

Chemistry Analyzer (Thermo Scientific, Sweden) and commercial reagent kits from Roche

Diagnostics for Total Cholesterol (CT) and from ThermoElectron for TG and HDL-C levels

(direct method). LDL-C levels were calculated using the Friedewald formula. Observations >5

SD from the mean were considered outliers and excluded. Box-Cox transformation was used

to adjust for non-normality. After transformation, skewness and kurtosis were calculated for

each phenotypic distribution and Q-Q plots were made to evaluate normality.

Estimation of genetic parameters

Genetic parameters were estimated using Best Linear Unbiased Prediction (BLUP) based on

Average-Restricted Maximum Likelihood (AI-REML) using DMU version 6, release 5.2 [27].

Variance components were estimated using two different univariate models depending on

whether the phenotypes were measured at Age1 (Model 1) or Age2 (Model 2):

1Þ yi ¼ mþ SEXi þ CROSSi þ gðAGEiÞ þ xAi þ εi

2Þ yi ¼ mþ SEXi þ CROSSi þ g1ðAGEiÞ þ g2ðAGEiÞ
2
þ xAi þ εi

where y is the phenotype for animal i, μ is the population mean, SEX and CROSS are fixed
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effects for sex and cross (MD or MY) for animal i, AGE for animal i is a covariate with regres-

sion coefficient γ and A is the additive genetic effect for animal i with the regression coefficient

ξ. εi is the residual error. A and ε are assumed to be independent and normally distributed

with variances AσANIMAL
2 and Iσε2, respectively. A is the additive genetic relationship matrix

based on pedigree information, σANIMAL
2 the additive genetic variance, I an identity matrix of

appropriate size and σε2 the residual error variance.

A bivariate linear mixed model was fitted to estimate phenotypic and genetic correlations

between pairs of traits (Trait 1 and Trait 2):
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where y1 and y2 are vectors of the transformed phenotypic measurements of Trait 1 and Trait

2 respectively. X1 and X2 are design matrices connecting the measurements to b1 and b2 which

are vectors of the environmental fixed effects, while Z1 and Z2 are design matrices linking the

measurements to a1 and a2 which are vectors for the random genetic effects for each trait.

Finally, e1 and e2 are vectors of the random environmental effects. The effects fitted in the

bivariate linear mixed models are the same as the ones fitted in the univariate linear mixed

models. When fitting the bivariate model, the non-diagonals of the additive genetic variance

and covariance matrix G for animal effects and the variance and covariance matrix R for ran-

dom residual effects were included as follows:
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where covA12 = covA21 is the additive genetic covariance and covE12 = covE21 the random resid-

ual covariance between Trait 1 and 2. The phenotypic covariance covP12 = covP21 between

Trait 1 and 2 can be calculated as: covP12 = covA12 + covE12 [28].

Genotyping and Quality Control

Each animal was genotyped using the 60k porcine Illumina SNPchip. Sex chromosomes were

excluded from the single-marker analyses. The Sus Scrofa 10.2 pig genome assembly was used

to derive map positions for all SNPs. After genotyping, quality control (QC) was conducted

using GenABEL version 1.8–0 [29] excluding: animals and SNPs with more than 5% missing

genotypes; SNPs with a minor allele frequency (MAF) less than 5%; SNPs that significantly

deviated from Hardy-Weinberg equilibrium (HWE) at a significance threshold of p< 1E-05.

After QC, 549 pigs and 44,554 SNPs remained.

GWAS using single-marker test and estimation of SNP effects

GWAS was carried out for each phenotype using a single-marker test as implemented in Gen-

ABEL [30]. The analyses were performed in two steps: In step 1, the polygenic linear mixed

models were defined as Model 1 (for Age1) and Model 2 (for Age2) where Ai is the random

additive polygenic effect for animal i based on identity by state (IBS). Ai is assumed to be nor-

mally distributed with a (co)variance of GσANIMAL
2 where G is the genomic relationship

matrix and σANIMAL
2 the additive polygenic variance. Estimation of effects was performed by

means of maximum likelihood (ML) [31].
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Step 2 use estimated residuals from step 1 (contains part of the QTL variance) to estimate

SNP effects [30]:

ε̂i ¼ mþ SNPm þ εm

where ε̂i is the estimated residual error from step 1, μ is the mean, SNPm is assumed a fixed

effect with 3 genotype scores 0, 1 and 2 referring to the number of minor allele copies for the

m’th SNP and εm is the residual error. Each single SNP was modeled independently. The allele

substitution effect of the m’th SNP was calculated as the average phenotypic change when

replacing a major allele with the minor allele [32].

SimpleM [33–35] was used to correct for multiple testing by calculating the effective num-

ber of independent tests Meff = 12916. Missing genotypic values were replaced with the com-

mon allele genotype in the genotype matrix prior to the analysis. It resulted in a cut off value

of–log10(0.05/12916) = 5.41 corresponding to a nominal significance level (α) of 3.87�10−6.

For each significant SNP, the phenotypic variance explained by the SNP was calculated as

[36]:

VSNP ¼ Vm ¼ 2qmð1 � qmÞSN̂Pm
2

where Vm is the phenotypic variance explained by the m’th SNP, qm is MAF for the m’th SNP

and SN̂Pm is the estimated effect for the m’th SNP. The variance explained by the SNP is

assumed to be due to additive genetic variance. The proportion of additive genetic variance

explained by each SNP was calculated as VSNP / σA
2. The additive genetic effect (α) for each

top-SNP was calculated using BLUP as implemented in DMU where the effect of having 0, 1

or 2 copies of a specific SNP was fitted in the models described above (Model 1 and Model 2).

Linkage disequilibrium and haplotype analysis

The method described by Gabriel et al.(2002) [37] as implemented in Haploview [38] was used

to define haploblocks around the top SNPs identified in the GWAS. Default parameters were

used except for “Fraction of strong LD in informative comparisons” which was set to>0.80

(default >0.95). Phased haplotypes for each haploblock for each individual were estimated

using the—hap-phase option in Plink [39]. The additive genetic effect of each haplotype was

estimated using BLUP by fitting the haplotype as a covariate in the models described above

(Model 1 and Model 2). Effect were fitted for one haplotype variant at a time by computing the

effect of having 0, 1 or 2 copies of that variant. Effects were only calculated for haplotype vari-

ants observed in the founder animals and not for variants found in less than 20 animals in the

F2 population.

To evaluate haplotype effects in individuals with high- and low-BMI respectively, all F2 ani-

mals were sorted according to BMI and the one-third with highest BMI (high BMI) and lowest

(low BMI) respectively were selected. Each of the groups were subdivided according to haplo-

types in the HDL-C/CT and the LDL-C QTL regions and mean and standard deviation for

BMI_Age2, CT_Age2, TG_Age2, HDL-C/CT_Age1, HDL-C_Age2, HDL-C/CT_Age2,

LDL-C_Age2 and LDL-C/HDL-C at Age2 were calculated separately using Students-t test for

animals which were homozygous for either the GM or the Yorkshire/Duroc haplotypes in the

HDL-C/CT and LDL-C QTL regions.

Results

A moderate genetic correlation was found between Age1 and Age2 both in regard to LDL-C

and HDL-C/CT, whereas, for TG there was no correlation between measurements at the two

ages (see Table 1).
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The GWA study resulted in the identification of several QTL regions below the nominal

significance level on sus scrofa chromosome 3 (SSC3) (see Table 2). A single SNP on SSC3 at

124.7 Mb is associated with TG_Age2, whereas, there is no indication for an association with

TG_Age1 at this position (data not shown). Conversely, the same loci on SSC3 are associated

with LDL-C at Age 1 and Age 2 and the same is true for HDL-C/CT. The most significant asso-

ciations for LDL-C are found around 125.6 Mb and the most significant SNPs for HDL-C/CT

are found at 122.8 Mb.

LD analysis (Fig 1) revealed that the two top SNPs for HDL-C/CT_Age1 and HDL-C/

CT_Age2 are located close together and belong to the same LD-block defined by six SNPs

from 122.7–122.9 Mb (designated ’1’ in Fig 1). The top SNP’s for TG_Age2 and LDL-C_Age1

and Age2 show minimal LD to surrounding SNPs and are not included in any LD blocks

when default parameters in Haploview are used (results not shown). Relaxing the parameters

for block definition, as described above, includes the top SNP for LDL-C_Age2 into an LD

block defined by 10 SNPs spanning a region from 125.6–125.9 Mb (designated ’3’ Fig 1), but

the top SNP for LDL-C_Age1 is still outside the LD block. In the same way the relaxed parame-

ters include the top SNP for TG_Age2 into a four SNP haploblock from124.67–124.75 Mb

(designated ’2’ in Fig 1) clearly separated from the HDL-C/CT and the LDL-C loci. The SNPs

located in the haploblocks associated with the lipid levels are listed in SI 1.

The additive genetic effect of haplotypes present in more than 20 animals is shown in

Table 3. The largest additive effects appear for the HDL-C/CT and LDL-C haplotypes for

which there is also a clear breed specific segregation. For the HDL-C/CT associated haplotypes

one specific haplotype, AAAGGG, impose a higher HDL-C/CT level. Twelve out of fourteen

Göttingen Minipig founders are homozygous for this haplotype and the remaining two has

one copy of AAAGGG. The haplotype GGGAAA, for which all Yorkshire founders are homo-

zygous, has an equivalent negative effect, that is, animals with this haplotype have lower

HDL-C/CT levels. The same trend is true for the haplotypes segregating from the Duroc

Table 1. Genetic (rA) and phenotypic (rP) correlation between phenotypes measured at different age.

Phenotypes Correlation coefficients

Trait 1 Trait 2 rA (SE) rP

TG_Age1 TG_Age2 0.01 (0.28) -0.07

LDL-C_Age1 LDL-C_Age2 0.41 (0.19) 0.31

HDL-C/CT_Age1 HDL-C/CT_Age2 0.21 (0.24) 0.29

Age1: 63 ± 10 days, Age1; Age2: 242 ± 48 days

https://doi.org/10.1371/journal.pone.0178828.t001

Table 2. QTL regions and SNP effects.

Phenotypes Most significant SNP on SSC3 SNP effect

SNP name Position P-value MA MAF MAF (GM) MAF (DD) MAF (YY) VSNP/σA
2 α (SE)

TG_Age2 ALGA0021201 124739382 3.35E-06 A 0.36 0.00 0.70 0.83 0.34 -0.02 (0.00)

LDL-C_Age1 ASGA0094490 125568713 1.34E-08 A 0.38 0.00 0.60 0.83 0.17 0.05 (0.01)

LDL-C_Age2 ASGA0106214 125592465 2.07E-07 A 0.20 0.41 0.00 0.00 0.13 -0.05 (0.01)

HDL-C/CT_Age1 ALGA0021148 122811986 2.12E-09 G 0.39 0.00 0.60 1.00 0.20 -0.04 (0.00)

HDL-C/CT_Age2 MARC0019977 122854537 3.91E-07 A 0.42 0.00 0.70 1.00 0.26 -0.03 (0.01)

MA: Minor allele; MAF: Minor allele frequency; MAF (GM), (DD), (YY): Minor allele frequency in the parental generation of Göttingen minipigs, Duroc and

Yorkshire respectively; VSNP/σA2: Proportion of additive genetic variance explained by each SNP; α (SE): additive genetic effect for each top-SNP

(standard error)

https://doi.org/10.1371/journal.pone.0178828.t002
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breed, and among the Duroc haplotypes, AGAAGA, has an even stronger negative effect com-

pared to the Yorkshire haplotype on the HDL-C/CT level. The effect of the individual haplo-

types is similar at Age 1 and Age 2 (data not shown).

For the LDL-C associated LD block, the haplotype AGGAGCCAAA originating from

the Göttingen Minipig founders, decrease the LDL-C level. The Yorkshire founder specific

Fig 1. LD in a 2.8 Mb region (122.4–126.1 Mb) on Sus Scrofa chromosome 3. Frames mark top SNPs for HDL-C/CT_Age1, HDL-C/

CT_Age2, TG_Age2, LDL-C_Age1 and LDL-C_Age2, in this order from left to right. Triangles indicate haploblock structure in the QTL

region. Block 1: QTL for HDL-C/CT; Block 2: QTL for TG; Block 3: QTL for LDL-C.

https://doi.org/10.1371/journal.pone.0178828.g001

Table 3. Haplotype effects—SSC3.

Phenotype Haplotype Haploblock Additive effect SE Origine*

HDL-C/CT AAAGAA 1 -0.02 0.01 D

AAAGGA 0.01 0.01 GM

AAAGGG 0.04 0.00 GM

AGAAGA -0.07 0.01 D

AGGAAA -0.02 0.02 D

GAAAGA -0.02 0.02 D

GGGAAA -0.04 0.01 Y

TG Age2 AAAA 2 -0.02 0.00 Y, D

GACA 0.01 0.00 GM, Y

GGAA -0.02 0.01 D

GGCG 0.01 0.01 D

LDL-C AGGAGCCAAA 3 -0.04 0.01 GM

GAAAGAAACG 0.01 0.01 D

GGAAGAAACG -0.02 0.02 Y

GGAAGAAGAG 0.03 0.02 Y

GGAAGAAGCG 0.02 0.01 Y

GGGAGCCAAA 0.01 0.01 GM

GGGAGCCGAG 0.00 0.02 D

GGGGAACAAG 0.02 0.01 D

Effect of haplotypes present in more than 20 animals in the population in the three QTL haploblocks

*: GM = Göttingen Minipig; Y = Yorkshire; D = Duroc

https://doi.org/10.1371/journal.pone.0178828.t003
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haplotypes, GGAAGAAGAG and GGAAGAAGCG, increase LDL-C level; however, there is

also one Yorkshire haplotype, GGAAGAAACG, which decreases LDL-C level. Two of the

Duroc haplotypes increase the LDL-C level slightly. The effect of each haplotype is the same at

Age 1 and Age 2 (data not shown) even though the blocks are only loosely in LD according to

the LD analysis.

To further evaluate the phenotypic consequences of the haplotypes segregating from Göt-

tingen Minipig and Yorkshire/Duroc respectively we compared lipid and TG levels in animals

homozygous for either Göttingen Minipig haplotypes or the Duroc/Yorkshire haplotypes. The

comparison was performed in the one-third of the F2 animals with the highest and one-third

with lowest BMI, respectively. The mean BMI in the combined F2 population (564 animals) is

127±20 while in the selected high BMI group (136 animals) the mean BMI is 154±13, and in

the selected low BMI group (132 animals) the mean BMI is 111±9. As seen in Table 4, within

the low BMI group of animals there are no differences in TG and lipid values between the

genetically diverse animals. However, when comparing animals homozygous for Göttingen

Minipig haplotypes with animals homozygous for Yorksire/Duroc haplotypes within the high

BMI group of animals both TG and lipid values (except HDL-C) are significantly higher in ani-

mals with the Yorkshire/Duroc haplotypes.

Discussion

In agreement with previously performed GWA studies in pigs [26, 40, 41], we have identified

a QTL region influencing lipoprotein traits on SSC3. The homologous region on human

chromosome 2 has also been implicated in the regulation of blood lipids in human GWA

studies [42]. Our study shows that three separate haplopblocks influence HDL-C/CT -, TG -,

and LDL-C levels respectively (see Fig 1). The HDL-C/CT and HDL-C QTL loci flank the

TG_Age2 locus and thus, this 2.8 Mb region on SSC3 seems to encompass several loci with a

regulatory effect on different plasma lipids. This is underpinned by the observation that the

SSC3 locus affects HDL-C and LDL-C levels independent of age but for TG-levels there is only

an association to TG_Age2 and no evidence suggesting an association to TG_Age1. This indi-

cates that different genes or regulatory mechanisms in the region are responsible for effects on

cholesterol and triglyceride levels, respectively. This is also in agreement with the observed

correlations between phenotypes at different ages (Table 1) and the lack of a correlation be-

tween TG at Age1 and Age2.

Table 4. Effects of HDL-C/CT and LDL-C haplotypes with high additive effect in high- and low-BMI individuals.

BMI_Age2 CT_Age2 TG_Age2 HDL-C/CT

Age1

HDL-C_Age2 HDL-C/CT

Age2

LDL-C_Age2 LDL-C/HDL-C

Age2

n

High BMI

GM/GM 157.56 (14.00) 2.28 (0.49) 0.45 (0.18) 0.54 (0.07) 1.40 (0.31) 0.62 (0.07) 0.68 (0.27) 0.49 (0.17) 28

D/D or Y/Y 149.75 (16.05) 2.55 (0.55) 0.71 (0.35) 0.47 (0.06) 1.30 (0.35) 0.51 (0.10) 0.93 (0.33) 0.79 (0.46) 22

t-test 0.037468 0.034815 0.000744 0.00044 0.164139 7.38E-05 0.002637 0.001605

Low BMI

GM/GM 112.62 (9.38) 2.26 (0.84) 0.44 (0.23) 0.51 (0.10) 1.25 (0.54) 0.56 (0.10) 0.80 (0.35) 0.68 (0.31) 32

D/D or Y/Y 112.81 (6.00) 2.28 (0.67) 0.46 (0.17) 0.45 (0.07) 1.28 (0.44) 0.57 (0.11) 0.79 (0.39) 0.67 (0.41) 22

t-test 0.465747 0.464812 0.420131 0.017532 0.420304 0.379878 0.44152 0.462115

Mean and standard deviation (in parentheses) for eight phenotypes in high and low BMI animals homozygous for the Göttingen Minipig haplotypes (GM/

GM) or Yorkshire (Y/Y) or Duroc (D/D) haplotypes in haploblock 1 (HDL-C/CT) and 3 (LDL-C).

https://doi.org/10.1371/journal.pone.0178828.t004
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There are no annotated known genes in the HDL-C/CT and TG associated SSC3 haplo-

blocks in the Sscrofa 10.2 assembly but the gene encoding ras homolog family member B

(RHOB) is located in the LDL-C associated haploblock. RHOB is a member of the RHO GTP-

binding protein family which regulates expression of CD36 [43]. CD36 is a scavenger protein

with high affinity for plasma lipoproteins including LDL and a high expression in tissues such

as skeletal muscle, heart, mammary, epithelium and adipose tissue, with a very active fatty acid

metabolism [44]. The gene encoding apolipoprotein B (APOB) is located at 125.23–125.35 Mb.

It is an obvious candidate gene for lipid related traits but in the present study it is not included

in associated LD-blocks even though it was covered by four SNPs with a MAF above the exclu-

sion threshold. The gene encoding lipid droplet associated hydrolase (LDAH) is located at

125.42–125.53 Mb which is also outside the identified LD-blocks. Further studies including

sequencing and genotyping of additional markers are warranted to ascertain LD structure and

to identify genetic variation. It is very likely that the observed differences in blood lipids are

caused by variation in regulatory components within the identified QTL regions in particular

since a high number of different genes involved in regulation of lipoproteins are located within

this region of the genome.

Investigation of the additive genetic effect of the most common haplotypes segregating

within the F2 population indicates that the haplotypes originating from the Göttingen Minipig

breed provide a healthier lipid profile compared to the haplotypes segregating from the York-

shire and Duroc breeds. I.e., Göttingen Minipig haplotypes in haploblock 1 appears to increase

HDL-C/CT compared to the Yorkshire and Duroc haplotypes, which have the opposite effect.

Conversely, in haploblock 3 the Göttingen Minipig haplotype lowers the level of LDL-C and

the Yorkshire and Duroc haplotype increases LDL-C level with the exception of the GGAA-

GAAACG haplotype segregating from the Yorkshire breed. This effect is confirmed by com-

paring animals homozygous for the Göttingen Minipig and Duroc/Yorkshire haplotypes

respectively within groups of animals with high and low BMI respectively. Within the high

BMI group animals with Göttingen Minipig haplotypes have a significantly lower TG level,

lower levels of LDL-C, and LDL-C/HDL-C ratio and higher ratio of HDL-C to CT (Table 4).

Within the low BMI group there is no difference in the phenotypes between the two genetic

variants. Thus, overall Göttingen Minipig seems to have a genotype that supports a more

healthy blood lipid profile in spite of the fact that they are prone to obesity. Or conversely, pigs

without the Göttingen Minipig haplotypes develop a more unhealthy, dyslipidemic profile

together with obesity, compared to pigs with Göttingen Minipig haplotypes which uphold a

healthy lipid profile despite development of severe obesity.

The Gottingen Minipig breed was developed in the 1960’s using Minnesota Minipigs, Viet-

namese Potbelly Pigs, and German Landrace as founders (Simianer and Köhn, 2010). A likely

explanation for the MHO profile in Göttingen Minipigs is that the obesity prone minipig foun-

ders have been adapted to overcome obesity by natural selection. Thus, unexpectedly, the

results presented here indicate that the Göttingen Minipig breed is not well suited for studies

of the obesity related co-morbidities but may be a valuable model to advance understanding of

the MHO phenotype in humans.

The MHO profile identified in our F2 population is comparable to the MHO profile in

humans which appear to be protected against obesity related metabolic complications. How-

ever, although MHO is an important, emerging phenotype in humans no universally accepted

definition has been established for this phenotype yet [45]. It is also debated to what extend

MHO individuals will remain healthy [46, 47]. On the other hand, studying MHO subjects

may lead to better intervention strategies for metabolically unhealthy obese people, and elu-

cidate if they by lifestyle changes or by the use of medicine can switch to a better metabolic

profile.
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In conclusion, we have substantiated that different genetic loci have an effect on TG early

and late in life. We have also substantiated that the genomic region close to genes implicated

in lipoprotein metabolism (RHOB, APOB, LDAH) comprise regulatory elements of impor-

tance to the regulation of lipid metabolism. Interestingly, the largest additive genetic effects of

the haplotypes identified in this study show that haplotypes segregating from the obesity prone

Göttingen Minipig breed is able to uphold a healthy lipid profile despite development of obe-

sity. Thus, the genetic profile of the Göttinging Minipig breed seems to support a phenotype

comparable to the MHO phenotype in humans promoting this pig breed as a model for further

studies of this particular phenotype. Our future studies will be directed at identification the

genetic variation in the regulatory components involved in lipid metabolism and further ge-

netic characterization of the healthy metabolic phenotype.
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