
u n i ve r s i t y o f co pe n h ag e n

Sampling Random Bioinformatics Puzzles using Adaptive Probability Distributions

Have, Christian Theil; Appel, Emil Vincent; Bork-Jensen, Jette; Lassen, Ole Torp

Published in:
CEUR Workshop Proceedings

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Have, C. T., Appel, E. V., Bork-Jensen, J., & Lassen, O. T. (2016). Sampling Random Bioinformatics Puzzles
using Adaptive Probability Distributions. CEUR Workshop Proceedings, 1661, 39-45.

Download date: 08. apr.. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/269291146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://curis.ku.dk/portal/da/publications/sampling-random-bioinformatics-puzzles-using-adaptive-probability-distributions(3bc28342-7593-486f-b667-14487c760a2b).html
https://curis.ku.dk/portal/da/publications/sampling-random-bioinformatics-puzzles-using-adaptive-probability-distributions(3bc28342-7593-486f-b667-14487c760a2b).html

Sampling Random Bioinformatics Puzzles
using Adaptive Probability Distributions

Christian Theil Have1, Emil Vincent Appel1, Jette Bork-Jensen1, and Ole Torp
Lassen2

1 Novo Nordisk Foundation Center for Basic Metabolic Research, Section of
Metabolic Genetics, University of Copenhagen, Denmark.

2 Roskilde University, Roskilde, Denmark

Abstract. We present a probabilistic logic program to generate an ed-
ucational puzzle that introduces the basic principles of next generation
sequencing, gene finding and the translation of genes to proteins follow-
ing the central dogma in biology. In the puzzle, a secret ”protein word”
must be found by assembling DNA from fragments (reads), locating a
gene in this sequence and translating the gene to a protein.
Sampling using this program generates random instance of the puzzle,
but it is possible constrain the difficulty and to customize the secret
protein word. Because of these constraints and the randomness of the
generation process, sampling may fail to generate a satisfactory puzzle.
To avoid failure we employ a strategy using adaptive probabilities which
change in response to previous steps of generative process, thus minimiz-
ing the risk of failure.

Keywords: PRISM, bioinformatics, sampling

1 Introduction

Assemble-yourself 3 is a paper-printable “bioinformatics“ puzzle which is in-
tended to be fun as well as educational – it introduces concepts in genetics and
Next Generation Sequencing (NGS) [1]. We have successfully used assemble-
yourself in a workshop setting, where groups of participants competed against
each other. They were quite engaged and reported to have a lot of fun while
also learning. The idea of the game is to assemble a DNA sequence from NGS
reads and translate it into amino acids to find a secret word. The entire game
is printed on paper. This includes the reads (cut out paperstrips) and a board
which serves scaffold to assemble the reads and writing down the sequence. Once
the reads have been assembled and a consensus sequence is found, the consensus
sequence is translated to amino acid sequences in both DNA strands. The letters
of the sequence contains a secret word embedded within an open reading frame.

The game is generated by a probabilistic logic program and many aspects of
the game can be configured prior to generation. For instance, the secret protein

3 https://github.com/cth/assemble-yourself

40

word can be changed and the minimal read depth — the number of reads covering
any position — can be configured. In order to ensure satisfaction of constraints
in a computationally efficient way, we introduce a heuristic scheme to adapt
random switch probabilities based previous states of the program.

2 Description of the game

In the style of logic programming, we begin with the goal. The goal of the game
is to find a particular protein word. For a given game instance, a mutated version
of the specified protein word — where some letters (amino acids) are randomly
substituted — is generated and reported in the background story, c.f., figure 1.

Recently an interesting protein with the amino acid sequence ILP was found in the bacteria S.
Equencia. It is now to be determined if a homologue exists in the species B. Ionformatica.
To determine this a lab amplificied a relevant part of the DNA of B. Ionformatica using PCR primers
flanking the gene in S. Equencia which are believed to be highly conserved also in B. Ionformatica,
although the sequence of B. Ionformatica is currently not known. The amplified DNA was sequenced
using Ullamini LoSeq next generation sequencing tech. The quality of the reads are not perfect –
read errors resulting in random “mutations“ are expected in one out of twenty bases.
As a bioinformatician you are given the task to find out if B. Ionformatica has a homologue of the
protein ILP and determine how its amino acid sequence differs in B. Ionformatica. However, the
high performance moon grid engine supercluster is currently down (as it sometimes is) and you have
to do it all by hand. Fortunately, you have printed all the reads. You task is as follows: 1) Perform
de-novo assembly of all the reads, 2) Find open reading frames that may contain a gene, 3) Find
the amino acid sequence of any such gene to determine if it could be a homologue to ILP, 4) Report
your finding and claim eternal fame.

Fig. 1. The background story

The amino acids are reflected in a corresponding the DNA sequence of nu-
cleotide bases forming a gene, where each triplet of DNA bases (called a codon)
correspond to an amino acid. Only part of the DNA sequence is used to encode
the protein word. It is flanked by random DNA on both sides, but the offset
of the encoded protein is randomly determined. A given amino acid may be
represented by one of multiple coden triplets, a particular codon may indicate
the start of the gene and another is used to indicate the end of it (see figure
2, and e.g., https://en.wikipedia.org/wiki/Genetic code for details). The DNA
sequence can be read either left-to-right or right-to-left, but in the latter case the
DNA sequence should be complimented, i.e., the bases should be replaced by the
one they pair with in the double-helical DNA molecule (A ↔ T and G ↔ C).
Yet another complication is that codon triplets may start in any position.

Part of the puzzle is to find possible genes in DNA, translate the nucleotide
bases into an amino sequence to find the secret protein word. Once found the
game is completed. However, before doing this, the player is faced with solving
the problem of assembling the sequencing from a number of overlapping subse-
quences of the sequence (reads). This mimics the situation that arise when using
NGS technologies, where the assembly process is handled by computationally
intensive algorithms. The user however, is tasked with doing this by hand for a
small DNA sequence. A scaled down instance of the game is shown in figure 3.

41

F
ir

st
b
a
se

in
co

d
o
n

Second base in codon

T C A G

T

TTT Phe F
TTC Phe F
TTA Leu L
TTG Leu L

TCT Ser S
TCC Ser S
TCA Ser S
TCG Ser S

TAT Tyr Y
TAC Tyr Y
TAA Stop *
TAG Stop *

TGT Cys Y
TGC Cys Y
TGA Stop *
TGG Trp W

T
C
A
G

C

CTT Leu L
CTC Leu L
CTA Leu L
CTG Leu L

CCT Pro P
CCC Pro P
CCA Pro P
CCG Pro P

CAT His H
CAC His H
CAA Gln Q
CAG Gln Q

CGT Arg R
CGC Arg R
CGA Arg R
CGG Arg R

T
C
A
G

A

ATT Ile I
ATC Ile I
ATA Ile I
ATG Met M

ACT Thr T
ACC Thr T
ACA Thr T
ACG Thr T

AAT Asn N
AAC Asn N
AAA Lys K
AAG Lys K

AGT Ser S
AGC Ser S
AGA Arg R
AGG Arg R

T
C
A
G

G

GTT Val V
GTC Val V
GTA Val V
GTG Val V

GCT Ala A
GCC Ala A
GCA Ala A
GCG Ala A

GAT Asp D
GAC Asp D
GAA Glu E
GAG Glu E

GGT Gly G
GGC Gly G
GGAGly G
GGGGly G

T
C
A
G

T
h
ird

b
a
se

in
co

d
o
n

Fig. 2. Standard genetic code. The table shows how triplets of nucleic acid bases
correspond to different amino acids. Besides the codon ATG which always codes for
methionine, alternatively TTG, CTG, ATT, ATC, ATA and GTG can serve as initi-
ation codons, in which case they are translated as methionine rather than the amino
acid indicated. In this puzzle we do require a leading methionine but do not consider
it as part of the solution word.

3 Description of the program

We have written the program to generate puzzles in the PRISM language [2]
— a probabilistic dialect of Prolog — although none of the advanced inference
procedures of PRISM are used. The program executes in sampling mode to
generate a random puzzle. Unlike the execution of a usual Prolog program, select
non-deterministic choice points are replaced with committed random choices
beyond which backtracking do not occur. Since the sampling execution commits
to these random choices, unification failures cannot under normal circumstances
be undone by backtracking, and the execution may fail if specified constraints are
not satisfied. The output of the program is a LATEXdocument which is compiled
to printable PDF document which constitutes the puzzle. The generation of
the LATEXdocument is not probabilistic, but is implemented as a usual Prolog
program which takes as input the probabilistic choices made in the sampling
part of program.

The part of the puzzle which involves the protein word corresponding amino
acid sequence and its underlying DNA sequence can be generated by a series of
probabilistic choices on where to place the protein word, on generation of the

42

a) Reads to cut out and use place on the game board

T A T G G A A A T G

A A A T G G A A T C

A C C T T T A C C T

T T A C C T A A G A

T A C C T T T A C C

G G A A A T G G A A

T A C C T T T A C C

T T A C C T T A G A

C T A C C T T T A C

C G T T G A C C T T

b) The (empty) game board

Amino acid sequence (forward strand)

Nucleotide sequence (forward strand):

A T A C C T C T T A G A

Nucleotide sequence (reverse strand):

T A T G G A G A A T C T

Amino acid sequence (reverse strand)

c) A solution with reads aligned

Amino acid sequence (forward strand)

I/M P L P stop

Y L Y L R

T F T L

Nucleotide sequence (forward strand):

A T A C C T T T A C C T T A G A

C T A C C T T T A C

T A T G G A A A T G C

T A C C T T T A C C

A C C T T T A C C T

C G T T G A C C T T

G G A A A T G G A A

T T T A C C T T A G

T T A C C T T A G A

T T A C C T A A G A

Nucleotide sequence (reverse strand):

T A T G G A A A T G G A A T C T

Amino acid sequence (reverse strand)

Y R N G I

M E M E S

W K W N

Fig. 3. A scaled down version of puzzle game along with a solution to the read assembly
problem. The reads (a) should be placed on the board (b) to form a solution similar
to (c). The secret word (PLP) is marked in bold. The amino acids have been added
by using the codon table in figure 2.

protein word with probability of point mutations as well as corresponding and
additional point mutations in the underlying DNA sequence.

We must, however, control the number of mutations that are introduced in
the protein word. If no mutations occur, the word will be the same as the the
homologue protein in the background story, whereas if too many mutations oc-
cur, it may be difficult to determine if a discovered protein is correct. Hence, we
constrain the number of mutations in the protein word to a specified range. To
address this constraint we use PRISMs soft_msw construct [3], which provide
a backtrack-able random switch mechanism in contrast to the usual committed
choice construct for creating random switches, msw. Upon backtracking, the pre-
viously selected outcome of the switch is (temporarily) removed and probability

43

distribution over remaining outcomes is re-normalized before an alternate choice
is attempted.

Note that it is not strictly necessary to rely on backtracking to solve this
particular problem. An alternative failure-free approach would be to randomly
choose the number of mutations from the specified range, randomly determine at
which positions these mutations should occur and then introduce these mutations
in the protein word.

In the generation of reads another global constraint come into play – each
position of the DNA sequence must be covered by a specified minimum number
of reads – the depth. At the same time, the total number of reads is constrained
and generally kept to a minimum in order to balance the level fun and difficulty
in the puzzle.

Reads are generated by a recursive predicate in which the termination case
of the predicate specifies the condition that all positions must have the required
minimum depth and the recursive case generates a random read, aligns it to the
DNA sequence and updates a depth vector, d1 . . . dn, for each position 1 . . . n in
the DNA sequence. It is not possible for this predicate to fail, but it may produce
too many reads causing an assertion to fail in the calling predicate.

Initially we used soft_msw in our implementation, which would backtrack
upon failure, but this approach exhibited poor performance for larger board
sizes with a low cap on the total number of reads due to the potentially exten-
sive thrashing behaviour associated with backtracking, where partial solutions
leading to failures are repeatedly revisited.

The predicate responsible for placing reads is shown below,

placeread(Seq, Part1, Part2,ReadSize,Depths) :-

length(Seq,L),

LMax is L - ReadSize,

findall(X,between(0,LMax,X),AllLen),

findall(D2,(

between(0,LMax,X),

length(C1,X),

length(C2,ReadSize),

append(C1,C2,C3),

append(C3,_,Depths),

D2 is min(C2))),

MinDepths),

inverse_depths_probs(MinDepths,Probs),

random_select(AllLen,Probs,L1),

L #= L1+L2,

length(Part2,L2),

append(Part1,Part2,Seq).

The placeread/4 predicate attempts to construct a list of depths from the
part of the sequence before the read, the part covering the read, and the part after
the read for all combinations of possible read placements. For each of possible

44

read placement, it then finds the minimum depth of any position covered by the
read. The call to inverse_depth_probs/2 constructs a probability distribution
over the possible read positions from the minimum depths. The probability of
placing a new read of length r starting at position i, is given by,

P (pos = i) =

{
1
n , if

∑n
i=1 di = 0.

wi∑n−r
h=1 wh

otherwise.
, where wi =

∑n−r
j=1 min dj . . . dj+r

min di . . . di+r

The probabilistic selection of read positions is not implemented using the msw
construct, but instead using the random_select construct, which given a list of
probabilities which serves as an probability distribution over a corresponding list
of outcomes, randomly selects one of the outcomes according to the probabil-
ity distribution. Instead of having a fixed probability distribution, we adapt the
probabilities in response to previous placements. This ensures that the proba-
bility of placing a new read at a given position is inversely proportional to the
minimum depth of the positions covered by the read. This approach is not as
declarative, since the possible outcomes and the probability distribution can only
be determined during program execution. A disadvantage that comes with this
lack of declarativity, i.e., that random choices occur outside the defined PRISM
model, is that other forms of inference which rely on a fixed model are no longer
possible.

The approach is very fast (almost instantaneous), but may occasionally fail. It
rarely happens, but when it does, the procedure can just be restarted. It results in
fewer reads and a distribution of depths/reads which appears uniformly random,
except in the ends near the edges of the board which are characterized by lower
depths.

4 Discussion

Our game has many similarities to Gigsaw [4], a program to generate PDF
documents that include educational Next Generation Sequencing puzzles. The
Gigsaw program similarly generates paper printable NGS reads, which can be
aligned to or assembled into a given sequence. In differs from our program in the
sense that it is simulation rather than a game. Our puzzles are more “gamified“
and have multiple dependent puzzle layers, i.e., also the translation to amino
acids and the quest for the secret word. Consistency between these layers is
what necessitates the constraints discussed in this paper. Depth constraints are
not possible with Gigsaw, which is intended to provide a realistic simulation
where depth depends solely on input parameters such as the sequence length,
the type and length of reads and the number of reads.

Using PRISM programs to sample biological sequence data has been done
before, e.g., in [5] where they use it to generate test data to evaluate gene finders.
Another application of sampling from constrained PRISM (CHRiSM) programs
is the APOPCALEAPS program [6], which introduced the soft_msw approach.

45

A heuristic approach to generate programs with low probability of failure,
as embodied by adaptive probability distributions is more efficient than the
soft_msw approach in our case. However, the scheme is specific to our applica-
tion and cannot easily be generalized. As a point of future research, it would
be useful to develop generic, but heuristically informed methods for PLP-based
random sampling which are less prone to thrashing than the pure soft_msw back-
tracking approach. Perhaps inspiration can be drawn from the methods of con-
straint programming [7]. Another concern that arise with sampling approaches
circumventing failure, is that the probability distribution over outcomes can be
skewed by the approach. This has negative consequences for using the sampling
as a building block for other inference procedures. Failures can, however, be han-
dled in the context of parameter learning by the failure adjusted maximization
procedure [8] in PRISM [9] and other PLP systems [10].

References

1. Metzker, Michael L.; Sequencing technologiesthe next generation. Nature reviews
genetics 11.1, 31–46. (2010).

2. Sato, Taisuke, Yoshitaka Kameya: PRISM: a language for symbolic-statistical mod-
eling. IJCAI. Vol. 97. (1997)

3. Sato, Taisuke, et al.: PRISM Users Manual. Version 2.2. (2012).
4. Martin, D. M. A.: Gigsaw: physical simulation of next generation sequencing for

education and outreach. EMBnet. journal, 18(1), 28 (2012).
5. Henning Christiansen, Christina Mackeprang Dahmcke: A Machine Learning Ap-

proach to Test Data Generation: A Case Study in Evaluation of Gene Finders.
Lecture Notes in Artificial Intelligence 4571, 741–755 (2007)

6. Jon Sneyers and Danny De Schreye: APOPCALEAPS: Automatic Music Generation
with CHRiSM. 22nd Benelux Conference on AI (BNAIC’10), Luxembourg (2010)

7. Dechter, Rina, and Daniel Frost: Backtracking algorithms for constraint satisfaction
problemsa tutorial survey. Information-and CS Technical Report 56 (1998).

8. Cussens, James: Parameter estimation in stochastic logic programs. Machine Learn-
ing 44.3 (245-271). (2001).

9. Sato, Taisuke, Yoshitaka Kameya, and Neng-Fa Zhou: Generative Modeling with
Failure in PRISM. IJCAI. (2005).

10. Chen, Jianzhong, et al. ”PEPL: An implementation of FAM for SLPs. ALP
Newsletter, focus on Probabilistic Prolog Systems (2011).

